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Abstract

We introduceHEX programs, which are nonmono-
tonic logic programs admittinghigher-order atoms
as well asexternal atoms, and we extend the well-
known answer-set semantics to this class of pro-
grams. Higher-order features are widely acknowl-
edged as useful for performing meta-reasoning,
among other tasks. Furthermore, the possibility
to exchange knowledge with external sources in
a fully declarative framework such as Answer-Set
Programming (ASP) is nowadays important, in par-
ticular in view of applications in the Semantic Web
area. Through external atoms,HEX programs can
model some important extensions to ASP, and are a
useful KR tool for expressing various applications.
Finally, complexity and implementation issues for
a preliminary prototype are discussed.

1 Introduction

Answer-Set Programming (ASP)[Gelfond and Lifschitz,
1991] has recently attracted increasing interest as a declar-
ative problem solving paradigm. In this approach, a prob-
lem is encoded in terms of a nonmonotonic logic program
such that the solutions of the former can be extracted from
the answer setsof the latter. Due to the availability of effi-
cient answer-set solvers, like Smodels[Simonset al., 2002]
or DLV [Leoneet al., 2005], and various extensions of the
basic language with features such as classical negation, weak
constraints, or aggregates, ASP has become an important KR
formalism for declaratively solving AI problems in areas in-
cluding planning, diagnosis, information integration, and rea-
soning about inheritance. For the challenging area of Seman-
tic Web reasoning, extensions of ASP have been proposed,
facilitating interoperability with Description Logic reasoners
[Rosati, 1999; Eiteret al., 2004] or aiming at handling infi-
nite, tree-structured models[Heymans and Vermeir, 2003].
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However, for important issues such asmeta-reasoningin
the context of the Semantic Web, no adequate support is avail-
able in ASP to date. Motivated by this fact and the observa-
tion that interoperability with other software is (not only in
this context) an important issue, we extend in this paper the
answer-set semantics toHEX programs, that is,higher-order
logic programs (which accommodate meta-reasoning through
higher-order atoms) with external atomsfor software interop-
erability. Intuitively, ahigher-order atomallows to quantify
values over predicate names, and to freely exchange predicate
symbols with constant symbols, like in the rule

C(X)← subClassOf (D,C), D(X).

An external atomfacilitates to determine the truth value of
an atom through an external source of computation. For in-
stance, the rule

reached(X)← #reach[edge, a](X)

computes the predicatereached taking values from the pred-
icate #reach, which computes via#reach[edge, a] all the
reachable nodes in the graphedge from nodea, delegating
this task to an external computational source (e.g., an exter-
nal deduction system, an execution library, etc.).

Our main contributions are summarized as follows.

(1) We define the syntax and answer-set semantics of
HEX programs, extending ASP with higher-order features
and powerful interfacing of external computation sources.
While answer-set semantics for higher-order logic programs
has been proposed earlier by Ross[1994], further extension
of that proposal to accommodate external atoms is technically
difficult since the approach of Ross is based on the notion of
unfounded set, which cannot be easily generalized to this set-
ting. Our approach, instead, is based on a recent notion of
program reduct, due to Faberet al. [2004], which admits a
natural definition of answer-set semantics.

(2) External atoms are a useful abstraction of several exten-
sions to ASP including, among others, aggregates, descrip-
tion logic atoms, or agent programs. External atoms thus fa-
cilitate investigating common properties of such extensions,
and can serve as a uniform framework for defining seman-
tics of further similar extensions of ASP. Moreover,HEX pro-
grams are a basis for the efficient design of generic evaluation
algorithms for such extensions in this framework.



(3) By means ofHEX programs, powerful meta-reasoning
becomes available in a decidable context, e.g., for Seman-
tic Web applications, for meta-interpretation in ASP itself,
or for defining policy languages. For example, advanced
closed world reasoning or the definition of constructs for an
extended ontology language (e.g., of RDF-Schema) is well-
supported. Due to the higher-order features, the representa-
tion is succinct.

(4) A simple prototype implementation of the language is
available, based on a reduction to ordinary ASP.

Note that other logic-based formalisms, like TRIPLE[Sin-
tek and Decker, 2002] or F-Logic[Kifer et al., 1995], feature
also higher-order predicates for meta-reasoning in Semantic
Web applications. However, TRIPLE is low-level oriented
and lack precise semantics, while F-Logic in its implemen-
tations (Flora, Florid, Ontoweb) restricts its expressiveness
to well-founded semantics for negation, in order to gain effi-
ciency. Our formalism, instead, is fully declarative and offers
the possibility of nondeterministic predicate definition with
higher complexity. This proved already useful and reason-
ably efficient for a range of applications with inherent non-
determinism, such as diagnosis, planning, or configuration,
and thus provides a rich basis for integrating these areas with
meta-reasoning.

2 HEX Programs

2.1 Syntax
Let C, X , andG be mutually disjoint sets whose elements are
called constant names, variable names, and external pred-
icate names, respectively. Unless explicitly specified, ele-
ments fromX (resp.,C) are denoted with first letter in upper
case (resp., lower case), while elements fromG are prefixed
with “ # ”. We note that constant names serve both as individ-
ual and predicate names.

Elements fromC ∪ X are calledterms. A higher-order
atom(or atom) is a tuple(Y0, Y1, . . . , Yn), whereY0, . . . , Yn

are terms;n ≥ 0 is thearity of the atom. Intuitively,Y0 is
the predicate name, and we thus also use the more familiar
notationY0(Y1, . . . , Yn). The atom isordinary, if Y0 is a
constant.

For example,(x, rdf :type, c), node(X), andD(a, b), are
atoms; the first two are ordinary atoms.

An external atomis of the form

#g [Y1, . . . , Yn](X1, . . . , Xm), (1)

where Y1, . . . , Yn and X1, . . . , Xm are two lists of terms
(called input andoutput lists, respectively), and#g ∈ G is
an external predicate name. We assume that#g has fixed
lengthsin(#g) = n andout(#g) = m for input and out-
put lists, respectively. Intuitively, an external atom provides a
way for deciding the truth value of an output tuple depending
on the extension of a set of input predicates.

Example 1 The external atom#reach[edge, a](X) may be
devised for computing the nodes which are reachable in
the graphedge from the nodea. Here, we have that
in(#reach)= 2 andout(#reach) = 1. 2

A rule r is of the form

α1 ∨ · · · ∨ αk ← β1, . . . , βn,notβn+1, . . . ,notβm, (2)

wherem, k ≥ 0, α1, . . . , αk are atoms, andβ1, . . . , βm are
either atoms or external atoms. We defineH(r) = {α1, . . . ,
αk} andB(r) = B+(r) ∪B−(r), whereB+(r) = {β1, . . . ,
βn} andB−(r) = {βn+1, . . . , βm}. If H(r) = ∅ andB(r) 6=
∅, thenr is aconstraint, and ifB(r) = ∅ andH(r) 6= ∅, then
r is afact; r is ordinary, if it contains only ordinary atoms.

A HEX programis a finite setP of rules. It isordinary, if
all rules are ordinary.

2.2 Semantics
We define the semantics ofHEX programs by generalizing the
answer-set semantics[Gelfond and Lifschitz, 1991]. To this
end, we use the recent notion of a reduct as defined by Faber
et al. [2004] (referred to asFLP-reducthenceforth) instead
of to the traditional reduct by Gelfond and Lifschitz[1991].
The FLP-reduct admits an elegant and natural definition of
answer sets for programs with aggregate atoms, since it en-
sures answer-set minimality, while the definition based on the
traditional reduct lacks this important feature.

In the sequel, letP be aHEX program. TheHerbrand base
of P , denotedHBP , is the set of all possible ground versions
of atoms and external atoms occurring inP obtained by re-
placing variables with constants fromC. The grounding of a
rule r, grnd(r), is defined accordingly, and the grounding of
programP is given bygrnd(P ) =

⋃
r∈P grnd(r). Unless

specified otherwise,C, X , andG are implicitly given byP .

Example 2 GivenC = {edge, arc, a, b}, ground instances of
E(X, b) areedge(a, b), arc(a, b), andarc(arc, b); ground in-
stances of#reach[edge, N ](X) are#reach[edge, edge](a),
#reach[edge, arc](b), and#reach[edge, edge](edge), etc.2

An interpretation relative toP is any subsetI ⊆ HBP

containing only atoms. We say thatI is a modelof atom
a∈HBP , denotedI |= a, if a∈ I.

With every external predicate name#g ∈ G, we associate
an(n+m+1)-ary Boolean functionf#g assigning each tuple
(I, y1 . . . , yn, x1, . . . , xm) either0 or 1, wheren = in(#g),
m = out(#g), I ⊆ HBP , andxi, yj ∈ C.

We say thatI ⊆ HBP is amodelof a ground external atom
a = #g [y1, . . . , yn](x1, . . . , xm), denotedI |= a, if and only
if f#g(I, y1 . . ., yn, x1, . . . , xm) = 1.

Example 3 Let us associate with#reach a functionf#reach

such thatf#reach(I, E, A,B) = 1 iff B is reachable in the
graphE from A. Let I = {e(b, c), e(c, d)}. Then,I is a
model of#reach[e, b](d) sincef#reach(I, e, b, d) = 1. 2

Let r be a ground rule. We define (i)I |=H(r) iff
there is somea ∈ H(r) such thatI |= a, (ii) I |=B(r) iff
I |= a for all a∈B+(r) and I 6|= a for all a∈B−(r), and
(iii) I |= r iff I |=H(r) wheneverI |=B(r). We say thatI
is amodelof a HEX programP , denotedI |=P , iff I |= r for
all r∈ grnd(P ). We callP satisfiable, if it has some model.

Given aHEX programP , theFLP-reductof P with respect
to I ⊆HBP , denotedfP I , is the set of allr ∈ grnd(P ) such



that I |= B(r). I ⊆HBP is an answer set ofP iff I is a
minimal model offP I .

We next give an illustrative example.

Example 4 Consider the followingHEX programP :

subRelation(brotherOf , relativeOf )← ;
brotherOf (john, al)← ;

relativeOf (john, joe)← ;
brotherOf (al ,mick)← ;

invites(john, X) ∨ skip(X)← X <> john,
#reach[relativeOf , john](X);

R(X ,Y )← subRelation(P,R), P (X, Y );
← #degs[invites](Min,Max ),Min < 1;
← #degs[invites](Min,Max ),Max > 2.

Informally, this program randomly selects a certain num-
ber of John’s relatives for invitation. The first line states that
brotherOf is a subrelation ofrelativeOf , and the next two
lines give concrete facts. The disjunctive rule chooses rela-
tives, employing the external predicate#reach from Exam-
ple 3. The next rule declares a generic subrelation inclusion
exploiting higher-order atoms.

The constraints ensure that the number of invitees is be-
tween 1 and 2, using (for illustration) an external predicate
#degs from a graph library, wheref#degs(I, E,Min,Max )
is 1 iff Min andMax is the minimum and maximum ver-
tex degree of the graph induced by the edgesE, respec-
tively. As John’s relatives are determined to be Al, Joe, and
Mick, P has six answer sets, each of which contains one
or two of the factsinvites(john, al), invites(john, joe), and
invites(john,mick). 2

We now state some basic properties of the semantics.

Theorem 1 The answer-set semantics ofHEX programs ex-
tends the answer-set semantics of ordinary programs as de-
fined by Gelfond and Lifschitz[1991] , as well as the answer-
set semantics of HiLog programs as defined by Ross[1994] .

The next property, which is easily proved, expresses that
answer sets adhere to the principle of minimality.

Theorem 2 Every answer set of aHEX programP is a min-
imal model ofP .

A ground external atoma is calledmonotonic relative toP
iff I ⊆ I ′⊆HBP andI |= a imply I ′ |= a. For instance, the
ground versions of#reach[edge, a](X) are all monotonic.

Theorem 3 Let P be a HEX program without “not” and
constraints. If all external atoms ingrnd(P ) are monotonic
relative toP , thenP has some answer set. Moreover, ifP is
disjunction-free, it has a single answer set.

Notice that this property fails if external atoms can be non-
monotonic. Indeed, we can easily model default negation
not p(a) by an external atom#not [p](a); the HEX program
p(a) ← #not [p](a) amounts then to the ordinary program
p(a)← not p(a), which has no answer set.

3 Modeling ASP Extensions by External
Atoms

By means of external atoms, different important extensions
of ASP can be expressed in terms ofHEX programs.

3.1 Programs with aggregates
Extending ASP with specialaggregate atoms, through which
the sum, maximum, etc. of a set of numbers can be refer-
enced, is an important issue which has been considered in
several recent works (cf., e.g.,[Faberet al., 2004]). A non-
trivial and challenging problem in this context is giving a nat-
ural semantics for aggregates involving recursion. The recent
proposal of a semantics by Faberet al. [2004] is an elegant
solution of this problem. We show here how it can be easily
captured byHEX programs.

An aggregate atoma(Y, T ) has the formf{S} ≺ T ,
wheref is an aggregate function (sum, count , max , etc.),
≺∈ {=, <,≤, >,≥}, T is a term, andS is an expression
X: ~E( ~X, ~Y , ~Z), where ~X and ~Y are lists oflocal variables,
~Z is a list ofglobal variables, and ~E is a list of atoms whose
variables are among~X, ~Y , ~Z.

For example,#count{X : r(X, Z), s(Z, Y )} ≥ T is an
aggregate atom which is intuitively true if, for givenY andT ,
at leastT different values forX are such that the conjunction
r(X, Z), s(Z, Y ) holds.

Given a(Y, T ) = f{S} ≺ T as above, an interpretation
I, and valuesy for Y and t for T , f is applied to the set
S(I, y) of all valuesx for X such thatI |= E(x, y, z) for
some valuez for Z. We then haveI |= a(y, t) (i.e., I |=
f{X:E(X, y, Z)} ≺ t) iff f(S(I, y)) ≺ t.

Using the above notion of truthhood fora(y, t), Faberet
al. [2004] define answer sets of an ordinary program plus
aggregates using the reductfP I .

We can model an aggregate atoma(Y, T ) by an external
atom#a[Y ](T ) such that for any interpretationI and ground
version#a[y](t) of it, f#a(I, y, t) = 1 iff I |= a(y, t). Note
that writing code for evaluatingf#a(I, y, t) is easy.

For any ordinary programP with aggregates, let#agg(P )
be theHEX program which results fromP by replacing each
aggregate atoma(Y, T ) with the respective external atom
#a[Y ](T ). The following result can then be shown:

Theorem 4 For any ordinary programP with aggregates,
the answer sets ofP and#agg(P ) coincide.

3.2 Description logic programs
The aim ofdescription logic programs(or dl-programs), due
to Eiter et al. [2004], is to combine a rule language under
the answer-set semantics with description logics. Informally,
a dl-program consists of a description logic (DL) knowledge
baseL and a generalized normal programP which may con-
tain queries toL, realized by means of special atoms, called
dl-atoms, appearing in the body of rules. A dl-atom allows
for specifying an input fromP to L, and thus for a bidirec-
tional flow of information betweenP to L, and for querying
whether a certain DL axiom or its negation logically follows
from L. The DL knowledge bases in dl-programs are theo-
ries in the description logicsSHIF(D) andSHOIN (D),



which represent the logical underpinnings of the Web ontol-
ogy languages OWL Lite and OWL DL, respectively[Bech-
hoferet al., 2004].

Formally, adl-atomis an expressiondl(X) of form

DL[S1 op1 p1, . . . , Sm opm pm;Q](X) , m≥ 0,

where eachSi is a DL concept or role name,opi a change
operator,pi a unary resp. binary predicate symbol,Q a unary
resp. binary predicate, andX a list of terms matching the arity
of Q. For space reasons, we confine here toopi = ] andQ
being a possibly negated unary predicate name, for whichX
is a single term. Intuitively,Si ] pi increasesSi in L by the
extension ofpi. For example, the dl-atom

DL[hasColor ] color ;whiteWine](W )

queries a wine ontology ifW is known to be a white wine,
after augmenting the ontology about wine color (hasColor )
with facts aboutcolor from a programP .

An interpretationI of P is a modelof a ground instance
dl(c) of dl-atomdl(X) with respect to DL knowledge baseL,
denotedI |=L dl(c), if L∪

⋃m
i=1{Si(b) | pi(b)∈ I} |=Q(c),

where|= is the entailment operator of the given description
logic. That is,I |=L dl(c) iff c belongs to conceptQ after
augmentingL.

Eiter et al. [2004] define answer sets of an ordinary non-
disjunctive programP relative to a DL knowledge baseL
through a reductsP I

L, which extends the traditional reduct of
Gelfond and Lifschitz[1991]. Assuming that each ground dl-
atomdl(c) is monotonic (i.e.,I |= dl(c) implies I ′ |= dl(c),
for I ⊆ I ′; this is the predominant setting),sP I

L treats
negated dl-atoms like negated ordinary atoms. The resulting
ground programsP I

L has a least model,LM(sP I
L). Then,I

is astrong answer setof (L,P ) iff I = LM(sP I
L) holds.

We can simulate dl-atoms by external atoms in several
ways. A simple one is to use external atoms#dl[ ](X) where
f#dl(I, c) = 1 iff I |= Ldl(c). Let #dlL(P ) be theHEX pro-
gram obtained from a dl-program(L, P ) by replacing each
dl-atomdl(X) with #dl[ ](X). We can then show:

Theorem 5 Let (L,P ) be any dl-program for which all
ground dl-atoms are monotonic. Then, the strong answer sets
of (L,P ) and#dlL(P ) coincide.

Note that we can extend the strong answer-set semantics to
disjunctive dl-programs by simply extending the embedding
#dlL(P ) to disjunctive programs. This illustrates the use of
HEX programs as a framework for defining semantics.

3.3 Programs with monotone cardinality atoms
Mareket al.[2004] present an extension of ASP bymonotone
cardinality atoms(mc-atoms) k X, whereX is a finite set of
ground atoms andk≥ 0. Such an atom is true in an interpre-
tationI, if k ≥ |X ∩ I| holds. Note that an ordinary atomA
amounts to1{A}. An mca-programis a set of rules

H ← B1, . . . , Bm,not Bm+1, . . . ,not Bn (3)

whereH and theBi’s are mc-atoms. Answer sets (stable
models) for an mca-programP are interpretationsI which

arederivablemodels of an extended reductP I (in the sense
of Gelfond and Lifschitz[1991]), which treats negated mc-
atoms like negated ordinary atoms. Informally, a model of
P I is derivable, if it can be created from the empty set by
iterative rule applications in which the heads of firing rules
are nondeterministically satisfied.

We can embed any mca-programP into a HEX program
#mc(P ) as follows. Each mc-atomk X is modeled by an
external atome(k X) = #k X[ ](), wheref#k X(I) = 1 iff
k≥ |X ∩ I|. In each rule of form (3), we replaceH with a
new atomtH and allBi with e(Bi), and add the following
rules (forH = k {A1, . . . , Am}):

Ai ∨ n Ai ← tH , 1 ≤ i ≤ m,
← not e(H), tH ,

where, globally,n A is a new atom for each atomA. Infor-
mally, these rules simulate the occurrence of the mc-atom in
the head. Then, the following correspondence holds.

Theorem 6 For any finite mca-programP over atomsAt,
the answer sets ofP and#mc(P ) projected toAt coincide.

As shown by Mareket al. [2004], ASP extensions similar
to mca-programs can be modeled as mca-programs. Hence,
these extensions can be similarly embedded intoHEX pro-
grams.

3.4 Agent programs
Eiter et al. [1999] describe logic-basedagent programs, con-
sisting of rules of the form

Op0α0 ← χ, [¬]Op1α1, . . . , [¬]Opmαm,

governing an agent’s behavior. TheOpi aredeontic modali-
ties, theαi areaction atoms, andχ is acode-call condition.
The latter is a conjunction of (i)code-call atomsof the form
in(X, f(Y )) resp.notin(X, f(Y )), which access the data
structures of the internal agent state through API functions
f(Y ) and test whetherX is in the result, and (ii)constraint
atoms. For example, the rule

Do dial(N)← in(N, phone(P )), O call(P )

intuitively says that the agent should dial phone numberN if
she is obliged to callP .

A semantics of agent programs in terms of “reasonable sta-
tus sets”, which are certain sets of ground formulasOpα, is
defined by Eiteret al. [1999]. They show that the answer sets
of a disjunction-free logic programP correspond naturally to
the reasonable status sets of a straightforward agent program
AG(P ). Conversely, code-call atoms as above can be mod-
eled by external atoms#inf [Y ](X) resp.#notinf [Y ](X),
and deontic modalities by different propositions and suitable
rules. In this way, a class of agent programs can be embedded
into HEX programs as a host for evaluation.

4 Applications
In this section, we show the usage ofHEX programs for dif-
ferent purposes, in which the joint availability of higher-order
and external atoms is beneficial. For space reasons, the expo-
sition is necessarily superficial and details will be omitted.



4.1 Semantic Web applications
HEX programs are well-suited as a convenient tool for a
variety of tasks related to ontology languages and for Se-
mantic-Web applications in general, since, in contrast to
other approaches, they keep decidability but do not lack the
possibility of exploiting nondeterminism, performing meta-
reasoning, or encoding aggregates and sophisticated con-
structs through external atoms.

An interesting application scenario where several features
of HEX programs come into play isontology alignment.
Merging knowledge from different sources in the context of
the Semantic Web is a very important task[Calvaneseet al.,
2001]. To avoid inconsistencies which arise in merging, it is
important to diagnose the source of such inconsistencies and
to propose a “repaired” version of the merged ontology. In
general, given an entailment operator|= and two theoriesT1

andT2, we want to find some theoryrep(T1 ∪ T2) which,
if possible, is consistent (with respect to|= ). Usually, rep
is defined according to some customized criterion, so that to
save as much knowledge as possible fromT1 andT2. Also,
rep can be nondeterministic and admit more than one possi-
ble solution.

HEX programs allow to define|= according to a range of
possibilities; in the same way,HEX programs are a useful tool
for modeling and customizing therep operator. In order to
perform ontology alignment,HEX programs must be able to
express tasks such as the following ones:

Importing external theories. This can be achieved, e.g., in
the following way:

triple(X, Y, Z) ← #RDF [uri ](X, Y, Z);
triple(X, Y, Z) ← #RDF [uri2 ](X, Y, Z);
proposition(P ) ← triple(P, rdf :type,

rdf :Statement).

We assume here to deal with RDF theories.1 We take
advantage of an external predicate#RDF intended to
extract knowledge from a given URI (Uniform Resource
Identifier), in form of a set of “reified” ternary assertions.

Searching in the space of assertions.This task is required
in order to choose nondeterministically which proposi-
tions have to be included in the merged theory and which
not, with statements like

pick(P ) ∨ drop(P )← proposition(P ).

Translating and manipulating reified assertions. E.g., for
choosing how to put RDF triples (possibly including
OWL assertions) in an easier manipulatable and read-
able format, and for making selected propositions true,
the following rules can be employed:

(X, Y, Z)← pick(P ), triple(P, rdf :subject , X),
triple(P, rdf :predicate, Y ),
triple(P, rdf :object , Z);

C(X)← (X, rdf :type, C).

1Seehttp://www.w3.org/tr/rdf-mt/ for information
about RDF.

Filtering propositions. This way, it is possible to customize
criteria for selecting which propositions can be dropped
and which cannot. For instance, a proposition cannot be
dropped if it is an RDFS axiomatic triple:2

pick(P )← axiomatic(P ).

Defining ontology semantics.The operator|= can be de-
fined in terms of entailment rules and constraints ex-
pressed in the language itself, like in:

D(X)← (C, rdf :subClassOf , D), C(X);
← owl :maxCardinality(C,R,N), C(X),

#countr [R,X](M),M > N,

where the external atom#countr [R,X](M) expresses
the aggregate atom#count{Y : R(X, Y )}=M . Also,
semantics can be defined by means of external reasoners,
using constraints like

← #inconsistent [pick],

where the external predicate#inconsistent takes for in-
put a set of assertions and establishes through an external
reasoner whether the underlying theory is inconsistent.

4.2 Closed world and default reasoning
Reiter’s well-known closed-world assumption (CWA)3 is ac-
knowledged as an important reasoning principle for inferring
negative information from a logical knowledge baseKB : For
a ground atomp(c), conclude¬p(c) if KB 6|= p(c). Descrip-
tion logic knowledge bases lack this possibility.

UsingHEX programs, the CWA may be easily expressed on
top of an externalKB which can be queried through suitable
external atoms. We show this here for a description logic
knowledge baseL. Assuming that a generic external atom
#dl0[C](X) for modeling a dl-atomDL[C](X) is available,
the CWA principle can be stated as follows:

C ′(X)← not #dl0[C](X), concept(C),
cwa(C,C ′), o(X),

whereconcept(C) is a predicate which holds for all concepts,
cwa(C,C ′) states thatC ′ is the complement ofC under the
CWA, ando(X) is a predicate that holds for all individuals
occurring inL. For example, given that

L = {man v person, person(lee) }

for conceptsman andperson, the CWA infers¬man(lee).
As well known, the CWA can become inconsistent. If in

the above example,L contains a further axiom

person = man t woman,

with the conceptwoman, then the CWA infers¬man(lee)
and¬woman(lee); this is inconsistent withL.

2In a language enriched withweak constraints, we could max-
imize the set of selected propositions using a constraint of form
:∼drop(P ).

3Throughout this section, we refer to Łukaszewicz[1990] for
references to closed-world reasoning and circumscription.



We can check inconsistency of the CWA with further rules,
though:

set false(C,X)← cwa(C,C ′), C ′(X),
inconsistent ← #dl1[set false,⊥](b),

where#dl1[N,C](X) effects a check whetherL, augmented
with all negated facts¬c(a) such thatN(c, a) holds, entails
C(X), and⊥ is the empty concept (entailment of⊥(b), for
any constantb, is tantamount to inconsistency).

Minimal-model reasoning, as under circumscription and
the extended closed-world assumption (ECWA), for instance,
avoids the problem of CWA inconsistency. We can foster the
minimal Herbrand models ofL with respect to all concepts
and individuals inL elegantly with the followingHEX rules:

set false(C,X)← concept(C), o(X),not C(X);
C(X)← #dl1[set false, C](X).

Here, the first rule intuitively expresses that ifC(X) is not
included in an answer setM of P , then it should be set to
false. The second rule states thatC(X) is in M , if C(X) can
be proved inL after setting all atoms inL to false according
to M . By the minimality of answer sets,C(X) can only then
be in M . Thus, inL no C(X) can be switched to¬C(X)
without raising inconsistency. Hence,M corresponds to a
minimal model ofL. Applied to our example, we obtain two
answer sets (showing here only the interesting atoms):

M1 = {person(lee),woman(lee),
set false(man, lee), . . .},

M2 = {person(lee),man(lee),
set false(woman, lee), . . .},

corresponding to the minimal models ofL.
Roles inL may be handled similarly. Furthermore, one can

easily restrict minimization to a subset of concepts and roles,
and accommodate the general setting of ECWA and circum-
scription, dividing the predicates into minimized, fixed, and
varying predicatesP , Q, andZ, respectively. On top of min-
imal models, e.g., reasoning tasks may then be performed.

By maximizingrather than minimizing extensions, default
reasoning, as in the approach by Poole[1988], on top of a DL
knowledge baseL may be supported. For example, the rules

white(W )← #dl1[null , sparklingWine](W ),
not n white(W ),

n white(W )← #dl2[sparklingWine,white,
whiteWine](W )

on top of a wine ontologyL, express that sparkling wines are
white by default, where#dl2[C,U,Q](X) checks whether
L, together with all factsC(a) such thata∈U , entails
¬Q(X). Given

L = {sparklingWine(veuveCliquot),
lambrusco v (sparklingWine u ¬whiteWine)},

we then can concludewhite(veuveCliquot).

5 Computational Aspects
5.1 Complexity
It appears that higher-order atoms do not add complexity
compared to ordinary atoms. Indeed, for finiteC, the ground-
ing of an arbitraryHEX programP is, like for an ordinary
program, at most exponential in the size ofP andC. Since
HEX programs with higher-order atoms subsume ordinary
programs, we obtain by well-known complexity results for
ordinary programs[Dantsinet al., 2001] the following result.
Recall thatNEXPdenotes nondeterministic exponential time,
and that for complexity classesC andD, CD denotes com-
plexity in C with an oracle for a problem inD.

Theorem 7 Deciding whether a givenHEX programP with-
out external atoms has some answer set is NEXPNP -complete
in general, and NEXP-complete ifP is disjunction-free.

Classes of programs with lower complexity can be iden-
tified under syntactic restrictions, e.g., on predicate arities.
Furthermore, if from the customary ASP perspective,P is
fixed except for ground facts representing ad-hoc input, the
complexity exponentially drops toNPNP resp.NP .

On the other hand, external atoms clearly may be a source
of complexity, and without further assumptions even incur
undecidability. Viewing the functionf#g associated with an
external predicate#g ∈ G as an oracle with complexity inC,
we have the following result:

Theorem 8 Let P be aHEX program, and suppose that for
every#g ∈ G the functionf#g has complexity inC. Then,

deciding whetherP has some answer set is in NEXPNPC

,
and is in NEXPC if P is disjunction-free.

However, there is no complexity increase by external atoms
under the following condition on the cardinality ofC:

Theorem 9 Let P be aHEX program. Suppose that for ev-
ery #g ∈ G, the functionf#g is decidable in exponential
time in|C|. Then, deciding whetherP has some answer set is
NEXPNP -complete, and NEXP-complete ifP is disjunction-
free.

Informally, the reason is that a possibly exponential-size
grounding compensates the exponentiality of external atoms,
whose evaluation then becomes polynomial in the size of
grnd(P ). The hypothesis of Theorem 9 applies to external
atoms modeling aggregate atoms and, under small adjust-
ments, to dl-atoms, if|= is decidable in exponential time.
Some complexity results by Faberet al. [2004] on ASP with
aggregates and by Eiteret al. [2004] on interfacing logic pro-
grams with the description logicSHIF(D) therefore follow
easily from Theorems 4, 5, and 9.

5.2 Implementation
An experimental working prototype for evaluatingHEX pro-
grams is available. Several technical issues in an implemen-
tation arise, and we can only briefly address them here. In
particular, higher-order and external atoms must be handled.



As for higher-order atoms, a polynomial reductionΛ from
HEX programsP to ordinary programsΛ(P ) is possible if
P has no external atoms. Indeed, each higher-order atom
Y0(Y1, . . . , Yn) in P can be substituted with an ordinary atom
an(Y0, Y1, . . . , Yn). SinceHEX programs conservatively ex-
tend ordinary programs (cf. Theorem 1), the answer sets of
any HEX programP without external atoms then correspond
one-to-one with the answer sets ofΛ(P ). Thus, HEX pro-
grams without external atoms can be efficiently evaluated by
using an existing ASP solver.

The presence of external atoms makes matters more com-
plex. Λ can still be applied to eliminate higher-order atoms
from a HEX programP , and a similar correspondence holds.
We may further replace external atoms#g[ ~X](~Y ) in Λ(P )
by ordinary atomsp#g( ~X, ~Y ). In the absence of negation as
failure and for monotone external atoms, the answer sets of
Λ(P ) can be computed by a bottom-up fixpoint computation
(which in case of disjunction is nondeterministic), in which
ground atomsp#g(~a,~b) are evaluated with the external func-
tion f#g.

In the presence of negation as failure, a notion ofe-stra-
tification, which generalizes the usual notion of stratification
and exploits further dependency information supplied for ex-
ternal atoms, can be used to identify a substantial fragment of
HEX programs evaluable on the basis of a suitable operational
semantics. In the unstratified case, guessing clauses

p#g( ~X, ~Y ) ∨ not p#g( ~X, ~Y )←

may be added for generating candidate answer sets ofP . For
monotone external atoms, the candidates can be verified by a
fixpoint computation. For the general case, however, efficient
checking methods are needed.

6 Conclusion and Further Work

HEX programs are a natural and powerful evolution of An-
swer-Set Programming (ASP), which fulfills interoperability
needs with other software and supports at the same time ab-
stract problem modeling by higher-order features. These fea-
tures are needed for a wide range of applications but missing
in ASP systems today. In particular, user-defined libraries can
be integrated, and thus customization to specific applications
is enabled. Our further and ongoing work includes implemen-
tation beyond the working prototype, for which suitable algo-
rithms and techniques are currently under development. This
and the prototype will be discussed in detail elsewhere. Fur-
thermore, an application in the context of an ongoing project
for a personalized Web information system is targeted.
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