Logic Programs with Compiled Preferences

James P. Delgrandé and Torsten Schaul? and Hans Tompits®

Abstract. We describe an approach for compiling dynamic pref- of the forms < ¢, wheres and¢ are names. Thus, preferences among
erences into logic programs under the answer set semantias-An rules are encoded at ttobject-level An ordered logic program is
deredlogic program is an extended logic program in which rules aretransformed into a second, regular, extended logic program wherein
named by unique terms, and in which preferences among rules athe preferences are respected, in the sense that the answer sets ob-
given by a set of atoms of the form< ¢ wheres andt are names. tained in the transformed theory correspond to the preferred answer
An ordered logic program is transformed into a second, regular, exsets of the original theory. The approach is sufficiently general to al-
tended logic program wherein the preferences are respected, in thiatv the specification of preferences among preferences, preferences
the answer sets obtained in the transformed theory correspond witiolding in a particular context, and preferences holding by default.
the preferred answer sets of the original theory. Our approach al- Our approach can be seen as a genaethodologyor uniformly

lows the specification oftatic orderings (in which preferences are incorporating preference information within a logic program. This
external to a logic program), as well dgnamicorderings (in which transformational approach has several advantages. First, it is flexi-
preferences can appear within a program), and orderingetsof ble. So one can encode how a preference order interacts with other
rules. In large part then, we are interested in describing a generahformation, or how different types of preference orders (such as
methodologyfor uniformly incorporating preference information in specificity, authority, recency, etc.) are to be integrated. Second, it
a logic program. Since the result of our translation is an extendeds easier to compare differing approaches handling such orderings,
logic program, we can make use of existing implementations, suckince they can be represented uniformly in the same general set-
asdlv andsmodels . To this end, we have developed a compiler, ting. Thus, for instance, if someone doesn't like the notion of prefer-
available on the web, as a front-end for these programming systemsence developed here, they may encode their own within this frame-
work. Lastly, it is straightforward implementing our approach: In the
present case, we have developed a translator for ordered logic pro-
grams that serves as a front-end for the logic programming systems
In commonsense reasoning one frequently prefers one outcome ovglry [7] andsmod_els [_12]') .
another, or the application of one rule over another, or the drawing 1€ NeXt section gives background terminology and notation,
of one default conclusion over another. For example, in buying a ca hile Section 3 describes our central approach. Section 4 explores

one may have various desiderata in mind (inexpensive, safe, fast, eté. e f‘?”“a' properties of the approach; while Sect|_on > g|vgs an
where these preferences come in varying degrees of importance erview of further features and extensions, and provides a pointer to

legal reasoning, laws may apply by default but the laws themselveghe implementation. Section 6 compares related work, and Section 7

may conflict. So municipal laws will have a lower priority than state concludes with a short discussion.
laws, and newer laws will take priority over old. Further, if these
preferences conflict, there will be need to invoke higher preference® DEFINITIONS AND NOTATION
to decide the conflict. . . .

In this paper we explore the problem of preference orderingswe deal with gxtended Igglc programs [11]., which alllow for express-
within the framework of extended logic programs under the answel"9 both cIas_smaI negqtloras well asnegathn as fall_ureWe use
iﬁ" for classical negation andriot” for negation as failure. Classi-

1 INTRODUCTION

set semantics [9]. The general methodology was first proposed in [5], S . . -

in addressing preferences in default logic. Previous work in dealin a_l neg_ahon Is also referreql to stsong negationwhilst negation as

with preferences has for the most part treated preference inform ailure is termedveak neggtlon .

tion at themeta-levelsee Section 6 for a discussion of previous ap- Our fqrmal tree_ltment IS bas_ed on propositional languages. As
proaches). In contrast, we remain within the framework of extendediJsualv diteral, L, is an expression .Of _th_e forod or =4, where A

logic programs: We begin with aorderedlogic program, which is Is an atom. We assume a possibly infinite set of such atoms. The set

an extended logic program in which rules are named by unique term f all literals is denoted by.it. A literal preceded by the negation as
gilure signnot is said to be aveakly negated literalA rule, r, is an

and in which preferences among rules are given by a new set of ato .
expression of the form

1 School of Computing Science, Simon Fraser University, Burnaby, B.C.,
Canada V5A 1S6, email: jim@cs.sfu.ca Lo+ L1,...,Lm,not Lypt1,...,n0t Ly, 1)
2 Institut fur Informatik, Universiat Potsdam, Postfach 60 15 53, D-14415
Potsdam, Germany, email: torsten@cs.uni-potsdam.de; also affiliated witvheren > m > 0, and eachL; (0 < ¢ < n) is a literal.
the School of Computing Science at Simon Fraser University, Burnabythe Jiteral L is called theheadof r, and the sef{ L, ..., Ly,

Canada. . . .
3 Institut fur Informationssysteme, Abt. Wissensbasierte Systeme 184/370 Lm+1,. .., not Ly} isthebodyof r. If n = m, thenr is abasic

Technische Universit Wien, FavoritenstraRe 11, A-1040 Wien, Austria, fule; if n = 0, thenr is afact An (extendedilogic program or sim-
email: tompits@kr.tuwien.ac.at ply aprogram is a finite set of rules. A programlsicif all rules in

it are basic. We uskead (r) to denote the head of rule andbody (r) written ast : r, leaving the naming function(-) implicit. The el-
to denote the body of. Furthermore, lebody ™ (r) = {L1,..., L} ements ofA - express preference relations among rules. Intuitively,
andbody™ (r) = {Lm+1,--.,Ln}. The elements obody™ (r) are n. < n, asserts that’ has “higher” priority thanr. Thus,r’ is
referred to as thererequisitesof . We say that a rule is defeated viewed as having precedence overThat is,r’ should, in some
by a set of literalsX iff body™(r) N X # (. As well, each literal in sense, always be considered “before”
body~ (r) N X is said todefeatr. Most importantly, we impose no restrictions on the occurrences of
A set of literalsX is consisteniff it does not contain a comple- preference atoms. This allows for expressing preferences in a very
mentary pairA, ~A of literals. We say thaiX is logically closed flexible, dynamic way. For instance, we may specify
iff it is either consistent or equalsit. Furthermore X is closed un-
der a basic progranil iff for any r € II, head(r) € X whenever Nr =< My < p, not q
body(r) C X. The smallest set of literals which is both logically
closed and closed under a basic progidns denoted by CAI).
Let IT be a basic program an¥l a set of literals. The operat@i;
is defined as follows:

wherep andg may themselves be (or rely on) preference atoms.

A special case is given by programs containing preference atoms
only among their facts. We say that a logic prograhover L is
statically orderedif it is of the formIT = IT' U IT”, wherell’ is an

TuX = {head(r) | r € 11, body(r) C X} ordered logic program ovef \ A~ andIl” C {(n, < n./) « |
r,r’ € I'}. The static case can be regarded as being induced from
if X is consistent, and; X = Lit otherwise. lterated applications an external order<”, where the relation < r’ between two rules

of Tir are written asl?; (j > 0), whereT}X = X andT3X = holds iff the fact(n, < n,,) — is included in the ordered program.
TnTri[‘lX fori > 1. Itis well-known that CQII) = |, T4 0, for We make this explicit by denoting a statically ordered progfaws
any basic prograril. B apair(Il’, <), representing the progralif U{(n, < n./) « |r <
Let r be a rule. Then™ denotes the basic rule obtained fram ’}. This static concept of preference corresponds in fact to most
by deleting all weakly negated literals in the bodyrofi.e.,r™ = previous approaches to preference handling in logic programming
head(r) « body™ (r). Thereduct IT¥, of a progranil relative toa and nonmonotonic reasoning, where the preference information is
setX of literals is defined by specified as a fixed relation at the meta-level (see, e.g., [1, 2, 13, 4]).
x N) Our approach provides a mappifigthat transforms an ordered
II" = {r" | r € Il andr is not defeated byX'}. logic programII into a regular logic prograr (II), such that the

X . . . preferred answer sets &f are given by the (regular) answer sets
In other words,[I"" is obtained fromil by (i) deleting anyr € II of 7 (II). Intuitively, the translated prografm(11) is constructed in

which is defeated byX and (ii) deleting each weakly negated lit- . .
eral occurring in the bodies of the remaining rules. We say that a seSIUCh a way that the ensuing answer sets respect the inherent prefer-

X of literals is ananswer seof a programil iff Cn(IT¥) = X. ence information induced by the given prograh(see Theorems 3

Clearly, for each answer & of a programil, it holds thatX = and 4 below). This is achieved by adding sufficient control elements

. . : to the rules oflI which guarantee that successive rule applications
Uiso Trix 0. The answer set semantics for extended logic programs . -cord with the intended order
has been defined in [9] as a generalization of the stable model se- . .) .

Given the relatiom, < n,,, we want to ensure that is con-

manti forgeneral logic programéi.e., programs n ntainin . . .
antics [8] forgeneral logic programg.e., programs not containing sidered before, in the sense that, for a given answer Xgtrule r’

classical negation;). The reductlI* is often called theGelfond- | . .
. . gatl) is known to be applied or defeatethead ofr (with respect to the
Lifschitz reduction . . -)
X . . grounded enumeration of generating rulesXgf We do this by first
The setl';; of all generating ruleof an answer seX from IT is - o -
iven by translating rules so that the order of rule application can be explicitly
9 controlled. For this purpose, we need to be able to detect when a rule
' = {rell|r" e™ andbody™ (r) C X}. has been applied or when a rule is defeated; as well we need to be
B able to control the application of a rule based on other antecedent
That is,I'fy comprises all rules € II such that- is not defeated by conditions. For a rule, there are two cases for it not to be applied: it
X and each prerequisite ofis in X. Finally, a sequencé-;);cr of may be that some literal ibody ™ (r) does not appear in the answer
rules isgroundediff, for all ¢ € I, {head(r;) | j < i} isinconsis- set, or it may be that a literal ibody ~ (r) is in the answer set. For de-

tent, or elsebody ™ (r;) C {head(r;) | j < i}. tecting non-applicability (i.e., blockage), we introduce, for each rule
r in the given progranil, a new, special-purpose atdst{n..). Sim-
3 LOGIC PROGRAMS WITH PREFERENCES ilarly, we introduce a special-purpose atap{n,) to detect the case

where a rule has been applied. For controlling application of rule
Alogic program over a propositional languagés said to beordered we introduce the atorak(n,.). Informally, we conclude that it isk
iff £ contains the following pairwise disjoint categories: to apply a rule just if it ik with respect to everk-greater rule; for
such a<-greater rule”’, this will be the case just wheri is known
to be blocked or applied.

More formally, given an ordered prografh over £, let £+ be
the language obtained fromi by adding, for eachr,»’ € II, new
For each ordered prograii, we assume furthermore a bijective Pairwise distinct propositional atoms(n;.), bl(n.), ok(n.), and
function n(-) assigning to each rule € II a namen(r) € N. ok’(nr,_n,,,). Then, our translatio maps an ordered prografi
To simplify our notation, we usually write, instead ofn(r) (and ~ OVerL into aregular prograr (IT) over £* in the following way.
we sometimes abbreviate., by n;). Also, the relation. = n(r) is

e aset\ of terms serving asamedor rules;
e a setA of regular (propositional) atoms of a program; and
e asetA . of preference atoms < ¢, wheres, ¢t € A are names.

Definition 1 LetIl = {ri,...,r:} be an ordered logic program
4 1n practice, functiom is only required to be injective in order to allow for OverL. Foreachr € II, letr(r) be the collection of rules depicted in
rules not participating in the resultant preference relation. Figure 1, whereL ™ € body™ (r), L~ € body~ (r), andr’, " € IL.

Then, the logic progran (IT) over £ is given by J, .; 7(7).

The first four rules of Figure 1 express applicability and blocking ax(r) head(r) — ap(n)
conditions of the original rules: For each rulec II, we obtain two a2 (I) ap(”r) « ok(ny), body (Jr)
rules,a, () andas(r), along withn, rules of the formb, (r, L*) and bi(r, L7) bl(n) « ok(nr),not L

1
m rules of the fornb, (r, L™), wheren andm are the numbers of the ba(r, L7) bi(n) <« ok(nr), L™
literals in body ™ () and body ™~ (r), respectively. The second group ca(r): ok(n.) « ok'(ne,ney),...,0kK (nr, 1,)
of rules encodes the strategy for handling preferences. The first of ca(r, ") (nr, ne) — not (ny < n)
these rulesg: (r), “quantifies” over the rules ifl. This is necessary cs(r,r’): ok'(me,mw) — (ny <), ap(n.)
when dealing with dynamic preferences since preferences may vary ca(r,r’): ok'(nr,n.) «— (n. < n.),bl(n.)
depen/ding onthe C(I)rrespo.nding answer set. The threeci(les’), il) e < Myt T < T M < gt
cs(r,r"), andea(r, ") specify the pairwise dependency of rules in as(r, ') : ~(ny <) np < np

view of the given preference ordering: For any pair of rutes’
with n, < n,., we deriveok’(n,, n,.) whenevern, < n,. fails to Figure 1. Translated rules(r).
hold, or whenever eitheip(n,) or bl(n,) is true. This allows us to
deriveok(n.), indicating that- may potentially be applied whenever
we have for all’ with n, < n, thatr’ has been applied or cannotbe 4 PROPERTIES OF THE APPROACH
applied. Itis important to note that this is only one of many strategle%
for dealing with preferences: different strategies are obtainable b
changing the specification ok(-) andok’(-, -).

We have the following characterisationmiferred answer sets

ur first result ensures that the dynamically generated preference in-
Yormation enjoys the usual properties of strict orderings. To this end,
we define the following relation: for each sktof literals and every

r,r" € II, the relationr <x r’ holds iff n, < n,» € X.

Definition 2 LetII be an ordered logic program over language

and X a set of literals. We say tha¥ is a preferred answer setdf ~ Theorem 1 LetII be an ordered logic program and’ a consistent
iff X =Y N £ for some answer s&f of 7 (II). answer set of (IT). Then,<x is a strict partial order. Moreover, if

IT has only static preferences, th <y, for any answer set”
In what follows, answer sets of standard (i.e., unordered) Iog| of 7(10). y P =<y y

programs are also referred toragular answer sets.
As an illustration of our approach, consider the following pro- The following properties shed light on the functioning induced by
gramII: translation7; they elaborate upon the logic programming operator

o= —a T myx of a reductZ (1)~

ro = b — —a,notc .

P — ¢ <« noth Theorem 2 Let X be a consistent answer set Bf1II) for an or-

ra = mna<ns <« notd dered progranil, and let2 = 7 (IT)*. Then, for any- € II:
wheren; denotes the name of rute (i = 1,...,4). This program 1 ok(n,) € X;

has two regular answer sets, one contairiagid the other contain- 2. ap(p,) € X iff bl(n,) ¢ X;
ing ¢; both contain-a andns < n.. However, only the firstis a pre- 3, if - is not defeated by, ok(n,.) € T4, andbody™ () C T2,

ferred answer set. To see this, observe that for¥ng {head(r) | thenap(n,) € ax(ii) 1.
.. T Q ’
r € T(I)}, we haven; < n; ¢ X foreach(s, j) # (3,2). Wethus 4 ok(ny) € Té0 and body™* () € X impliesbl(n,) € T
for suchX andi, j thatok’(ni, n;) € T x® by (reduced) I i pugne
get »J v T T(mX 5. if r is defeated byX andok(n,) € T50, thenbl(n,.) € T4 0 for
rules ca(r;, ;) ", and sook(n;) € Ti(mX(ZJ via rule c; (r) T = somej > i;
c1(r;). Analogously, we getp(ni),ap(na), ma,ns < n2. NOw 6. ok(n,) ¢ Ta0 impliesap(n,) & T30 andbl(n,.) ¢ T&0 for all
consider the following rules frord (II): gk <i+2.
az(rz) ap(nz) «— ok(nz),na,not The next result shows that the translated rules are considered in
bi(r2,—a) bl(nz) «— ok(nz),not —a accord to the partial order induced by the given preference relation:
ba(ra,c) bl(n2) <« ok(nz2),c
as(rs) ap(ns) — ok(ns),not b Theorem 3 LetII be an ordered logic program¥ a co_n5|stent an-
bo(rs,b) bl(ng) «— ok(ny),b swer set of7 (IT), and (r;);c; a grounded enumeration of the set
’ ’ I'%) of generating rules ok from 7 (II). Then, for allr, ' € II:
cs(r3,m2) ok'(n3,n2) <+ (n3 < m2),ap(n2)
C4(T37T2) : Ok/(ng7 TLQ) — (n3 < nz), bl(ng) If r < 7,/7 thenj <1,

Given ok(nz) and —a, rule az(rz) leaves us with the choice be-
tweenc ¢ X orc € X. First, assume ¢ X. We getap(nz)
from az(r2)™ € T(I1)*. Hence, we geb, ok’ (ns, n2), and finally
ok(ns), which results inbl(n3) via b2(rs, b). Omitting further de-
tails, this yields an answer set containingvhile excludinge. Sec-
ond, assume € X. This eliminatesaz(r2) when turning7 (II)
into 7 (I1)*. Also, b1 (12, —a) is defeated sincea is derivable. Rule
ba2(r2, c) is inapplicable, since is only derivable (fromap(ns) via Definition 3 Let(II, <) be a statically ordered program. An answer
a1(r3)) in the presence afk(ns). Butok(ns) is not derivable since setX of II is called<-preserving ifX is either inconsistent, or else
neitherap(nz) norbl(ny) is derivable. Since this circular situation is there exists a grounded enumeratign);c; of T'a such that, for
unresolvable, there is no preferred answer set containhing everyi, j € I, we have that:

for all r; equalingay(r) or by(r, L), and some-; equalingas (r')
or by (r', L"), withk, k' = 1,2, L € body(r), andL’ € body(r’).

For static preferences, our translatidnamounts to selecting the
answer sets of the underlying unordered program that comply with
the ordering<.

1. ifr; < rj, thenj < 4; and Theorem 6 Statically ordered logic programs obey Principles | and
2. ifr; < v andr’ € I\ Ty, thenbody™ (') € X orr’' is de- II-S. Furthermore, ordered logic programs enjoy Principle 1I-D.

feated by the sethead(r;) | j < i}.
! Observe that, since transformati@nis clearly polynomial in the

The next result furnishes semantical underpinnings for statically orsize of ordered logic programs, and because of Theorem 5, the com-
dered programs; it provides a correspondence between preferred gslexity of our approach is inherited from the complexity of standard
swer sets and regular answer sets of the original program: answer set semantics in a straightforward way. We just note the fol-

.) lowing result:
Theorem 4 Let(II, <) be a statically ordered logic program and

a set of literals. ThenX is a preferred answer set ¢fI, <) iff X is Theorem 7 Given an ordered prograril, checking whethell has
a <-preserving answer set df. a preferred answer set is NP-complete.

This gives rise to the following corollary:

5 FURTHER ISSUES AND REFINEMENTS

In this section, we sketch the range of applicability and point out dis-
tinguishing features of our approach. We briefly mention two points

Note that the last two results have no counterparts in the general (df°Ncerning expressiveness, and then sketch how we can deal with
namic) case, due to the lack of a regular answer set of the origimgreferences over sets of rules. Lastly, we refer to the implementation

program. The preference information is only fully available in the Of our approach. . .

answer sets of the translated program (hence the restriction of the First, we draw the reader’s attention to the expressive power of-

notion of <-preservation to the static case). fered by dynamic preferences in connection with variables in the in-
Also, if no preference information is present, our approach isPutlanguage, such as

equivalent to standard answer set semantics. Moreover, the notions n1(z) < na(y) — p(y), not (z = c) @)

of statically ordered and (dynamically) ordered programs coincide in ’ ’

this case. wheren;i(z),n2(y) are names of rules containing the variahles

andy, respectively. Although such a rule represents only its set of
ground instances, it is actually a much more concise specification.

Also, since most other approaches employ static preferences of the

form n1(z) < n2(y) <, such approaches would necessarily have

1. X is a preferred answer set of statically ordered logic program to express (2) as an enumeration of static ground preferences rather
(11, 0); than a single rule. o _ _

Second, we note that transformati@nis also applicable to dis-
junctive logic programs (where rule heads are disjunctions of liter-
als). To see this, observe that the transformed rules unfold the condi-

Recently, Brewka and Eiter [4] suggested two principles, simplytions expressed in the body of the rules, while the rules’ head remain
termedPrinciple | andPrinciple Il, which, they argue, any defeasi- untouched, as manifested by rule(r).

ble rule system handling preferences should satisfy. The next result Third, we have extended the approach to allow for preferences be-

shows that our approach obeys these principles. However, since tiween sets of rules. Although we do not include a full discussion here,

original formulation of Principle | and Il is rather generic—motivated we remark that this extension has also been implemented (see below).
by the aim to cover as many different approaches as possible—wia order to refer to sets of rules, the language is adjoined by Atet
must instantiate them in terms of our formalism. It turns out thatof terms serving as names for sets of rules, and, in addition, the set

Principle | is only suitable for statically ordered programs, whilst A< may now include atoms of the form < m’ with m, m’ € M.

Principle Il admits two guises, one for statically ordered programsAccordingly, set-ordered programsontain preference information

and another one for (dynamically) ordered programs. between names of sets. Informally, 4€tof rules is applicable iff all
Principles | and 11, formulated for our approach, are as follows: its members are applicable. Consequently/ifis preferred oved,

then) is considered afteall rules in)M’ are found to be applicable,

Principle I. Let (II, <) be a statically ordered logic program, and or some rule i\’ is found to be inapplicable. As before, set-ordered
let X; and X, be two (regular) answer sets bf generated by programs are translated into standard logic programs, where suitable
RU{r1} andRU{r2}, respectively, where;, ro & R.If r1 < 7, control elementsk(-), bl(-), andap(-), ranging over names of sets,
then X is not a preferred answer set(@l, <). take care of the intended ordering information.

Principle II-S (Static Case). Let X be a preferred answer set of As an example, consider where in buying a car one ranks the price
statically ordered logic prograrfil, <), let » be a rule wherein (e) over safety featuress) over power p), but safety features to-
body*(r) ¢ X, and let<’ be a strict partial order which gether with power is ranked over price. Taking = = — not -z
agrees with< on rules fromIl. Then, X U A is an answer set for z € {e, s, p}, we can write this (informally) as:
of MU {r},<'), whereAd = {(n, < n,) | r <" s} U
{~(ns < my) |7 <’ s}.5 my:{rp} < ma:{rs} < msg:{re} < ma:{rp,rs}

Principle II-D (Dynamic Case). Let X be a preferred answer set of
a (dynamically) ordered logic prografh, and letr be a rule such
thatbody™ (r) € X. Then,X is an answer set di U {r}.

Corollary 1 Let (II, <) and X be as in Theorem 4. IX is a pre-
ferred answer set ofII, <), thenX is an answer set ofI.

Theorem 5 LetII be a logic program ovet and X a set of literals.
If II contains no preference information, i.e.dfnN A< = (), then
the following statements are equivalent:

2. X is a preferred answer set of ordered logic program
3. X is aregular answer set of logic prograhi.

The termsm1, ms, ms3, andmy are names of sets of rules. If we
were given only that not all desiderata can be satisfied then we
could apply the rules in the set (hamed), and conclude thap

5 The inclusion ofA is necessary because we encode the preference informa@nd s can be met. Furthermore, sets of rules are described exten-
tion at the object level. sionally by means of atoms(-,-). Thus, the setns : {rp,rs}

is captured byin(n,, m4) < andin(ns, m4) <. Accordingly, we
havein(ny, m1) <, in(ns, m2) <, andin(n., ms) <. Given rules
re, Tp, s and the previous facts about the specification of our ex-
ample is completed by the preferenees < m;y1 < fori = 1,2, 3.

Besides the discussed extensions, our overall framework is gene
enough to express other strategies for preference handling, like th
proposed in [4]. This instance of our framework is described in &
companion paper.

Lastly, the approach has been implemented in Prolog and serv:
as a front-end to the logic programming systedis [7] and
smodels [12]. The current prototype is available at

http://www.cs.uni-potsdam.de/ torsten/plp/ .

This URL contains also diverse examples taken from the literature.
Both the dynamic approach to (single) preferences and the set-bas
approach have been implemented. We note also that the impleme
tation differs from the approach described here in two respects: firsf
the translation applies to hamed rules only, i.e., it leaves unname

rules unaffected; and second, it provides a module which admits the
specification of rules containing variables, whereby rules of this for

are processed by applying an additional grounding step. More deta:rih
on the implemented front-end can be found in [6].

ow
sets of rules. Finally, this paper demonstrates that our approach is

7 CONCLUSION

We have described an approach for compiling preferences into logic
programs under the answer set semantics. An ordered logic program,
rizﬂ which preferences appear in the program rules, is transformed into
gtsecond, extended logic program wherein the preferences are re-
spected, in that the answer sets obtained in the transformed theory
correspond with the preferred answer sets of the original theory. In
&certain sense, our transformation can be regarded as an axiomati-
sation of (our interpretation of) preference. Arguably then, we de-
scribe a generahethodologyor uniformly incorporating preference
information in a logic program. In this approach, we avoid the two-
level structure of previous work. While the previous “meta-level” ap-
aches must commit themselves to a semantics and a fixed strategy,
qur approach (as well as that of [10]) is very flexible with respect to
hanging strategies, and is open for adaptation to different semantics
nd different concepts of preference handling.

The approach is easily restricted to reflecstatic ordering in
which preferences are external to a logic program. We also indicated

the approach can be extended to deal with preferences among

easily implementable; indeed, we have developed a compiler, as a
front-end fordlv andsmodels .

6 RELATED WORK

Dealing with preferences on rules seems to necessitate a two-lev|[CKNOWLEDGEMENTS

approach. This in fact is a characteristic of many approaches found
in the literature. The majority of these approaches treat preference
the meta-
ification of well-founded semantics in which dynamic preferences
may be given for rules employingot. [13] and [4] propose different
prioritized versions of answer set semantics. In [13] static prefer-
ences are addressed first, by definingrdductof a logic program
IT, which is a subset ofI that is most preferred. For the following [1]
example, their approach gives two answer sets (one wvithd one

with —p) which seems to be counter-intuitive; ours in contrast has a[2]
single answer set containingp.

3]
ry = p<< notq
ro = —p <« not gz (4]
1 < T2

Moreover, the dynamic case is addressed by specifying a transformaL5]
tion of a dynamic program to a set of static programs.

Brewka and Eiter [4] address static preferences on rules in ex-[6]
tended logic programs. They begin with a strict partial order on a
set of rules, but define preference with respect to total orders that’]
conform to the original partial order. Preferred answer sets are then
selected from among the collection of answer sets of the (unpriori-[8]
tised) program. In contrast, we deal only with the original partial
order, which is translated into the object theory. As well, only pre- [°]
ferred extensions are produced in our approach; there is no need fﬁ'b]
meta-level filtering of extensions.

Gelfond and Son [10] propose a special-purpose language for di-
rectly encoding preferences in a logic programming setting. To thi$l 1]
end, they pursue a “two-level” approach in reifying rules and prefer-[12]
ences. For example, a rule like— r, —s, not g is expressed by the
formula default (n, p, [r, —s], [¢]) (or, after reification, by the corre-
spondingterminside aholdspredicate, respectively) whereis the
name of the rule. The semantics of a domain description is given A3l
terms of a set of domain-independent rules for predicatesibkes
These rules can be regarded as a meta-interpreter for the domain de-
scription.

A’.lhe second author was partially supported by the German Science
level by defining alternative semantics. [3] proposes a modfoundation (DFG) under grant FOR 375/1-1, TP C. The third author

was partially supported by the Austrian Science Fund (FWF) under

grants N Z29-INF and P13871-INF.

REFERENCES

F. Baader and B. Hollunder, ‘How to prefer more specific defaults in
terminological default logic’, ifProc. IJCA| pp. 669-674, (1993).

G. Brewka, ‘Adding priorities and specificity to default logic’, Rroc.
JELIA eds., L. Pereira and D. Pearce, pp. 247-260. Springer, (1994).
G. Brewka, ‘Well-founded semantics for extended logic programs with
dynamic preferencesy. Artificial Intelligence Researchd, 19-36,
(1996).

G. Brewka and T. Eiter, ‘Preferred answer sets for extended logic pro-
grams’,Artificial Intelligence 1091-2), 297-356, (1999).

J. Delgrande and T. Schaub, ‘Compiling reasoning with and about pref-
erences into default logic’, iRroc. IJCA| ed., M. Pollack, pp. 168—
174. Morgan Kaufmann, (1997).

J. Delgrande, T. Schaub, and H. Tompits, ‘A compiler for ordered logic
programs’, inProc. NMR ed., C. Baral and M. Truszcagki, (2000).

T. Eiter, N. Leone, C. Mateis, G. Pfeifer, and F. Scarcello, ‘A deductive
system for nonmonotonic reasoning’, Rroc. LPNMR eds., J. Dix,

U. Furbach, and A. Nerode, pp. 363—374. Springer, (1997).

M. Gelfond and V. Lifschitz, ‘The stable model semantics for logic
programming’, inProc. ICLP, (1988).

M. Gelfond and V. Lifschitz, ‘Classical negation in logic programs and
deductive databasedew Generation Computingl991).

M. Gelfond and T. Son, ‘Reasoning with prioritized defaults.'Piroc.
LPKR eds., J. Dix, L. Pereira, and T. Przymusinski, pp. 164-223.
Springer, (1997).

V. Lifschitz, ‘Foundations of logic programming’, ifPrinciples of
Knowledge Representatiped., G. Brewka, 69-127, CSLI, (1996).

I. Niemek and P. Simons, ‘Smodels: An implementation of the sta-
ble model and well-founded semantics for normal logic programs’, in
Proc. LPNMR eds., J. Dix, U. Furbach, and A. Nerode, pp. 420-429.
Springer, (1997).

Y. Zhang and N. Foo, ‘Answer sets for prioritized logic programs’, in
Proc. ILPS ed., J. Maluszynski, pp. 69-84. MIT Press, (1997).

