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Abstract equivalencdlnoue and Sakama, 20D4Informally, the for-

) . mer notions consider progranidand (@ to be equivalent, if
We introduce a general framework for specifying P U R andQ U R have always the same answer sets, where
program correspondence under the answer-set se-  p s a set of rules from a particular collection of rules. Thus,
mantics. The framework allows to define different if R is regarded as possible input, equivaléhand Q are
kinds of equivalence notions, including previously guaranteed to compute always the same answer sets. Note
defined notions like strong and uniform equiva- that also open logic prograniBonatti, 2001, in which part
lence, in which programs are extended with rules st the rules are to be added at runtime, fit within this scheme.
from a given context, and correspondence is deter- However, none of these works have considered the practi-
mined by means of a binary relation. In particu- cably important setting gfrojectedanswer sets in ASP. Here,
lar, refined equivalence notions based on projected ot 3 whole answer set of a prograis of interest, but only
answer sets can be defined within this framework,  jis intersection on a subsBt C U of all letters; this includes,

where not all parts of an answer setare of relevance. i particular, removal of auxiliary letters in computation. For
We study general characterizations of inclusionand 3 simple example, consider the programs

equivalence problems, introducing novel semanti-

cal structures. Furthermore, we deal with the issue P ={sel(X) « s(X), not out(X),

of determining counterexamples for a given corre- out(X) Vout(Y) « s(X),s(Y),X #Y } and
spondence problem, and we analyze the computa Q = { sel(X) — s(X), not skip(X),

tional complexity of correspondence checking.
skip(X) «— sel(X),s(Y), X £Y }.

1 Introduction They should select, by meansaf, one element satisfying

) o o ) ) in their answer sets. Here, an important issue is whether the
With the availability of efficient implementations of the programs are equivalent with respect to the “output” predicate
answer-set semanti¢&elfond and Lifschitz, 1991for non- ¢/ for all “inputs” s, wheres may be defined by rules over
monotonic logic programsanswer-set programminfASP)  predicates from a set, say, or given by facts.
has been recognized as a fruitful paradigm for declarative another aspect is that, apart from equivalence, other rela-
problem solving. In this approach, a problem is encoded agonships between the sets of answer set®@ndQ might
a logic program such that its models, cal@tswer setscor-  pe of interest. A natural exampleiisclusion which means
respond to the solutions of the problem, which can be easilyhat each answer set &fis also an answer set ¢f. HereQ
extracted from them. Due to the availability of default nega-can be viewed as an approximation®fwhich is sound with
tion, ASP has become an important host for solving many Alespect to cautious reasoning framn
problems, including planning, diagnosis, information integra- - Motivated by these observations, in this paper, we consider
tion, and inheritance reasoning (cf. Gelfond and Léi@®3  solution correspondences in ASP at a generic level. Our main
for an overview on ASP). contributions are briefly summarized as follows.

To support engineering of ASP solutions, an important is- (1) We introduce a general framework for correspondences

sue is determining equivalence of different encodings, given .
by two programs. To this end, various notions of equivalencé)etween the answer sets of prografsand ¢), which are

} ; mented by further rules fromcantextC of possible ex-
ggggzr}np:ﬁgr?ergzrﬂng ;Srtth\,?g?rgigeé qslﬁ\t/aslirr?gg_t;?:cﬂﬁ\z/e b‘%#?sions, where the correspondence is determined by a binary
etal, 2001, uniform equivalencéEiter and Fink, 2008 and relationp. Previous notions of equivalence and projected an-

relativized notions theredfoltran, 2003, as well auipdate swer sets amount to particular instances of this framework.
' ' P (2) We provide characterizations of inclusion correspon-

*This work was supported by the Austrian Science Fund undeflénce and equivalence between programs under projected

grant P18019, and by the EC via projects FET-2001-37004 WASFanswer sets, in terms of novel semantical structures, called
IST-2001-33570 INFOMIX, and IST-2001-33123 CologNeT. spoilers which refute this property, ancertificates which



capture the essence of equivalence, similar as SE-models andUnder the answer-set semantics, two progrdmand )
UE-models do for strong and uniform equivalence, respecare regarded as (ordinarily) equivalent#fS(P) = AS(Q).
tively. Based on these characterizations, we present interesthe more restrictive forms aftrong equivalencéLifschitz
ing correspondence results on varying projection sets in ASRt al., 2001 anduniform equivalencéEiter and Fink, 2008
(3) We show how spoilers can be used to constoacin-  have recently been generalized as folldwéoltran, 2004
terexamplesto an inclusion resp. equivalence correspon-Let P, Q) be programs ove, and letA C ¢{. Then,P and@
dence, consisting of a suitable interpretatibhand a rule  arestrongly(resp.,uniformly) equivalent relative toA iff, for
setR such that)/ is an answer set of exactly one BfU R anyR € P4 (resp.,R C A), AS(PUR) = AS(Q U R).
andQ@ U R. If A=U, strong (resp., uniform) equivalence relative4o
(4) Finally, we determine the computational complexity of reduces to strong (resp., uniform) equivalence simpliciter; if
correspondence checking for propositional disjunctive pro-4 =, ordinary equivalence results in either case.
grams under projected answer sets. Our main result is that We use the following notation. For an interpretatiband
equivalence checking iE}-complete in general, and thus a setS of (pairs of) interpretations, we writg|; = {Y N I |
feasible in polynomial space as compared to a naive guesd- € S} (S| = {(XNL,YNI) | (X,Y) € S}). If S = {s},
and-check procedure which requires exponential space. Fuwe writes|; instead ofS|;, if convenient.
thermore, we show that for restricted settings, the complexity For anyA C U/ and anyY C U, a pair(X,Y’) of interpre-
gradually decreases frohi}’ to coNP. tations is anA-SE-interpretationover() iff either X = Y
The results presented in this paper significantly advanc€r X C Y[a. (X,Y) is anA-SE-modebf a program?” iff
the current state of equivalence testing in ASP towards highly (i) v = P;
relevant settings for practical applications, and provide novel, .. , . noo_ , v.
insight into the structure of equivalent programs. Besides(”) forall Y* C Y with Y7|4 =Y, Y" = P"; and
the papers quoted above, further related work mostly ad(ii) X C Y implies the existence of ax’ C Y with
dresses semantic and complexity characterizations of equiva- X’|a = X such thatX” |= P¥ holds.
lence[Lin, 2002; Turner, 2008 or describes implementation  a pair (X,Y) is total iff X = Y, andnon-totalotherwise.
methoddEiter et al, 2004; Oikarinen and Janhunen, 2004 114 set of all4-SE-models of? is denoted bySEA(P).
The recent work by Pearce and Valver®04 addresses ~ por 4 — g4 A-SE-interpretations (respd-SE-models) are
strong equivalence of programs over disjoint alphabets Whlclgimmy calledSE-interpretationgresp.,SE-modelg coincid-

are synonymous under structurally defined mappings. ing with the notions defined by Turné2003, and we write
The characterizations we present are non-trivial and, a E(P) instead ofSE”(P)

shown by our complexity results, necessarily involved in the -
sense that no “simple” criteria exist. Together with counterex-Proposition 1 (Woltran, 2004]) Two programsP and Q
amples, they provide a basis for powerful program optimiza-are strongly equivalent relative td iff SEA(P) = SEA(Q).

tion and debugging tools for ASP, which are lacking to date. Example 1 Consider the following two programs?;, and
. . P,, which we shall use as a running example:
2 Preliminaries

We deal with propositional disjunctive logic programs, which 1= o U {evde—a cvd—b},
are finite sets of rules of form P,=PyU{cV d«a,b; d— b notc; c— a,notd},

a1V -V a < a1,y 0y N0t Qypi1, ..., n0t ap, (1)

for PBp={a—c¢; b—c; a—d; b—d; — notc,notd}.

n>m >1>0, where alla; are propositional atoms ancht They have the following SE-modéls:

denotes default negation; far= [ = 1, we usually identify

the rule with the atom; . If all atoms occurring in a program SE(P1)={(0,abc),(0,abd),(0,abed),(abed,abed),

P are from a given set of atoms, we say thd® is a program (abe,abed),(abd,abed),(abe,abe),(abd,abd) },

over A. The set of all programs ovet is denoted byP 4. We _

call a rule (resp., programnmormaliff it contains no disjunc- SE(P2)=SE(P1)U{(b,abe),(a,abd), (b,abed),(a,abed)

tion V. A program isunaryif it contains only rules of the form Hence,P; and P, are not strongly equivalent. On the other

a < bora «; P}y" denotes the set of all unary programs overhand, AS(P,) = AS(P) = 0, i.e., P, and P, are (ordinar-

A. For a set of atomsl = {a1,...,a,}, not A denotes ily) equivalent. Moreovei’; and P, are strongly equivalent

the set{not ai, ..., not a,, }. Accordingly, rules of form (1) relative toA iff AN {a,b} = 0. For A = {a, b}, we get

will also be written asi; Vv --- V a; < By, not By, where N

Bl = {al+1, RN am} anng = {am+1, ..., not an}. SE (Pl) = {((Da abc)7 (Q)v abd)v (abca abc)? (abda abd)}a
Following Gelfond and Lifschit1991, an interpreta-  SE*(Py) = SE“(Py) U {(b, abc), (a,abd)}.

tion I, i.e., a set of atoms, is aanswer sebf a programP

iff it is a minimal model of theeductP?, which results from 3 General Framework

P by (i) deleting all rules containing default negated atomsy, order to deal with differing notions of program equivalence
not a such thate € I and (i) deleting all default negated jn 5 uniform manner, taking in particular the currently ex-

atoms in the remaining rules. The set of all answer sets Ofting notions of equivalence, as presented above, as well as
a programP is denoted byAS(P). The relation = P be-

tween an interpretatiohand a progran® is defined as usual. "We write abc instead of{a, b, ¢}, a instead of{a}, etc.



equivalence notions based on the projection of answer sefroposition 2 Let (4,C,=p) be an equivalence frame and
into account, we introduce a general framework for expressP, @ € P,,. Then, the following conditions hold:

ing solution correspondences between logic programs. Inthis 1, |f p ~c—p) Q. thenP ~g oy Q,forall ¢’ CC
framework, we parameterize, on the one hand, thekset andall B’ C B. T

rules to be added to the prografisand(, and, on the other -

hand, the relation that hgs tgo hold between the collection of 2- £ =w.c.=p) QIff P ~a@ic.cppy) QaNdQ = c.cp) P
answer sets oP U R and@ U R. Concerning the latter pa- ~ We recall an important result due to Woltrg2004, ex-
rameter, besides equality, other comparison relations like setending an analogous result by Lifschétal.[2001].

inclusion may be used. This leads to the following notion:  Proposition 3 Consider a framél{, P4, =), for A C U, and

Definition 1 By acorrespondence framer simplyframe F, IeLP, Q@ € Py ThenP = p, =) QT P ~qpy =) Q-
we understand a tripl€/, C, p), where(i) i is a set of atoms, Example 2 We have already seen that fét, P> from Ex-
called theuniverse ofF, (i) C C Py, called thecontext ample 1P % p, —) I holds, forA = {a,b} and =
programs ofF, or simply thecontext and(iii) p C 22 x 22, {a,b,c,d}. Hence, by Proposition 3 % py,=) P». This

For all programs P, Q € Py, we say thatP and Q are  is witnessed by the fact that, e.dS(P1U{a}) = {abc, abd}
F-correspondingsymbolicallyP ~» @, iff, forall R € ¢,  while AS(P, U {a}) = {abc}.
(AS(PUR),AS(QU R)) € p. The relevance of Proposition 3 is that it allows to dras-
tically reduce the number of required rules for equivalence

determines the general alphabet under consideraice- che_ck|t|jg. H?wever, thetproposmon does not generalize to
termines the kind of rules used for comparison, arid the projections of answer se-s. )
specific operation used for checking the correspondence diheorem 1 For any equivalence framé/, P4, =p) with
two programs. A,B C U, and anyP,Q € Py, if P~y p, —p) Q, then
It is quite obvious that the equivalence notions discussed” ~u. Py =5) @, butthe converse does not hold in general.
above are special cases®fcorrespondence. Indeed, for any Proof. That P~ p, — )@ implies Py pun =)@ is im-
universel/ and anyA C U, we have that strong equivalence mediate from Part 1 of Proposition 2. Our running exam-
relative toA coincides with(i/, P, =)-correspondence, and ple shows the failure of the converse? >~ pun =g Po
uniform equivalence relative ta coincides with(/, 24, =)- holds, wherel ={a,b,c,d} andA = B = {a?b}, but
correspondence. Consequently, it holds that (i) strong eQUVp, £, . _ . P,. The latter holds in view ofAS(P, U
alence coincides wittiid, P,,, =)-correspondence, (ii) uni- {aVb <) = {abe,abd} but AS(P U {aVb «}) = 0
form equivalence coincides witfd/, 2, =)-correspondence, as easily shown ’ ’
and (i) ordinary equivalence coincides witld, {0}, =)- '
correspondence. The above theorem also holds if the $&f* is substituted
In this paper, we are mainly concerned with correspon-by the class of all normal programs ovér Indeed, programs
dence frames of fornif, P4, Cp) and(U, Pa,=5), Wwhere P, and P, of our running example are corresponding with
A C U is some set of atoms, aridz and=p are projections respect to a frame using normal programs a¥et {a,b} as
of the standard subset and set-equality relation, respectivelgontext, because in each stable modePpf) R resp.P> U R,
to a setB C U, defined as follows: for setS, S’ of interpre-  both a andb must be true. Thus, rules iR (C P4) with

Intuitively, in a correspondence frani®e = (U,C,p), U

tations, negative literals in the body are immaterial.
o S CpSiff S|p C S'|p and Thg—:-orem 1_|nd|cates that equivalence for p.rOjectgd answer
_ sets is more involved. The same holds for inclusion, since
e S=5S'iff S| =5|5. as an easy corollary to TheoremR,~q; p, c ) @ implies
In particular,= amounts to answer-set existencegif= £ ~@.Py.c) @ but not vice versa. In fact, the next re-

¢, and to correspondence between answer sés=/. _sult shows that, in gengral,_ a smallest extendiowiolating

In what follows, if F is of the form(/,C, =g), we refer inclusion has exponential size.
to F also as arequivalence frameand, accordingly, to/F-  Theorem 2 There exists a family of problenis = (P, Q,
correspondence also &equivalence As well, a frame of P4, Ca) suchthateaclk C P4 witnessingAS(PUR)|4 €
the form(i4,C, Cp) is also referred to as anclusion frame  AS(Q U R)|4 is exponential in the size ¢t and Q.

For later purposes, we also introduce the following no-Proof (Sketch. The idea is to encode a propositional CNF
tion: A correspondence probleni], overi/, is a quadru- ¢ = /\?:1 C; over atoms/, for C; = ¢;1 V -+- V ¢; 1, into
ple (P,Q,C,p), whereP,Q € Py, and(U,C,p) is aframe. 11 = (P,Q,Pa,C4) such that, for any? € P4, AS(P U
We say thafll holdS_Iff P~ucp Q hO!dS. In accord W_Ith R)[4 € AS(Q U R)|4 and—R must include a DNF for,
the above designations, we cHllanequivalence problent o6 & js the result of interpreting as a classical formula.
(U,C, p) is an equivalence frame and Elusion problenif LetV ={o|ve VLV ={|veV}V ={t |ve
(U, C, p) is an inclusion frame. V}, andG = {g1, ..., g} be sets of new atoms. We define

For a correspondence probldh = (P,Q,C, p) overl, P = {voV0«; —mnotv; —nott|veV}U
we usually leavé/ implicit, assuming that it consists of all o ’ ’
atoms occurring irP, Q, andC. {ve=uu v—uulv,ueV}iu

We next list some basic propertiesBfequivalence. {ve=Clv—C/lveV;1<i<n},



whereC; = cf;,..., ¢}, v* =, and(-v)* = v, and (i) (Y,Y) e SEA(P),

Q = {vVo— vV —bnott’; v —vmnotv' |veEV}IU (i) foreach(Z,Z) € S, some non-tota( X, Z) € S exists,
{05 « notv',notv' |[veV}u (i) (Z,2) € Siff (2,2) € o“B(SE*(Q)), and
fveviv—us vt v |v,ue VU (iv) (X,Z) € Simplies(X,Y) ¢ SEA(P).

{9i —@yli=1mnj=1k}Ul—gi... 00}, Intuitively, in a spoiler(Y,S), the interpretatiort” is an

witho =+" and=o=7". Let A = V U V. Informally, PU R answer set of” U R but not ofQ U R, for someR, which is
only admits answer sets containidgand indeed it holds that semantically given bys.

(4,4) € SE(PUR)|4\SE(QUR)|4, for someR. Forany — gyample 3 For P, and P from our running example and
suchR, the SE-model$X, A) with X C Amustbe precisely 4 _ {a,b}, (¥1,8) and (Ya,S) are the only spoilers for
those whereX is a countermodel af. This means thak is (P, Py, Pa,C4), whereY; = {abc}, Yo = {abd}, and

a CNF for—¢, and thus-R# amounts to a DNF fop. This S = {(a, abd), (b, abe), (abe, abe), (abd, abd)}, with the lat-
proves the claim. Now, as well-known, the smallest DNF forter peing a subset o (SEA(Py)) = of (SEA(Py)) =
1 2

a CNF¢ can be exponential i, which proves the resultd SU{(0,abc), (B,abd)}, as required in Definition 3.

We can similarly construct a family of problems showing The central property of spoilers is as follows:
el Sse. Honce, & ahe gusse nc Check aigortm (J1S01EM 3 LeLE = @ P, ) be a frame. Then, for any
; RS ' . 4 ~rQi i i Cg).
disprove inclusion or equivalence needs exponential spaceer_P“’ P. FQiffthere is no spoﬂerfo(P,Q,PA, Cs) _
For a better algorithm, we have to develop suitable semanti- An immediate consequence of this theorem, together with

cal characterizations, which must take disjunctive extensionBart 2 of Proposition 2, is the following result:

Into account. Corollary 1 LetF = (U, Pa,=p) be an equivalence frame
. andP,Q € Py. Then,P ~x Q iff neither (P,Q,P4,Cp

4 Characterizations nor (Q’%’ P, Cp) has a Spoi%_ (F,Q.Pa,C5)

In this section, we first present some characteristic structures

associated with inclusion and equivalence problems und

projections of answer sets, termspoilersand certificates

Based on them, we then discuss some interesting invarianeg2 Certificates

results. ith | . After having introduced structures whidhisproveprogram
V\./e. gtart with some gengra prope.rtles.. ) correspondence, we now discuss structures wpiotie pro-
Definition 2 A setS of SE-interpretations isompleteiff, for gram correspondence. Roughly speaking, the structures in-
each(X,Y) € S, also(Y,Y) € Saswell as(X,Z) € S,  troduced below express the essence of a progfamith re-
foranyY C Zwith (Z,2) € S. spect to program equivalence, in terms of a semantic condi-
It can be shown that the s&% (P) of all SE-models of a tion on P alone.
programp is always complete. Definition 4 Let C' be a set of atoms an§ a set of SE-
_ The following guarantees that a complete 8edf SE-  yiarpretations. A pair(X,Y), where X is a set of inter-
interpretations can be represented by some program pretations andy’ C C, is a C-projection ofS iff there exists
Proposition 4 LetS be a complete set of SE-interpretations, some setZ such that(i) (Z,2) € S, (i) Z|¢ = Y|¢, and
and let A be a set of atoms. Then, there exists a prograntiii) ¥ = {X | (X,Z2) e S, X C Z}.

As discussed later on, spoilers provide a semantical basis
&6r counterexample generation.

Ps 4 € P4 suchthatSE(Ps a)la = S|a. For a program P, we call an (A U B)-projection of

One possibility to obtairPs_4 from S is as follows: take SE*(P)an (A, B)-certificate ofP.
rules— Y, not (A\ Y), for eachY’ C A suchthatY,Y) ¢ The following lemma can be shown by means of spoilers,
S|a, and rules\/ ¢ v\ x)p = X, not (A\Y),foreachX € ang expresses that programs are corresponding with respect
Y suchthat(X,Y) ¢ S|4 and(Y,Y) € S|a. to inclusion frames iff their certificates satisfy a certain con-

. tainment relation.
4.1 Spoilers

The first class of characteristic structures associated with prc;'—e . o

gram correspondence we are dealing with are of such a natufi@Sh (4, B)-certificate (X, Y') of P, an (4, B)-certificate

that their existence prevents the equivalence of programs un: ,Y) of @ exists with¥” € .

der projected answer sets. The next result expresses the central property of certifi-
We need the following auxiliary notation: Létbe a setof cates. Towards its formulation, we require a further concept:

SE-interpretations antl, C sets of atoms. Thew(S) An (A,B)-certificate(X,Y") of a programP is minimal iff,

{(X,2) eS| Zlc =Y]c} for any (A, B)-certificate(Z2,Y) of P, ZC X impliesZ=2X.

Definition 3 LetIl = (P,Q,Pa, Cp) be aninclusion prob-  Theorem 4 LetF = (4, P, =35) be an equivalence frame.
lem overld, letY C U be an interpretation, and consider Then, for anyP, Q € Py, P ~5 Q iff the minimal(A, B)-
S C o{VB(SEA(Q)). The pair(Y, S) is aspoiler forll iff certificates ofP and (@ coincide.

mma 1 Correspondence dfP, Q, P4, C ) holds, iff for



Note that this result is the pendant to Proposition 1, which e R € P4 such thatdS(P U R) € AS(Q U R), and
deals with a model-theoretic characterization of relativized o )7 ¢ AS(P U R) andM|z ¢ AS(Q UR)

\ B
strong equivalence. Indeed, two programsy € P, are . i
strongly equivalent relative tol iff their minimal (A, )- Furthermore, a counterexample for an equivalence prob

certificates coincide. Some further relations between progra m (CP ’ )Qéz)(fc‘é :PB7)D'S z;ny)counterexample for eitheP, @,
correspondence and relativized and non-relativized strong4: =5 o PA =B

equivalence, respectively, are given in the next subsection. Our notion of a spoiler from Definition 3 provides a basis
for such counterexamples.

Example 4 In our running example withl = B = {a,b},  Theorem 6 SupposéY; S) is a spoiler for a correspondence
we get thatP;, has a single( A, A)-certificate, ({0}, {ab}), problemIT = (P, Q,Pa,Cx). Then,(Ps.4,Y) is a coun-

while 1 has two(A, A)-certificates, ({0, {a}}, {ab}) and  terexample folll, wherePs 4 is as in Proposition 4.
({0, {b}}, {ab}), all of them minimal. Since they do not P ' A P

coincide, we obtain thaf’, and P, are not (U, Pa,=4)-
equivalent, as expected.

This result follows from Theorem 3 and Proposition 4 by
the fact thatS| 4 is complete for any spoildlY, S).

Example 5 For our example and the sketched construction

4.3 Invariance Results after Proposition 4, we derive counterexamplég {abc})
Theorem 4 allows us to derive some interesting invarianc&nd (&, {abd}), whereR = {a V b« ; «— not a; — not b;
results with respect to varying projection séts — not a, not b}; obviously, the last rule is redundant.

Theorem 5 Let/ be a set of atoms and, B C U/. Then, for Note that if an inclusion probleniP, @, P4, ) fails,
anyP,Q € Py, P ~qyp. - Qiff P~ p. _ 0. some counterexample as in Theort_am 6 does exist.
(U,Pa,=p) (U,Pa=aup) We observe that the programs in the counterexamples of
This result follows immediately from Theorem 4 and Defi- Theorem 6 may contain redundant clauses, as succinctness
nition 4, by observing that4, B)-certificates of a programl®  is not a concern of spoilers. For instance, in our example,
and(A, AU B)-certificates ofP are actually identical objects, R’ = {a V b <} would yield a simpler counterexample. In
since(A U B)-projections ofSE“ (P) trivially coincide with  fact, spoilers are not geared towards providing minimal coun-
(AU (AU B))-projections ofSE* (P). terexamples with respect to particular syntactic subclasses of
Theorem 5 has several interesting consequences. contexts. o _
Towards facilitating special counterexamples, we may ex-
Corollary 2 For programs P, and any setd of atoms, tend the notion of a spoiler to paif&,S), whereS ¢
(P, Q,Pa,=¢) holds iff (P, @, Pa, =4) holds. o{VB(SEA(Q)) is admitted for complets, by replacing in
That is, answer-set existence (which is relevant regardin@efinition 3 the setS in (i) with S N oZ(SE*(Q)) and in

Boolean properties) relative to additions froR is tanta- iy and (iv) with S N oAVB (SEA(Q)), calling the result an
mount to relativized strong equivalence under projectiod.to  extended spoiler

Corollary 3 Leti be a set of atoms. Then, for any programs Example 6 In our running examplell = (Py, P>, P, C4)
P,Q € Pyandany seB C U ofatoms,P ~ p, =) Qiff  has spoiler{{abc},S) and ({abd},S), withS = {(a, abd),
P and( are strongly equivalent. (b,abc), (abc,abe), (abd,abd)}. Since both(ab,ab) ¢

This result s quite striking as it shows that strong equivalence’®” (P2) and (abed, abed) ¢ SE* (P,), one can verify that
corresponds tdl/, P, =g )-equivalence, foany projection ~ any complete superset’ of S not containing any(f), Z),
setB. Itis derived from the fact that, for ang, the (i/, B)- ~ With Z|.» = {ab}, yields extended spoilefabc}, S’) and
certificates of a progran® are in a one-to-one correspon- ({abd}, S’). In particular, we may ses’ = S U {(a,a),
dence to the SE-models &fas follows: ({X1,..., X,,},Y)  (b,0)}. Note thatS'|4 = {(a,a), (a,ab), (b,b), (b, ab),

is a (U, B)-certificate of P iff (X1,Y),...,(Xm,Y), (Y,Y)  (ab,ab)}. Now, the simpler progran®’ = {a Vv b <} ful-

are all the SE-models d? with fixed second componeit.  fills SE(R')[a = &'|; thus, (R, {abc}) and (R, {abd})

In particular, consistency under answer-set semantics (i.e&re counterexamples fa.
if B = () coincides with strong equivalence. More generally: Theorems 3 and 6 generalize to extended spoilers. More

Corollary 4 Leti/ be a set of atoms. Then, for all programs Counterexamples can be constructed using such spoilers in
P,Q € Py and all setsA and B of atoms such thatl U general, which may include a counterexample of particular

B=U, P~ - iff P andQ are strongly equivalent form. In our example, adding(a, ), (b, )} to an ordinary
lative toA.(u7PA7—B) Q Q giyeq spoiler allowed us to give a counterexample program which

. ) . is positive. On the other hand, we can show that no coun-
In fact, in this setting, a correspondence betwetiSE- terexample program which is normal exists (agfd7) with

models of a program and it§A, B)-certificates is analo- 7|, — {4} can be added). An elaboration of this issue re-

5 Counterexamples 6 Computational Complexity

Given that a correspondence problén= (P, Q,P4,Cp) Our first result is concerned with recognizing whether an in-
does not hold, it is interesting to know why this is the caseterpretation is a discriminating answer set for the extended
We define aounterexample fofl as a pail R, M), where programsP U R and@ U R, i.e., a “partial” spoiler.



Lemma 2 Given programsP andQ, setsA andB ofatoms, 7 Conclusion and Further Work

and an interpretationy’, deciding whethe(P, Q. Pa.Sr)  we have presented a general framework for expressing solu-
has some spoiler whose first component s I1; -complete.  tjon correspondences between nonmonotonic logic programs,
Proof (Sketch. We showXf-membership of deciding that and have then developed semantic characterizations of inclu-
no spoiler of form(Y, S) exists. By Definition 3, it suffices sion and equivalence problems under projected answer sets
to check whether (a)Y,Y) ¢ SE*(P) or (b) whether there ~Within a context of possible changes. As we have shown,
exists a(Z, Z) € o{VF(SE*(Q)) such that each non-total they match the intrinsic complexity of the problem.

(X,7) € SEA(Q) implies (X,Y) € SEA(P). Part (a) is ; O_urt_resultsdp(;mt/)lde a setmarr:tl_cal baS|shfoLdeve:op||(r)g op;
feasible in polynomial time with an NP oracle. For Part (b), ”rg';gn'?g ?n ol efo??grlt?]geree%hr;ﬂggrsﬁevr\:tslcof 2rSeP6§s '29 r%—
note that giveny” and Z, checking whether, for each non- grammingup;/;adigm u P
total (X, Z) € SE*(Q) ?JSO (X, V) € SEZ(P), |sI|)n 13 Several issues remain for future work. One is to extend our
Therefore, Part (b) is il; , and the entire testis B . study to different classes of contexts and compared programs,

4 . e .
The II; -hardness is shown by a sophisticated reduction, 4 5 provide suitable semantical and complexity character-
from suitable quantified Boolean formulas (QBFs), using ma;, ations. Another issue concerns the construction of “good”

chinery from the exponential counterexample CONstruction,, nterexamples, according to their possible form. Finally,
which was used for showing Theorem 2. exploring other notions of correspondences thanandC

From this result, we can easily derive the membership parf the general framework is an intriguing issue.

of our main complexity result given below; its hardness partR

is again shown by an encoding of QBFs. eferences
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