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Abstract

We introduce a general framework for specifying
program correspondence under the answer-set se-
mantics. The framework allows to define different
kinds of equivalence notions, including previously
defined notions like strong and uniform equiva-
lence, in which programs are extended with rules
from a given context, and correspondence is deter-
mined by means of a binary relation. In particu-
lar, refined equivalence notions based on projected
answer sets can be defined within this framework,
where not all parts of an answer set are of relevance.
We study general characterizations of inclusion and
equivalence problems, introducing novel semanti-
cal structures. Furthermore, we deal with the issue
of determining counterexamples for a given corre-
spondence problem, and we analyze the computa-
tional complexity of correspondence checking.

1 Introduction
With the availability of efficient implementations of the
answer-set semantics[Gelfond and Lifschitz, 1991] for non-
monotonic logic programs,answer-set programming(ASP)
has been recognized as a fruitful paradigm for declarative
problem solving. In this approach, a problem is encoded as
a logic program such that its models, calledanswer sets, cor-
respond to the solutions of the problem, which can be easily
extracted from them. Due to the availability of default nega-
tion, ASP has become an important host for solving many AI
problems, including planning, diagnosis, information integra-
tion, and inheritance reasoning (cf. Gelfond and Leone[2002]
for an overview on ASP).

To support engineering of ASP solutions, an important is-
sue is determining equivalence of different encodings, given
by two programs. To this end, various notions of equivalence
between programs under the answer-set semantics have been
studied in the recent past, viz.strong equivalence[Lifschitz
et al., 2001], uniform equivalence[Eiter and Fink, 2003], and
relativized notions thereof[Woltran, 2004], as well asupdate
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equivalence[Inoue and Sakama, 2004]. Informally, the for-
mer notions consider programsP andQ to be equivalent, if
P ∪ R andQ ∪ R have always the same answer sets, where
R is a set of rules from a particular collection of rules. Thus,
if R is regarded as possible input, equivalentP andQ are
guaranteed to compute always the same answer sets. Note
that also open logic programs[Bonatti, 2001], in which part
of the rules are to be added at runtime, fit within this scheme.

However, none of these works have considered the practi-
cably important setting ofprojectedanswer sets in ASP. Here,
not a whole answer set of a programP is of interest, but only
its intersection on a subsetB ⊆ U of all letters; this includes,
in particular, removal of auxiliary letters in computation. For
a simple example, consider the programs

P = { sel(X)← s(X),not out(X),
out(X) ∨ out(Y )← s(X), s(Y ), X 6= Y } and

Q = { sel(X)← s(X),not skip(X),
skip(X)← sel(X), s(Y ), X 6= Y }.

They should select, by means ofsel , one element satisfyings
in their answer sets. Here, an important issue is whether the
programs are equivalent with respect to the “output” predicate
sel, for all “inputs” s, wheres may be defined by rules over
predicates from a setA, say, or given by facts.

Another aspect is that, apart from equivalence, other rela-
tionships between the sets of answer sets ofP andQ might
be of interest. A natural example isinclusion, which means
that each answer set ofP is also an answer set ofQ. HereQ
can be viewed as an approximation ofP , which is sound with
respect to cautious reasoning fromP .

Motivated by these observations, in this paper, we consider
solution correspondences in ASP at a generic level. Our main
contributions are briefly summarized as follows.

(1) We introduce a general framework for correspondences
between the answer sets of programsP and Q, which are
augmented by further rules from acontextC of possible ex-
tensions, where the correspondence is determined by a binary
relationρ. Previous notions of equivalence and projected an-
swer sets amount to particular instances of this framework.

(2) We provide characterizations of inclusion correspon-
dence and equivalence between programs under projected
answer sets, in terms of novel semantical structures, called
spoilers, which refute this property, andcertificates, which



capture the essence of equivalence, similar as SE-models and
UE-models do for strong and uniform equivalence, respec-
tively. Based on these characterizations, we present interest-
ing correspondence results on varying projection sets in ASP.

(3) We show how spoilers can be used to constructcoun-
terexamplesto an inclusion resp. equivalence correspon-
dence, consisting of a suitable interpretationM and a rule
setR such thatM is an answer set of exactly one ofP ∪ R
andQ ∪R.

(4) Finally, we determine the computational complexity of
correspondence checking for propositional disjunctive pro-
grams under projected answer sets. Our main result is that
equivalence checking isΠP

4 -complete in general, and thus
feasible in polynomial space as compared to a naive guess-
and-check procedure which requires exponential space. Fur-
thermore, we show that for restricted settings, the complexity
gradually decreases fromΠP

4 to coNP.
The results presented in this paper significantly advance

the current state of equivalence testing in ASP towards highly
relevant settings for practical applications, and provide novel
insight into the structure of equivalent programs. Besides
the papers quoted above, further related work mostly ad-
dresses semantic and complexity characterizations of equiva-
lence[Lin, 2002; Turner, 2003], or describes implementation
methods[Eiter et al., 2004; Oikarinen and Janhunen, 2004].
The recent work by Pearce and Valverde[2004] addresses
strong equivalence of programs over disjoint alphabets which
are synonymous under structurally defined mappings.

The characterizations we present are non-trivial and, as
shown by our complexity results, necessarily involved in the
sense that no “simple” criteria exist. Together with counterex-
amples, they provide a basis for powerful program optimiza-
tion and debugging tools for ASP, which are lacking to date.

2 Preliminaries
We deal with propositional disjunctive logic programs, which
are finite sets of rules of form

a1 ∨ · · · ∨ al ← al+1, . . . , am,not am+1, . . . ,not an, (1)

n≥m≥ l≥ 0, where allai are propositional atoms andnot
denotes default negation; forn = l = 1, we usually identify
the rule with the atoma1. If all atoms occurring in a program
P are from a given setA of atoms, we say thatP is a program
overA. The set of all programs overA is denoted byPA. We
call a rule (resp., program)normal iff it contains no disjunc-
tion∨. A program isunaryif it contains only rules of the form
a← b ora←; Pun

A denotes the set of all unary programs over
A. For a set of atomsA = {a1, . . . , am}, not A denotes
the set{not a1, . . . ,not am}. Accordingly, rules of form (1)
will also be written asa1 ∨ · · · ∨ al ← B1,not B2, where
B1 = {al+1, . . . , am} andB2 = {am+1, . . . ,not an}.

Following Gelfond and Lifschitz[1991], an interpreta-
tion I, i.e., a set of atoms, is ananswer setof a programP
iff it is a minimal model of thereductP I , which results from
P by (i) deleting all rules containing default negated atoms
not a such thata ∈ I and (ii) deleting all default negated
atoms in the remaining rules. The set of all answer sets of
a programP is denoted byAS(P ). The relationI |= P be-
tween an interpretationI and a programP is defined as usual.

Under the answer-set semantics, two programsP andQ
are regarded as (ordinarily) equivalent iffAS(P ) = AS(Q).
The more restrictive forms ofstrong equivalence[Lifschitz
et al., 2001] anduniform equivalence[Eiter and Fink, 2003]
have recently been generalized as follows[Woltran, 2004]:
Let P,Q be programs overU , and letA ⊆ U . Then,P andQ
arestrongly(resp.,uniformly) equivalent relative toA iff, for
anyR ∈ PA (resp.,R ⊆ A),AS(P ∪R) = AS(Q ∪R).

If A =U , strong (resp., uniform) equivalence relative toA
reduces to strong (resp., uniform) equivalence simpliciter; if
A = ∅, ordinary equivalence results in either case.

We use the following notation. For an interpretationI and
a setS of (pairs of) interpretations, we writeS|I = {Y ∩ I |
Y ∈ S} (S|I = {(X∩I, Y ∩I) | (X, Y ) ∈ S}). If S = {s},
we writes|I instead ofS|I , if convenient.

For anyA ⊆ U and anyY ⊆ U , a pair(X, Y ) of interpre-
tations is anA-SE-interpretation(overU) iff either X = Y
or X ⊂ Y |A. (X, Y ) is anA-SE-modelof a programP iff

(i) Y |= P ;

(ii) for all Y ′ ⊂ Y with Y ′|A = Y |A, Y ′ 6|= PY ; and

(iii) X ⊂ Y implies the existence of anX ′ ⊆ Y with
X ′|A = X such thatX ′ |= PY holds.

A pair (X, Y ) is total iff X = Y , andnon-totalotherwise.
The set of allA-SE-models ofP is denoted bySEA(P ).

ForA = U , A-SE-interpretations (resp.,A-SE-models) are
simply calledSE-interpretations(resp.,SE-models), coincid-
ing with the notions defined by Turner[2003], and we write
SE (P ) instead ofSEU (P ).

Proposition 1 ([Woltran, 2004]) Two programsP and Q
are strongly equivalent relative toA iff SEA(P ) = SEA(Q).

Example 1 Consider the following two programs,P1 and
P2, which we shall use as a running example:

P1 = P0 ∪ {c ∨ d← a; c ∨ d← b},
P2 = P0 ∪ {c ∨ d← a, b; d← b,not c; c← a,not d},

for P0 = {a← c; b← c; a← d; b← d; ← not c,not d}.
They have the following SE-models:1

SE (P1)={(∅,abc),(∅,abd),(∅,abcd),(abcd,abcd),

(abc,abcd),(abd,abcd),(abc,abc),(abd,abd)},
SE (P2)=SE (P1)∪{(b,abc),(a,abd),(b,abcd),(a,abcd)}.

Hence,P1 andP2 are not strongly equivalent. On the other
hand,AS(P1) = AS(P2) = ∅, i.e.,P1 andP2 are (ordinar-
ily) equivalent. Moreover,P1 andP2 are strongly equivalent
relative toA iff A ∩ {a, b} = ∅. For A = {a, b}, we get

SEA(P1) = {(∅, abc), (∅, abd), (abc, abc), (abd, abd)},
SEA(P2) = SEA(P1) ∪ {(b, abc), (a, abd)}.

3 General Framework
In order to deal with differing notions of program equivalence
in a uniform manner, taking in particular the currently ex-
isting notions of equivalence, as presented above, as well as

1We writeabc instead of{a, b, c}, a instead of{a}, etc.



equivalence notions based on the projection of answer sets
into account, we introduce a general framework for express-
ing solution correspondences between logic programs. In this
framework, we parameterize, on the one hand, the setR of
rules to be added to the programsP andQ, and, on the other
hand, the relation that has to hold between the collection of
answer sets ofP ∪ R andQ ∪ R. Concerning the latter pa-
rameter, besides equality, other comparison relations like set-
inclusion may be used. This leads to the following notion:

Definition 1 By acorrespondence frame, or simplyframe,F ,
we understand a triple(U , C, ρ), where(i) U is a set of atoms,
called theuniverse ofF , (ii ) C ⊆ PU , called thecontext
programs ofF , or simply thecontext, and(iii ) ρ ⊆ 22U×22U .

For all programsP,Q ∈ PU , we say thatP and Q are
F-corresponding, symbolicallyP 'F Q, iff, for all R ∈ C,
(AS(P ∪R),AS(Q ∪R)) ∈ ρ.

Intuitively, in a correspondence frameF = (U , C, ρ), U
determines the general alphabet under consideration,C de-
termines the kind of rules used for comparison, andρ is the
specific operation used for checking the correspondence of
two programs.

It is quite obvious that the equivalence notions discussed
above are special cases ofF-correspondence. Indeed, for any
universeU and anyA ⊆ U , we have that strong equivalence
relative toA coincides with(U ,PA,=)-correspondence, and
uniform equivalence relative toA coincides with(U , 2A,=)-
correspondence. Consequently, it holds that (i) strong equiv-
alence coincides with(U ,PU ,=)-correspondence, (ii) uni-
form equivalence coincides with(U , 2U ,=)-correspondence,
and (iii) ordinary equivalence coincides with(U , {∅},=)-
correspondence.

In this paper, we are mainly concerned with correspon-
dence frames of form(U ,PA,⊆B) and(U ,PA,=B), where
A ⊆ U is some set of atoms, and⊆B and=B are projections
of the standard subset and set-equality relation, respectively,
to a setB ⊆ U , defined as follows: for setsS,S ′ of interpre-
tations,

• S ⊆B S ′ iff S|B ⊆ S ′|B , and

• S =B S ′ iff S|B = S ′|B .

In particular,=B amounts to answer-set existence ifB =
∅, and to correspondence between answer sets ifB = U .

In what follows, ifF is of the form(U , C,=B), we refer
to F also as anequivalence frame, and, accordingly, toF-
correspondence also asF-equivalence. As well, a frame of
the form(U , C,⊆B) is also referred to as aninclusion frame.

For later purposes, we also introduce the following no-
tion: A correspondence problem,Π, over U , is a quadru-
ple (P,Q, C, ρ), whereP,Q ∈ PU and(U , C, ρ) is a frame.
We say thatΠ holds iff P '(U,C,ρ) Q holds. In accord with
the above designations, we callΠ anequivalence problemif
(U , C, ρ) is an equivalence frame and aninclusion problemif
(U , C, ρ) is an inclusion frame.

For a correspondence problemΠ = (P,Q, C, ρ) overU ,
we usually leaveU implicit, assuming that it consists of all
atoms occurring inP , Q, andC.

We next list some basic properties ofF-equivalence.

Proposition 2 Let (U , C,=B) be an equivalence frame and
P,Q ∈ PU . Then, the following conditions hold:

1. If P '(U,C,=B) Q, thenP '(U,C′,=B′ ) Q, for all C′ ⊆ C
and allB′ ⊆ B.

2. P '(U,C,=B) Q iff P '(U,C,⊆B) Q andQ '(U,C,⊆B) P .

We recall an important result due to Woltran[2004], ex-
tending an analogous result by Lifschitzet al. [2001].
Proposition 3 Consider a frame(U ,PA,=), for A ⊆ U , and
let P,Q ∈ PU . Then,P '(U,PA,=) Q iff P '(U,Pun

A
,=) Q.

Example 2 We have already seen that forP1, P2 from Ex-
ample 1,P1 6'(U,PA,=) P2 holds, forA = {a, b} andU =
{a, b, c, d}. Hence, by Proposition 3,P1 6'(U,Pun

A
,=) P2. This

is witnessed by the fact that, e.g.,AS(P1∪{a}) = {abc, abd}
whileAS(P2 ∪ {a}) = {abc}.

The relevance of Proposition 3 is that it allows to dras-
tically reduce the number of required rules for equivalence
checking. However, the proposition does not generalize to
projections of answer sets.
Theorem 1 For any equivalence frame(U ,PA,=B) with
A,B ⊆ U , and anyP,Q ∈ PU , if P '(U,PA,=B) Q, then
P '(U,Pun

A
,=B) Q, but the converse does not hold in general.

Proof. ThatP'(U,PA,=B)Q impliesP'(U,Pun
A

,=B)Q is im-
mediate from Part 1 of Proposition 2. Our running exam-
ple shows the failure of the converse:P1'(U,Pun

A
,=B) P2

holds, whereU = {a, b, c, d} and A = B = {a, b}, but
P1 6'(U,PA,=B)P2. The latter holds in view ofAS(P1 ∪
{a∨ b ←}) = {abc, abd} but AS(P2 ∪ {a∨ b ←}) = ∅,
as easily shown. 2

The above theorem also holds if the setPun
A is substituted

by the class of all normal programs overA. Indeed, programs
P1 and P2 of our running example are corresponding with
respect to a frame using normal programs overA = {a, b} as
context, because in each stable model ofP1∪R resp.P2∪R,
both a and b must be true. Thus, rules inR (⊆ PA) with
negative literals in the body are immaterial.

Theorem 1 indicates that equivalence for projected answer
sets is more involved. The same holds for inclusion, since
as an easy corollary to Theorem 1,P '(U,PA,⊆B) Q implies
P '(U,Pun

A
,⊆B) Q, but not vice versa. In fact, the next re-

sult shows that, in general, a smallest extensionR violating
inclusion has exponential size.
Theorem 2 There exists a family of problemsΠ = (P,Q,
PA,⊆A) such that eachR ⊆ PA witnessingAS(P ∪R)|A 6⊆
AS(Q ∪R)|A is exponential in the size ofP andQ.
Proof (Sketch). The idea is to encode a propositional CNF
φ =

∧n
i=1 Ci over atomsV , for Ci = ci,1 ∨ · · · ∨ ci,ki , into

Π = (P,Q,PA,⊆A) such that, for anyR ∈ PA, AS(P ∪
R)|A 6⊆ AS(Q ∪ R)|A and¬R̃ must include a DNF forφ,
whereR̃ is the result of interpretingR as a classical formula.

Let V̄ = {v̄ | v ∈ V }, V ′ = {v′ | v ∈ V }, V̄ ′ = {v̄′ | v ∈
V }, andG = {g1, . . . , gn} be sets of new atoms. We define

P = {v ∨ v̄ ←; ← not v; ← not v̄ | v ∈ V } ∪
{v ← u, ū; v̄ ← u, ū | v, u ∈ V } ∪
{v ← C∗

i ; v̄ ← C∗
i | v ∈ V ; 1 ≤ i ≤ n},



whereC∗
i = c∗i,1, . . . , c

∗
i,ki

, v∗ = v̄, and(¬v)∗ = v, and

Q = {v ∨ v̄ ←; v′← v̄,not v̄′; v̄′←v,not v′ | v ∈ V } ∪
{← v′, v̄′; ← not v′,not v̄′ | v ∈ V } ∪
{v ← u′; v̄ ← u′; v ← ū′; v̄ ← ū′ | v, u ∈ V } ∪
{gi ← ĉi,j | i = 1..n, j = 1..ki} ∪ {← g1, . . . , gn},

with v̂ = v′ and¬̂v = v̄′. Let A = V ∪ V̄ . Informally,P ∪R
only admits answer sets containingA, and indeed it holds that
(A,A) ∈ SE(P ∪R)|A \SE(Q∪R)|A, for someR. For any
suchR, the SE-models(X, A) with X ⊂ A must be precisely
those whereX is a countermodel ofφ. This means that̃RA is
a CNF for¬φ, and thus¬R̃A amounts to a DNF forφ. This
proves the claim. Now, as well-known, the smallest DNF for
a CNFφ can be exponential inφ, which proves the result.2

We can similarly construct a family of problems showing
that a smallest extensionR violating equivalence has expo-
nential size. Hence, a naive guess and check algorithm to
disprove inclusion or equivalence needs exponential space.
For a better algorithm, we have to develop suitable semanti-
cal characterizations, which must take disjunctive extensions
into account.

4 Characterizations
In this section, we first present some characteristic structures
associated with inclusion and equivalence problems under
projections of answer sets, termedspoilersandcertificates.
Based on them, we then discuss some interesting invariance
results.

We start with some general properties.

Definition 2 A setS of SE-interpretations iscompleteiff, for
each(X, Y ) ∈ S, also(Y, Y ) ∈ S as well as(X, Z) ∈ S,
for anyY ⊆ Z with (Z,Z) ∈ S.

It can be shown that the setSE (P ) of all SE-models of a
programP is always complete.

The following guarantees that a complete setS of SE-
interpretations can be represented by some programP .

Proposition 4 LetS be a complete set of SE-interpretations,
and letA be a set of atoms. Then, there exists a program
PS,A ∈ PA such thatSE (PS,A)|A = S|A.

One possibility to obtainPS,A from S is as follows: take
rules← Y,not (A \ Y ), for eachY ⊆ A such that(Y, Y ) /∈
S|A, and rules

∨
p∈(Y \X) p← X,not (A \Y ), for eachX ⊂

Y such that(X, Y ) /∈ S|A and(Y, Y ) ∈ S|A.

4.1 Spoilers
The first class of characteristic structures associated with pro-
gram correspondence we are dealing with are of such a nature
that their existence prevents the equivalence of programs un-
der projected answer sets.

We need the following auxiliary notation: LetS be a set of
SE-interpretations andY , C sets of atoms. Then,σC

Y (S) =
{(X, Z) ∈ S | Z|C = Y |C}.
Definition 3 Let Π = (P,Q,PA,⊆B) be an inclusion prob-
lem overU , let Y ⊆ U be an interpretation, and consider
S ⊆ σA∪B

Y (SEA(Q)). The pair(Y,S) is aspoiler forΠ iff

(i) (Y, Y ) ∈ SEA(P ),
(ii ) for each(Z,Z) ∈ S, some non-total(X, Z) ∈ S exists,

(iii ) (Z,Z) ∈ S iff (Z,Z) ∈ σA∪B
Y (SEA(Q)), and

(iv) (X, Z) ∈ S implies(X, Y ) /∈ SEA(P ).

Intuitively, in a spoiler(Y,S), the interpretationY is an
answer set ofP ∪ R but not ofQ ∪ R, for someR, which is
semantically given byS.

Example 3 For P1 and P2 from our running example and
A = {a, b}, (Y1,S) and (Y2,S) are the only spoilers for
(P1, P2,PA,⊆A), whereY1 = {abc}, Y2 = {abd}, and
S = {(a, abd), (b, abc), (abc, abc), (abd, abd)}, with the lat-
ter being a subset ofσA

Y1
(SEA(P2)) = σA

Y2
(SEA(P2)) =

S ∪ {(∅,abc), (∅,abd)}, as required in Definition 3.

The central property of spoilers is as follows:

Theorem 3 LetF = (U ,PA,⊆B) be a frame. Then, for any
P,Q∈PU , P 'F Q iff there is no spoiler for(P,Q,PA,⊆B).

An immediate consequence of this theorem, together with
Part 2 of Proposition 2, is the following result:

Corollary 1 LetF = (U ,PA,=B) be an equivalence frame
andP,Q ∈ PU . Then,P 'F Q iff neither (P,Q,PA,⊆B)
nor (Q,P,PA,⊆B) has a spoiler.

As discussed later on, spoilers provide a semantical basis
for counterexample generation.

4.2 Certificates
After having introduced structures whichdisproveprogram
correspondence, we now discuss structures whichprovepro-
gram correspondence. Roughly speaking, the structures in-
troduced below express the essence of a programP , with re-
spect to program equivalence, in terms of a semantic condi-
tion onP alone.

Definition 4 Let C be a set of atoms andS a set of SE-
interpretations. A pair(X , Y ), whereX is a set of inter-
pretations andY ⊆ C, is aC-projection ofS iff there exists
some setZ such that(i) (Z,Z) ∈ S, (ii ) Z|C = Y |C , and
(iii ) X = {X | (X, Z) ∈ S, X ⊂Z}.

For a program P , we call an (A ∪ B)-projection of
SEA(P ) an (A,B)-certificate ofP .

The following lemma can be shown by means of spoilers,
and expresses that programs are corresponding with respect
to inclusion frames iff their certificates satisfy a certain con-
tainment relation.

Lemma 1 Correspondence of(P,Q,PA,⊆B) holds, iff for
each (A,B)-certificate (X , Y ) of P , an (A,B)-certificate
(X ′, Y ) of Q exists withX ′ ⊆ X .

The next result expresses the central property of certifi-
cates. Towards its formulation, we require a further concept:
An (A,B)-certificate(X ,Y ) of a programP is minimal iff,
for any(A,B)-certificate(Z,Y ) of P ,Z⊆X impliesZ=X .

Theorem 4 LetF = (U ,PA,=B) be an equivalence frame.
Then, for anyP,Q ∈ PU , P 'F Q iff the minimal(A,B)-
certificates ofP andQ coincide.



Note that this result is the pendant to Proposition 1, which
deals with a model-theoretic characterization of relativized
strong equivalence. Indeed, two programsP,Q ∈ PU are
strongly equivalent relative toA iff their minimal (A,U)-
certificates coincide. Some further relations between program
correspondence and relativized and non-relativized strong
equivalence, respectively, are given in the next subsection.

Example 4 In our running example withA = B = {a, b},
we get thatP1 has a single(A,A)-certificate,({∅}, {ab}),
while P2 has two(A,A)-certificates,({∅, {a}}, {ab}) and
({∅, {b}}, {ab}), all of them minimal. Since they do not
coincide, we obtain thatP1 and P2 are not (U ,PA,=A)-
equivalent, as expected.

4.3 Invariance Results
Theorem 4 allows us to derive some interesting invariance
results with respect to varying projection setsB.

Theorem 5 LetU be a set of atoms andA,B ⊆ U . Then, for
anyP,Q ∈ PU , P '(U,PA,=B) Q iff P '(U,PA,=A∪B) Q.

This result follows immediately from Theorem 4 and Defi-
nition 4, by observing that(A,B)-certificates of a programP
and(A,A∪B)-certificates ofP are actually identical objects,
since(A∪B)-projections ofSEA(P ) trivially coincide with
(A ∪ (A ∪B))-projections ofSEA(P ).

Theorem 5 has several interesting consequences.

Corollary 2 For programsP,Q and any setA of atoms,
(P,Q,PA,=∅) holds iff(P,Q,PA,=A) holds.

That is, answer-set existence (which is relevant regarding
Boolean properties) relative to additions fromPA is tanta-
mount to relativized strong equivalence under projection toA.

Corollary 3 LetU be a set of atoms. Then, for any programs
P,Q ∈ PU and any setB ⊆ U of atoms,P '(U,PU ,=B) Q iff
P andQ are strongly equivalent.

This result is quite striking as it shows that strong equivalence
corresponds to(U ,PU ,=B)-equivalence, forany projection
setB. It is derived from the fact that, for anyB, the(U , B)-
certificates of a programP are in a one-to-one correspon-
dence to the SE-models ofP as follows:({X1, . . . , Xm}, Y )
is a(U , B)-certificate ofP iff (X1, Y ), . . . ,(Xm, Y ), (Y, Y )
are all the SE-models ofP with fixed second componentY .

In particular, consistency under answer-set semantics (i.e.,
if B = ∅) coincides with strong equivalence. More generally:

Corollary 4 LetU be a set of atoms. Then, for all programs
P,Q ∈ PU and all setsA and B of atoms such thatA ∪
B = U , P '(U,PA,=B) Q iff P andQ are strongly equivalent
relative toA.

In fact, in this setting, a correspondence betweenA-SE-
models of a program and its(A,B)-certificates is analo-
gously established as above.

5 Counterexamples
Given that a correspondence problemΠ = (P,Q,PA,⊆B)
does not hold, it is interesting to know why this is the case.
We define acounterexample forΠ as a pair(R,M), where

• R ∈ PA such thatAS(P ∪R) 6⊆BAS(Q ∪R), and

• M ∈ AS(P ∪R) andM |B /∈ AS(Q ∪R)|B .
Furthermore, a counterexample for an equivalence prob-

lem (P,Q,PA,=B) is any counterexample for either(P,Q,
PA,⊆B) or (Q,P,PA,⊆B).

Our notion of a spoiler from Definition 3 provides a basis
for such counterexamples.

Theorem 6 Suppose(Y,S) is a spoiler for a correspondence
problemΠ = (P,Q,PA,⊆B). Then,(PS,A, Y ) is a coun-
terexample forΠ, wherePS,A is as in Proposition 4.

This result follows from Theorem 3 and Proposition 4 by
the fact thatS|A is complete for any spoiler(Y,S).
Example 5 For our example and the sketched construction
after Proposition 4, we derive counterexamples(R, {abc})
and(R, {abd}), whereR = {a ∨ b← ; ← not a;← not b;
← not a,not b}; obviously, the last rule is redundant.

Note that if an inclusion problem(P,Q,PA,⊆B) fails,
some counterexample as in Theorem 6 does exist.

We observe that the programs in the counterexamples of
Theorem 6 may contain redundant clauses, as succinctness
is not a concern of spoilers. For instance, in our example,
R′ = {a ∨ b ←} would yield a simpler counterexample. In
fact, spoilers are not geared towards providing minimal coun-
terexamples with respect to particular syntactic subclasses of
contexts.

Towards facilitating special counterexamples, we may ex-
tend the notion of a spoiler to pairs(Y,S), whereS 6⊆
σA∪B

Y (SEA(Q)) is admitted for completeS, by replacing in
Definition 3 the setS in (ii) with S ∩ σB

Y (SEA(Q)) and in
(iii) and (iv) with S ∩ σA∪B

Y (SEA(Q)), calling the result an
extended spoiler.

Example 6 In our running example,Π =(P1, P2,PA,⊆A)
has spoilers({abc},S) and({abd},S), with S = {(a, abd),
(b, abc), (abc, abc), (abd, abd)}. Since both(ab, ab) 6∈
SEA(P2) and (abcd, abcd) 6∈ SEA(P2), one can verify that
any complete supersetS ′ of S not containing any(∅, Z),
with Z|A = {ab}, yields extended spoilers({abc}, S ′) and
({abd}, S ′). In particular, we may setS ′ = S ∪ {(a, a),
(b, b)}. Note thatS ′|A = {(a, a), (a, ab), (b, b), (b, ab),
(ab, ab)}. Now, the simpler programR′ = {a ∨ b ←} ful-
fills SE (R′)|A = S ′|A; thus, (R′, {abc}) and (R′, {abd})
are counterexamples forΠ.

Theorems 3 and 6 generalize to extended spoilers. More
counterexamples can be constructed using such spoilers in
general, which may include a counterexample of particular
form. In our example, adding{(a, a), (b, b)} to an ordinary
spoiler allowed us to give a counterexample program which
is positive. On the other hand, we can show that no coun-
terexample program which is normal exists (as no(∅, Z) with
Z|A = {ab} can be added). An elaboration of this issue re-
mains for further work.

6 Computational Complexity
Our first result is concerned with recognizing whether an in-
terpretation is a discriminating answer set for the extended
programsP ∪R andQ ∪R, i.e., a “partial” spoiler.



Lemma 2 Given programsP andQ, setsA andB of atoms,
and an interpretationY , deciding whether(P,Q,PA,⊆B)
has some spoiler whose first component isY is ΠP

3 -complete.

Proof (Sketch). We showΣP
3 -membership of deciding that

no spoiler of form(Y,S) exists. By Definition 3, it suffices
to check whether (a)(Y, Y ) /∈ SEA(P ) or (b) whether there
exists a(Z,Z) ∈ σA∪B

Y (SEA(Q)) such that each non-total
(X, Z) ∈ SEA(Q) implies (X, Y ) ∈ SEA(P ). Part (a) is
feasible in polynomial time with an NP oracle. For Part (b),
note that givenY and Z, checking whether, for each non-
total (X, Z) ∈ SEA(Q) also(X, Y ) ∈ SEA(P ), is in ΠP

2 .
Therefore, Part (b) is inΣP

3 , and the entire test is inΣP
3 .

The ΠP
3 -hardness is shown by a sophisticated reduction

from suitable quantified Boolean formulas (QBFs), using ma-
chinery from the exponential counterexample construction
which was used for showing Theorem 2. 2

From this result, we can easily derive the membership part
of our main complexity result given below; its hardness part
is again shown by an encoding of QBFs.

Theorem 7 Given programsP andQ and setsA andB of
atoms, deciding whether(P,Q,PA,⊆B) holds isΠP

4 -com-
plete. Moreover,ΠP

4 -hardness holds even forB = ∅, i.e., for
answer-set existence.

For the particular case whereB = A, which constitutes the
setting where auxiliary letters are used in logic programs, we
obtain in combination with Theorem 5 the same complexity.

Notice that the “partial” spoiler of Lemma 2 avoids a naive
guess of a (possibly exponentially large) full spoiler(Y,S)
which proves the failure of(P,Q,PA,⊆B), at the expense of
checking involved conditions onSEA(P ) andSEA(Q).

The above results for inclusion problems carry over to
equivalence problems, since they are polynomially intertrans-
latable, as seen by Part 2 of Proposition 2 and the following
fact:

Proposition 5 P '(U,PA,⊆B) Q iff Q '(U,PA,=B) LP,Q,
whereLP,Q = {gP ∨ gQ ←; ← gP , gQ} ∪ {H ← gR, B |
R ∈ {P,Q},H ← B ∈ R} andgP , gQ are new atoms.

This holds by virtue of Lemma 1 and Theorem 4, and the fact
that the(A,B)-certificates ofLP,Q are those ofP andQ.

If the size of each program in the contextC is polynomially
bound by the size of the compared programsP andQ (as is
the case for ordinary and uniform equivalence), the complex-
ity is lower. Let us call such problems(P,Q, C, ρ) bound.

Theorem 8 Given programsP andQ, a contextC, a setB
of atoms, such thatΠ = (P,Q, C,⊆B) is bound, deciding
whetherΠ holds isΠP

3 -complete.ΠP
3 -hardness holds even

for C = {∅}, i.e., for ordinary equivalence with projection.

For other instances of the framework, the complexity is
even lower.

Theorem 9 Given programsP and Q over U and setsA
and B of atoms, deciding whether(P,Q,PA,=B) holds
is (i) coNP-complete ifA = U , and (ii ) ΠP

2 -complete if
(A ∪B) = U .

This result follows from the invariance results in Sec-
tion 4.2 and complexity results due to Woltran[2004].

7 Conclusion and Further Work
We have presented a general framework for expressing solu-
tion correspondences between nonmonotonic logic programs,
and have then developed semantic characterizations of inclu-
sion and equivalence problems under projected answer sets
within a context of possible changes. As we have shown,
they match the intrinsic complexity of the problem.

Our results provide a semantical basis for developing op-
timization and debugging techniques, which are lacking at
present but vital for further enhancements of ASP as a pro-
gramming paradigm.

Several issues remain for future work. One is to extend our
study to different classes of contexts and compared programs,
and to provide suitable semantical and complexity character-
izations. Another issue concerns the construction of “good”
counterexamples, according to their possible form. Finally,
exploring other notions of correspondences than=B and⊆B

in the general framework is an intriguing issue.
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