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Abstract

Towards the integration of rules and ontologies in the
Semantic Web, we propose a combination of logic pro-
gramming under the answer set semantics with the de-
scription logicsSHZF(D) and SHOZN (D), which
underly the Web ontology languages OWL Lite and
OWL DL, respectively. This combination allows for
building rules on top of ontologies but also, to a limited
extent, building ontologies on top of rules. We intro-
ducedescription logic programgdI-programg, which
consist of a description logic knowledge baseand a
finite set ofdescription logic ruleqdl-rules) P. Such
rules are similar to usual rules in logic programs with
negation as failure, but may also contajmeries toL,
possibly default negated, in their bodies. We define
Herbrand models for dI-programs, and show that sat-
isfiable positive dl-programs have a unique least Her-
brand model. More generally, consistent stratified dI-
programs can be associated with a unique minimal Her-
brand model that is characterized through iterative least
Herbrand models. We then generalize the (unique) min-
imal Herbrand model semantics for positive and strati-
fied dl-programs to atrong answer set semantics all
dI-programs, which is based on a reduction to the least
model semantics of positive dI-programs. We also de-
fine aweak answer set semanticased on a reduction

to the answer sets of ordinary logic programs. Strong
answer sets are weak answer sets, and both properly
generalize answer sets of ordinary normal logic pro-
grams. We then give fixpoint characterizations for the
(unique) minimal Herbrand model semantics of positive
and stratified dl-programs, and show how to compute
these models by finite fixpoint iterations. Furthermore,
we give a precise picture of the complexity of deciding
strong and weak answer set existence for a dl-program.

Introduction

The Semantic Welinitiative (Berners-Lee 1999; Berners-
Lee, Hendler, & Lassila 2001; Fensatl al. 2002) is an ex-
tension of the current World Wide Web by standards and
technologies that help machines to understand the informa-
tion on the Web so that they can support richer discovery,
data integration, navigation, and automation of tasks. The
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main ideas behind are to add a machine-readable mean-
ing to Web pages, to use ontologies for a precise defini-
tion of shared terms in Web resources, to make use of KR
technology for automated reasoning from Web resources,
and to apply cooperative agent technology for processing
the information of the Web. The Semantic Web is con-
ceived in hierarchical layers, where the Ontology layer in
the form of theOWL Web Ontology Languadeé/3C 2004;
Horrocks, Patel-Schneider, & van Harmelen 2003) is cur-
rently the highest layer of sufficient maturity.

OWL has three increasingly expressive sublanguages,
namely OWL Lite OWL DL, and OWL Full, where OWL
DL basically corresponds to DAML+OIL (Horrocks 2002a;
2002b), which merges DAML (Hendler & McGuiness 2000)
and OIL (Fenseét al. 2001). OWL Lite and OWL DL are
essentially very expressive description logics with an RDF
syntax (Horrocks, Patel-Schneider, & van Harmelen 2003).
As shown by Horrocks & Patel-Schneider (2003b), ontology
entailment in OWL Lite and OWL DL reduces to knowledge
base (un)satisfiability in the description logi§${ZF (D)
and SHOIN (D), respectively, where the latter is closely
related taSHOQ(D) (Horrocks & Sattler 2001).

On top of the Ontology layer, the Rules, Logic, and Proof
layers of the Semantic Web will be developed next, which
should offer sophisticated representation and reasoning ca-
pabilities. A first effort in this direction iRRuleML (Rule
Markup Language) (Boley, Tabet, & Wagner 2001), fos-
tering an XML-based markup language for rules and rule-
based systems, while the OWL Rules Language (Horrocks
& Patel-Schneider 2003a) is a first proposal for extending
OWL by Horn clause rules.

A key requirement of the layered architecture of the Se-
mantic Web is to integrate the Rule and the Ontology layer.
In particular, it is crucial to allow for building rules on top
of ontologies, that is, for rule-based systems that use vocab-
ulary specified in ontology knowledge bases. Another type
of combination is to build ontologies on top of rules, which
means that ontological definitions are supplemented by rules
or imported from rules.

In this paper, we propose, towards the integration of rules
and ontologies in the Semantic Web, a combination of logic
programming under the answer set semantics with descrip-
tion logics, focusing here a6 HZF (D) andSHOZIN (D).

This combination allows for building rules on top of ontolo-



gies but also, to some extent, building ontologies on top of
rules. The main innovations and contributions of this paper
can be summarized as follows:

(1) We introducedescription logic programgd|-programg,
which consist of a knowledge bagein a description logic
and a finite set of description logic ruledi{rules) P. Such
rules are similar to usual rules in logic programs with nega-
tion as failure, but may also contadfjueries toL, possibly
default negated, in their bodies. As an important feature,
such queries also allow for specifying an input fréthand
thus for aflow of information fromP to L, besides the flow

of information fromL to P, given by any query td.. For
example, concepts and rolesiilimay be enhanced by facts
generated from dl-rules, possibly involving heuristic knowl-
edge and other concepts and roles frbm

(2) The queries td. are treated, fostering an encapsulation
view, in a way such that logic programming and description
logic inference are technically separated; mainly interfacing
details need to be known. Compared to other similar work,

this increases flexibility and is also amenable to privacy as-

pects forL, and P. Moreover, the nondeterminism inherent

reduce description logic inference to logic programming.
The basic idea behind (i) is to combine the semantic and
computational strengths of the two systems, while the main
rationale of (ii) is to use powerful logic programming tech-
nology for inference in description logics. However, both
kinds of approaches significantly differ from our work, as we
discuss in more detail in the section on related work later on.
Note that proofs of all results are in (Eiteral.2003).

Preliminaries

In this section, we recall normal programs (over classical
literals) under the answer set semantics, and the description
logicsSHZF (D) andSHOZN (D).

Normal Programs under the Answer Set Semantics

Syntax. Let ® be a first-order vocabulary with nhonempty
finite sets of constant and predicate symbols, but no func-
tion symbols. LetY be a set of variables. germis any
variable fromX’ or constant symbol frond. An atomis of
form p(t4,...,t,), wherep is a predicate symbol of arity

n >0 from ®, andtq,...,t, are terms. Aclassical literal

in answer sets is retained, supporting brave reasoning and (©r literal) [ is an atorp or a negated atomp. A negation
the answer set programming paradigm in which solutions of @s failure literal (or NAF-literal) is a literal/ or a default-

problems are encoded in answer sets of a logic program.

(3) We define Herbrand models for dI-programs, and show

that satisfiable positive dl-programs, in which default nega-
tion does not occur and all queries o are monotonic,

have a unique least Herbrand model. Furthermore, we show
that more general stratified dl-programs can be associated,

if consistent, with a unique minimal Herbrand model that is
characterized through iterative least Herbrand models.

(4) We definestrong answer set®r all dI-programs, based
on a reduction to the least model semantics of positive dI-

programs. For positive and stratified dI-programs, the strong

negated literahot [. A normal rule(or rule) r is of form
a<«—by,...,bg,notbgy1,...,notby,, m>k>0, (1)

wherea, by, ..., b, are classical literals. We refer to the
literal a as theheadof r, denoted byH (), while the con-

junctionbdy, ..., bg, not bit1, ..., not by, is called thebody

of r; its positive (resp.,negative part isby, ..., by (resp.,
not bgy1, ..., not by). We denote byB(r) the set of body
literals B*(r) U B~ (r), where B (r) = {b1,..., b} and
B~ (r)={bg+1,---,bm}. A normal program(or program)
P is afinite set of rulesP is positiveiff it is “ not"-free.

answer set semantics coincides with the (unique) minimal Semantics. The Herbrand baseof a program P, de-
Herbrand model semantics associated. We also considernoted HB p, is the set of all ground (classical) literals with

weak answer setsased on a reduction to the answer sets

predicate and constant symbols appearingi(if no such

of ordinary logic programs. Strong answer sets are weak constant symbol exists, with an arbitrary constant synabol
answer sets, and both properly generalize answer sets of or-from ®). The notions ofyround termsatoms literals, etc.,

dinary normal logic programs.

(5) We give fixpoint characterizations for the least model
of a positive dl-program and the canonical minimal model

of a stratified dl-program, and show how to compute these

models by finite fixpoint iterations.
(6) Finally, we give a precise picture of the complexity of

deciding strong and weak answer set existence for a dl-

programKB. From this, the complexity of brave and cau-

tious reasoning is easily derived. We consider the general

case, as well as the restrictions whéf® is (a) positive,

(b) stratified and has only monotonic queries, and (c) strat-

ified. We consideSHZF (D) andSHOZN (D), but most

of our results can be easily transferred to other description

logics having the same complexity (EXP resp. NEXP).

Previous work on combining logic programs and descrip-
tion logics can be roughly divided into (i) hybrid approaches,
which use description logics to specify structural constraints

in the bodies of logic program rules, and (ii) approaches that

are defined as usual. We denotedoyund(P) the ground-
ing of P (with respect taHB p).

A set of literalsX C HBp is consisteniff {p,—p}Z X
for every atonmp € HB p. Aninterpretation! relative toP is
a consistent subset ¢fB p. A modelof a positive program
P is an interpretatiod C HBp such thatB(r) C I implies
H(r) e I, for everyr € ground(P). An answer sebf a pos-
itive programP is the least model oP w.r.t. set inclusion.

The Gelfond-Lifschitz transformof a programP relative
to an interpretation C HB p, denotedP?, is the positive
program obtained fromround(P) by (i) deleting every rule
r with B~ (r)NI#(, and (ii) deleting the negative body
from every remaining rule. Aanswer sebf a programp is
an interpretatiod C HB p that is an answer set ¢t’.

SHZIF(D) and SHOZIN (D)

Syntax. We first describe the syntax SSHOZN (D). We
assume a sdb of elementary datatypeg&veryd € D has a
set ofdata valuescalled thedomainof d, denotedlom(d).



We usedom(D) to denotd J,., dom(d). A datatypeis ei-
ther an element dD or a subset oflom (D) (calleddatatype
oneOj. Let A, R4, Rp, andI be nonempty finite and
pairwise disjoint sets oftomic conceptsabstract roles
datatype rolesandindividuals respectively. We usR to
denote the set of all inversés™ of abstract rolefR € R 4.

A role is an element oR4 UR; URp. Conceptsare
inductively defined as follows. Every' € A is a concept,
and ifoq, 09, ... €1, then{oy, 02, ...} is a concept (called
oneOj. If C andD are concepts andiRe R4 UR, then
(CmD), (CuD),and—C are concepts (callezbnjunction
disjunction andnegation respectively), as well asR.C,
VR.C, >nR, and<nR (calledexists valug atleast andat-
most restrictionrespectively) for an integetr > 0. If d€ D
andU € Rp, thendU.d,VU.d, >nU, and<nU are concepts
(calleddatatype existsralue atleast andatmost restriction
respectively) for an integer > 0. We write T and_L to ab-
breviateC' U —=C andC 1 —=C, respectively, and we elimi-
nate parentheses as usual.

An axiomis an expression of one of the following forms:
(1) C C D, whereC andD are conceptscpncept inclusio)
(2) RC S, where eitherR, S€R 4 or R, S € Rp (role in-
clusion); (3) Trans(R), where Re R4 (transitivity); (4)
C(a), whereC'is a concept and € I (concept membership
(5) R(a,b) (resp.,U(a,v)), whereR € R4 (resp.,U € Rp)
anda,b eI (resp.a € I andv € dom(D)) (role membership
axiom); and (6)a=>b (resp.,a #b), wherea,b <1 (equal-
ity (resp.,inequality)). A knowledge basé is a finite set
of axioms. (For decidability, number restrictionsiirare re-
stricted to simple abstract roles (Horroaksal. 1999)).

The syntax of SHZF(D) is as the above syntax of
SHOZIN (D), but without the oneOf constructor and with
the atleast and atmost constructors limited snd1.

Semantics. An interpretationZ = (A, -Z) with respect to
D consists of a nonemptglstrac) domainA disjoint from
dom(D), and a mapping” that assigns to eact'c A

a subset ofA, to eachoeI an element ofA, to each
r € R4 asubset oA x A, and to eaclV € Rp a subset of
A x dom(D). The mapping? is extended to all concepts
and roles as usual (Eitet al.2003).

Thesatisfactiorof a description logic axion#' in an inter-
pretationZ = (A, -7), denoted’ |= F, is defined as follows:
W ZEccCcDiff CTCD?, (2)ZT=RLCS iff RTC ST,
(3) Z |=Trans(R) iff R is transitive; (4)Z =C(a) iff
at € CT; (5)I = R(a,b) iff (aZ,b%) € R%;(6) I =U(a,v)
iff (aZ,v) €eUZL; (7)Il=a=0biff o =bT;and (8)T =a#b
iff o #b”. The interpretatiod satisfieghe axiomF, orZ
is amodelof F, iff Z = F. T satisfiesa knowledge basé,
orZ is amodelof L, denoted’ |= L, iff 7 |= F forall F € L.
We say thatl is satisfiable(resp.,unsatisfiablgiff L has a
(resp., no) model. An axion¥' is alogical consequence
of L, denotedL | F, iff every model of L satisfiesF'.
A negated axiom-F' is alogical consequencef L, de-
notedL = —F, iff every model of L does not satisfy.

Description Logic Programs

In this section, we introduceescription logic programs
(or simply dl-programg, which are a novel combination of

normal programs and description logic knowledge bases.

Syntax

Informally, a dl-program consists of a description logic
knowledge basd. and a generalized normal prograf
which may contain queries tb. Roughly, in such a query,
it is asked whether a certain description logic axiom or its
negation logically follows froni or not.

A dl-queryQ(t) is either

(a) a concept inclusion axiory' or its negation-F'; or

(b) of the formsC(¢) or =C(t), whereC'is a concept and
is a term; or

(c) of the formsR(t1,t2) or ~R(t1,t2), whereR is a role
andtq, ty are terms.

A dl-atomhas the form
DL[Sloplplv'"7Sm0pmpm;Q](t)7 m207 (2)

where eacls; is either a concept or a rolep, € {4, d, A},
p; is a unary resp. binary predicate symbol, &hd) is a dl-
query. We calp, ..., p,, its input predicate symbaldntu-
itively, op, =W (resp.,op; =) increases; (resp.,~S;) by
the extension op;, while op, = A constrainsS; to p;. A dI-
rule r has the form (1), where any literd, . . ., b,, € B(r)

may be a dl-atom. We denote by*(r) (resp., B~ (1))
the set of all dl-atoms iB*(r) (resp.,B~(r)). A dl-pro-
gram KB = (L, P) consists of a description logic knowl-
edge basd and a finite set of dl-rule®.

We use the following example to illustrate our main ideas.

Example 1 (Reviewer Selection)Suppose we want to as-
sign reviewers to papers, based on certain information about
the papers and the available persons, using a description
logic knowledge basé s (partially given in the appendix),
which contains knowledge about scientific publications.

We assume not to be aware of the entire structure and con-
tents of Lg, but of the following aspectsL g classifies pa-
pers into research areas, depending on keyword information.
The research areas are stored in a confega The roles
keywordand inArea associate with each paper its relevant
keywords and the areas it is classified into (obtained, e.g., by
reification of the classes). Furthermore, a retpertrelates
persons to their areas of expertise, and a conBefieree
contains all referees. Finally, a rdmsMembeiassociates
with a cluster of similar keywords all its members.

Consider then the dl-prograiiBs=(Lg, Ps), wherePs
contains in particular the following dl-rules:

(1) paper(p1); kw(pi, Semantic-Web);
(2) paper(p2); kw(pz2, Bioinformatics);

kw(p2, Answer_Set_Programming);
(8) kw(P,K2) «— kw(P, K1), DL[hasMember](S, K1),

DL[hasMember](S, K2);
(4) paperArea(P, A) «— DL[keyword W kw; inArea](P, A);
(5) cand(X, P) < paperArea(P, A), DL[Referee](X),
DL[ezpert](X, A);

(6)  assign(X, P) « cand(X, P), not —assign(X, P);
(7) —assign(Y, P) «— cand(Y, P), assign(X, P), X #Y;
(8) a(P) « assign(X, P);
(9) error(P) « paper(P), not a(P).



Intuitively, rules (1) and (2) specify the keyword informa-
tion of two papersp; andp,, which should be assigned to

dl-programKB = (L, P) is positiveiff (i) P is “not"-free,
and (ii) every ground dl-atom that occurs gnound(P) is

reviewers. Rule (3) augments, by choice of the designer, the monotonic relative taKB.

keyword information with similar ones. Rule (4) queries the
augmented.s to retrieve the areas that each paper is clas-
sified into, and rule (5) singles out review candidates based
on this information from experts among the reviewers ac-
cording toLg. Rules (6) and (7) pick one of the candidate
reviewers for a paper (multiple reviewers can be selected
similarly). Finally, rules (8) and (9) check if each paper is
assigned; if not, an error is flagged. Note that, in view of
rules (3)—(5), information flows in both directions between
the knowledge encoded ihgs and the one encoded .

To illustrate the use ofy, a predicateoss_Referees may
be defined in the dI-program, an®éferecAposs_Referees”
may be added in the first dl-atom of (5), which thus con-
strains the set of referees.

The dl-rule below shows in particular how dl-rules can be
used to encode certain qualified number restrictions, which
are not available iISHOZN (D). It defines arexpertas an
author of at least three papers of the same area:

expert(X, A) « DL[isAuthorOf|(X, P1),
D L[isAuthorOf|(X, P»),
D L[isAuthorOf](X, Ps),
DLlinArea](P1, A),
DL[inArea](P2, A),
DL[inArea](Ps, A),
PL# Py, Py# Ps, Ps # P,

Semantics

We first define Herbrand interpretations and the truth of
dl-programs in Herbrand interpretations. In the sequel, let
KB = (L, P) be adl-program.

The Herbrand baseof P, denotedHB p, is the set of all
ground literals with a standard predicate symbol that occurs
in P and constant symbols ib. Aninterpretation! relative
to P is a consistent subset &fB p. We say! is amodelof
l € HBp underL, denoted! |~y I, iff [ € I, and of a ground
dl-atoma = DL[S10py p1,- -+, Sm0p,Pm; Q](c) underL,
denotedl =, a, iff LU J!", 4;(1) E Q(c), where

o Ai(I)={Si(e)|pi(e) € I}, for op; =;
o A;(I)={-S;(e)|pi(e) e}, forop,=U;
o A;(I)={-Si(e)|p:(e) € I does not hold, for op, =A.

We say thatl is amodelof a ground dl-ruler iff I}=p
H(r) wheneverl =y, [ for all € BT (r) and I}~ [ for all
l € B~ (r), and of a dl-progrankB = (L, P), denoted =
KB, iff I =y r for all r € ground(P). We sayKB is satis-
fiable (resp.,unsatisfiablgiff it has some (resp., no) model.

Least Model Semantics of Positive dl-Programs. We
now define positive dl-programs, which aredt"-free dI-
programs that involve only monotonic dl-atoms. Like or-
dinary positive programs, every positive dl-program that is
satisfiable has a unique least model, which naturally charac-
terizes its semantics.

A ground dl-atonu is monotoniaelative toKB = (L, P)
iff 7CI'C HBp implies that ifI =y a thenl' =pa. A

Observe that a dl-atom containirgmay fail to be mono-
tonic, since an increasing setgfe) in P results in a reduc-
tion of =S;(e) in L, whereas dl-atoms containingandu
only are always monotonic.

For ordinary positive program®, it is well-known that
the intersection of two models d? is also a model ofP.
The following theorem shows that a similar result holds for
positive dI-programs(B.

Theorem 1 Let KB = (L, P) be a positive dI-program. If
the interpretationsl, I C HBp are models ofKB, then
I, NI, is also a model oKB.

Proof. Suppose that;, I C HB p are models ok B. We
show thatl =1, NI, is also a model oKB, i.e.,I |, r
for all r € ground(P). Consider any € ground(P), and
assume thaf =, [ foralll € B*(r) = B(r). Thatis,] =,
[ for all classical literald € B(r) andI =, « for all dI-
atomsa € B(r). Hence,I; =y [ for all classical literals
1€ B(r), for everyie {1,2}. Moreover,I; = a for all
dl-atomsa € B(r), for everyi € {1, 2}, since every dl-atom
in ground(P) is monotonic relative td{B. Sincel; andl,
are models ofKB, it follows thatI; =5 H(r), for every
i€{1,2}, and thusl =5 H(r). This shows thaf =, r.
Hence,! is a model ofKB. O

As an immediate corollary of this result, every satisfiable
positive dl-programKB has a unique least model, denoted
Mg, which is contained in every model &fB.

Corollary 2 Let KB = (L, P) be a positive dl-program. If
KB is satisfiable, then there exists a unique mddelHB p
of KB such that! C J for all modelsJ C HB p of KB.

Example 2 Consider the dl-program comprising rules (1)—
(5) from Example 1. Clearly, this program isot’-free.
Moreover, since the dl-atoms do not contain occurrences
of A, they are all monotonic. Hence, the dI-program is pos-
itive. As well, its unique least model contains all review
candidates for the given papersandp,.

Iterative Least Model Semantics of Stratified dl-Pro-
grams. We next define stratified dl-programs, which are
intuitively composed of hierarchic layers of positive dl-
programs linked via default negation. Like for ordinary
stratified programs, a canonical minimal model can be sin-
gled out by a number of iterative least models, which nat-
urally describes the semantics, provided some model ex-
ists. We can accommodate this with possibly non-monotonic
dl-atoms by treating them similarly as NAF-literals. This
is particularly useful, if we do not know a priori whether
some dl-atoms are monotonic, and determining this might be
costly; recall, however, as noted above, that the absence of
A in (2) is a simple syntactic criterion which implies mono-
tonicity of a dl-atom (cf. also Example 2).



For any dl-progran¥ B = (L, P), we denote byDLp the
set of all ground dl-atoms that occur gmound(P). We as-
sume thatB has an associated SBLJFC C DLp of ground
dl-atoms which are known to be monotonic, and we denote
by DL}, = DLp— DL}, the set of all other dl-atoms. Anput
literal of a € DLp is a ground literal with an input predicate
of a and constant symbols ib.

A stratification of KB = (L, P) (with respect taDL}) is
a mapping\: HBp U DLp —{0,1, ..., k} such that
(i) AMH(r))>A(l') (resp., A(H(r)) > A(l")) for eachr €

ground(P) andl’ € B*(r) (resp.l’ € B~ (r)), and
(i) A(a) > A(l) (resp.,A(a) > A(1)) for each input literal

of eacha € DL} (resp.,a € DLY),

wherek > 0 is thelengthof X. Fori € {0, ..., k}, let
KB; = (L, P,) = (L, {r € ground(P) | \(H(r)) = i}),

and letHB p, (resp.,HB},) be the set of all € HBp such
thatA(l) =i (resp.,\(1) <3).

A dl-programKB = (L, P) is stratifiediff it has a strati-
fication A of some lengthk > 0. We define its iterative least
modelsM; C HBp withi € {0,...,k} as follows:

(i) M, is the least model ok By;

(iiy if 4> 0, thenM; is the least model oKB; such that
M;|HBp, = M;_1|HBp, ..

We sayK B is consistentif every M; with i € {0, ..., k} ex-
ists, andKB is inconsistentotherwise. IfKB is consistent,
then Mg denotesV;,. Observe thall/ kg is well-defined,
since it does not depend on a particulgicf. Corollary 7).

The following theorem shows that k5 is in fact a mini-
mal model ofKB.

Theorem 3 Let KB = (L, P) be a stratified dl-program.
Then,M kg is a minimal model oK B.

Proof (sketch). The statement can be proved by induction
along a stratification ok B. O

Example 3 Consider the dl-prografi B = (L, P) given by

the rules and facts from Example 1, but without rules (6)
and (7). This program has a stratification of length 2, with
the associated se?L}; comprising all dl-atoms occurring

in P. The minimal modelM x5 contains all review candi-
dates of the given papers, together with error flags for them,
because no paper is assigned so far.

Strong Answer Set Semantics of dI-Programs. We now
define thestrong answer set semanticé general dl-pro-
grams KB, which is reduced to the least model semantics
of positive dI-programs. We use a generalized transforma-
tion that removes all NAF-literals and all dl-atoms except
for those known to be monotonic. If we ignore this knowl-
edge and remove all dl-atoms, then we arrive atwleak
answer set semantider KB, which associates witlkB a
larger set of models (cf. next subsection).

In the sequel, lekB = (L, P) be a dl-program and let
DLp, DL}, and DL}, be as above.

The strong dl-transformof P relative toL and an inter-
pretation] C HB p, denoteds P/, is the set of all dl-rules
obtained fromyround(P) by

(i) deleting every dl-rule such that eithef |~ a for some
a€ Bt (r)N DL, or I =1, 1 for somel € B~(r), and

(i) deleting from each remaining dl-rule all literals in
B~ (r)U(B*(r)N DLY).
Notice that(L, sPf) has only monotonic dl-atoms and

no NAF-literals anymore. ThugL, sP!) is a positive dI-
program, and by Corollary 2, has a least model if satisfiable.

Definition 1 Let KB = (L, P) be a dI-program. Astrong
answer sebf KB is an interpretatiod C HB p such that!
is the least model ofL, sP}).

The following result shows that the strong answer set se-
mantics of a dI-progrank’B = (L, P) without dl-atoms co-
incides with the ordinary answer set semantic#of

Theorem 4 Let KB = (L, P) be a dl-program without dI-
atoms. Then] C HBp is a strong answer set dfB iff it is
an answer set of the ordinary prograi

Proof. Let IC HBp. If KB does not contain any dI-
atoms, thes P{=P!. Thus,I is the least model ofL, s P})

iff I is the least model aP’. Thus,I is a strong answer set
of KB iff I is an answer set aP. O

The next result shows that, as desired, strong answer sets
of a dl-programK B are also models, and, moreover, mini-
mal if all dl-atoms are monotonic (and known as such).

Theorem 5 Let KB = (L, P) be a dl-program, and lef\/
be a strong answer set ¢fB. Then,(a) M is a model of
KB, and(b) M is a minimal model oKB if DLp = DL,t.

Proof. (@) LetI be a strong answer set &B. To show
that! is also a model ok B, we have to show thdtl=, r for
all r € ground(P). Consider any- € ground(P). Suppose
thatI =, [ forall i€ BT (r) andI [~ [ for all [ € B~ (r).
Then, the dI-rule”’ that is obtained from by removing all
the literals inB~ () U (B (r) N DL%) is contained ins P}.
Sincel is the least model ofL, sP{) and thus in particular
amodel of(L, sPf), it follows that! is a model of~’. Since
I=plforallle BT (r")andl [~y [forallle B=(r") =10,
it follows that! =, H(r). This shows thaf =, r. Hence,
I is a model ofKB.

(b) By part (a), every strong answer detf KB is a model

of KB. Assume that every dl-atom iPLp is monotonic
relative to KB. We show that’ is a minimal model ofKB.
Towards a contradiction, suppose the contrary. That is, there
exists a modeV of KB such that/ C I. SinceJ is a model

of KB, it follows that.J is also a model of L, sP}). As ev-

ery dl-atom inDLp is monotonic relative td(B, it then fol-
lows thats P{ C sP{. Hence,J is also a model of L, s P} ).

But this contradicts thaf is the least model of L, sP¥).
Hence,l is a minimal model ofkB. O



The following theorem shows that positive and stratified
dl-programs have at most one strong answer set, which co-
incides with the canonical minimal mod&l k5.

Theorem 6 Let KB be a(a) positive(resp.,(b) stratified
dl-program. If KB is satisfiable(resp., consisteft then
Mg is the only strong answer set &1B. If KB is not satis-
fiable (resp., consisteftthen KB has no strong answer set.

Proof. (a) If KB= (L, P) is satisfiable, thed/ x5 is de-
fined. A strong answer set aKB is an interpretation
I C HBp such thatl is the least model ofL, sPf). Since
KB is a positive dl-program, it follows thatP{ coincides
with ground(P). Hence,[ C HBp is a strong answer set of
KB iff I=Mgkp. If KB is unsatisfiable, the®&B has no
model. Thus, by Theorem % B has no strong answer set.

(b) Let A be a stratification oK B of lengthk > 0. Suppose
thatl C HBp is a strong answer set 6fB. That s, is the
least model of L, sP{). Hence,

e I|HB}, isthe leastof all model§ C HB}, of (L, sPyL);

e if i>0, then I|HBY}, is the least among all models
J C HB}, of (L,sP;}) with J|HB}, _=I|HB}, .

It thus follows that

e I|HBF, is the least of all modelg C HBY, of KBy; and

e if i>0, then I|HB}, is the least among all models
J C HBp, of KB; with J|HB}, = I|HBY,

i—1

Hence, KB is consistent, and = Mxg. Since the above
line of argumentation also holds in the converse direction,
it follows that I C HBp is a strong answer set df B iff

KB is consistent andl = M gg. O

Since the strong answer sets of a stratified dl-proghasn
are independent of the stratificatiarof KB, we thus obtain
that consistency ok'B and M kg are independent of.

Corollary 7 Let KB be a stratified dl-program. Then, the
notion of consistency okB and the modelM x5 do not
depend on the stratification &fB.

Example 4 Consider now the full dl-program from Exam-
ple 1. This dl-program is not stratified, in view of the

(i) deleting all dl-rules- where eitherl}~;a for some dI-
atoma € B¥(r), or I'=1,1 for somel € B~ (r); and

(i) deleting from every remaining dl-ruleall the dl-atoms
in BT (r) and all the literals inBB~(r).

Observe that P{ is an ordinary ground positive program,
which does neither contain any dl-atoms, nor any NAF-
literals. We thus define the weak answer set semantics by
reduction to the least model semantics of ordinary ground
positive programs as follows.

Definition 2 Let KB = (L, P) be a dI-program. Aveak an-
swer sebf KB is an interpretatiod C HB p such thatl is
the least model of the ordinary positive progran®; .

The following result shows that the weak answer set se-
mantics of a dl-progrank’B = (L, P) without dl-atoms co-
incides with the ordinary answer set semantic$of

Theorem 8 Let KB = (L, P) be a dl-program without dI-
atoms. Then] C HBp is a weak answer set B iff it is
an answer set of the ordinary normal prograit

Proof. Let IC HBp. If KB does not contain any dI-
atoms, thenv P, = PL. Thus,I is the least model ofy P}
iff Iis the least model aP!. Hence,l is a weak answer set
of KB iff I is an answer set df. O

The next result shows that every weak answer set of a dlI-
programKB is also a model ofB. Note that differently
from strong answer sets, the weak answer set&Bfare
in general not minimal models dfB, even if KB has only
monotonic dl-atoms.

Theorem 9 Let KB be a dl-program. Then, every weak an-
swer set ofK B is also a model oi(B.

Proof. LetI C HBp be a weak answer set dfB =
(L, P). To show thatl is also a model ofKB, we have
to show thatl =, r for all » € ground(P). Consider any
r € ground(P). Suppose that =, [ for all I € BT (r) and
I f£p, [ forallle B=(r). Then, the dl-rule” that is ob-
tained fromr by removing all the dl-atoms iB*(r) and
all literals in B=(r) is in wPE. As I is the least model of

rules (6) and (7), which take care of the selection between wP;, and thus in particular a model ofP;/, it follows that
the different candidates for being reviewers. Every strong I Fr 1. Sincel | lforalll€ B*(r') andI j&p, [ for
answer set that contains no error flags corresponds to an ac-all € B~ (") =0, it follows that! |=y, H(r') = H(r). This

ceptable review assignment scenario.

Weak Answer Set Semantics of dlI-Programs. We finally
introduce theweak answer set semantiaghich associates

shows thatl =, . Thus,I is a model ofKB. O

The following result shows that the weak answer set se-
mantics of dl-programs can be expressed in terms of the an-
swer set semantics of ordinary normal programs.

with a dI-program a larger set of models than the strong an-
swer set semantics. It is based on a generalized transforma-theorem 10 Let KB =
tion that removes all dl-atoms and NAF-literals, and reduces HBp
to the answer set semantics of ordinary programs.

In the sequel, letKB= (L, P) be a dl-program. The
weak dl-transformof P relative toL and to an interpreta-
tion I C HBp, denotedwP;, is the ordinary positive pro-
gram obtained fronground(P) by

(L, P) be a dl-program. Letl C

and letP/ be obtained fronyround(P) by

(i) deleting every dl-rule- where eitherI |, a for a dI-
atoma € B*(r), or [ =, a for adl-atoma € B~ (r), and

(i) deleting from every remaining dl-rute every dl-atom
in BT (r)yUB~(r).



Then,I is a weak answer set dfB iff I is an answer set
of P}.

Proof. Immediate by observing thatP} = (P/)!. O

Finally, the next result shows that the set of all strong an-
swer sets of a dl-programiiB is contained in the set of all
weak answer sets df B. Intuitively, the additional informa-
tion about the monotonicity of dl-atoms that we use for spec-
ifying strong answer sets allows for focusing on a smaller set
of models. Thus, the set of all weak answer set& 8f ap-
proximates the set of all strong answer set&@f.

Theorem 11 Every strong answer set of a dI-prograffi3
is also a weak answer set &fB.

Proof. Let I C HBp be a strong answer set &B =
(L, P). Thatis, I is the least model ofL, sP}). Hence,

I is also a model ofvPL. We show thatl is in fact the
least model ofwP/. Towards a contradiction, assume the
contrary. That is, there exists a modet I of wP{. Hence,

J is also a model of L, sP/). But this is contradicts the
fact that/ is the least model ofL, sP{). Hence,I the least
model ofwP}, and sal is a weak answer set ¢fB. O

Note that the converse of the above theorem does not hold
in general. That is, there exist dl-prografi® which have
a weak answer set that is not a strong answer set.

Computation and Complexity

In this section, we give fixpoint characterizations for the
strong answer set of satisfiable positive and consistent strat-
ified dl-programs, and we show how to compute it by fi-
nite fixpoint iterations. We then draw a precise picture of
the complexity of deciding strong and weak answer set ex-
istence for a dI-program, respectively.

Fixpoint Semantics

The answer set of an ordinary positive resp. stratified normal
logic programP has a well-known fixpoint characterization
in terms of an immediate consequence oper@iarwhich
easily generalizes to dl-programs. This can be exploited for
a bottom-up computation of the strong answer set of a posi-
tive resp. stratified dI-program.

For a dl-progrankKB = (L, P), define the operatdfxp
on the subsets dff B p as follows. For every C HBp, let

HBp, if I is not consistent
Tka(I) = { {H(r) | reground(P), I =t
forall £€ B(r)}, otherwise
The following lemma shows that, KB is positive, then
Tkp is monotonic, which is immediate from the fact that in
ground(P), each dl-atom is monotonic relative 3.

Lemma 12 For any positive dl-progranKB=(L, P), Tkp
is monotonidi.e.,/CI’"CHBp impliesTkp(I) C Tkp(I')).

Proof. LetICI'C HBp. Consider any € ground(P).
Then, for every classical literake B(r), it holds thatl =, |
impliesI’ =, I. Furthermore, for every dl-atome B(r),
it holds that! |=;, a impliesI’ =, a, sincea is monotonic
relative toKB. This shows thal ks (1) C Tkp(I'). O

Since every monotonic operator has a least fixpoint, also
Tkp has one, denotebip(Txg). Moreover,lfp(Tkg) can
be computed by finite fixpoint iteration (given finiteness
of P and the number of constant symbolsiin

For everyl C HB p, we definel.; (1) = I, if i = 0, and
Tip(I) = Txp(Tig (1)), if i > 0.

Theorem 13 For every positive dl-progrankB = (L, P),
it holds that(a) ifp(Txs) = Mxksg, if KB is satisfiable, and
(b) ifp(Tkp) = HBp, if KB is unsatisfiable. Furthermore,

ifp(Tks) = Ui—o Tip (P) = T (1), for somen > 0.

Example 5 Suppose thaP in KB=(L, P) consists of the
rulesry: b«— DL[SWp; C|(a) andrs: p(a) < , andL con-
tains only the axion C C. Then, KB is positive, and we
havelfp(Tkp) = {p(a),b}, whereTiy(0) = 0, Ty (0) =
{p(a)}, andT%5 (0) = {p(a),b}.

We finally describe a fixpoint iteration for stratified dl-
programs. Using Theorem 13, we can characterize the strong
answer sefM/ kg of a stratified dl-progranik B as follows.

LetTi (1) = Tig(I) U T, foralli > 0.

Theorem 14 SupposeKB = (L, P) has a stratification\
of lengthk > 0. DefineM; C HBp, i€ {-1,0,...,k}, as
follows: M_; =0, and M; = Ty} (M;—1) for i >0, where
n; >0 such thatT sy, (M;—1) = Tpi (M;_1). Then, KB
is consistent iff\/;, # HBp, and in this caseM; = Mx5.

Notice thatMy = Ifp(Tkp,) andM; | = f}'{Bi(Mi,l)ﬂ
HB%. _,foranyj >0, if f};Bi(JVIZ-,l) is consistent, which
means that; > 0 always exists.

Example 6 Assume that also the dI-rutg: g(x)—not —b,

not DL[S](z) isin P of Example 5. Then, th& assigning 1
to ¢(a), 0 to DL[S](a), and O to all other atoms iHBp U

DLp stratifieskB, and My = ifp(Tks,) = {p(a),b} and
My = {p(a),b,q(a)} = Mks.

Complexity

The complexity of deciding whether a given dI-program has

a strong (resp., weak) answer set is summarized in Table 1.
There, “mon-dI” means that all dl-atoms iDL p are mono-
tonic and treated as such in case of strong answer sets. Re-
sults on cautious and brave reasoning are easily derived from
them by simple reductions (except for positik&3 with L

in SHOTZN (D)); cf. (Eiteret al.2003) for more details.

The complexity results are based on the previous re-
sults that deciding answer set existence for a (non-ground)
normal programP is complete for NEXP (hondeterminis-
tic exponential time) (Dantsiet al. 2001), and that de-
ciding satisfiability of a knowledge badse in SHZF (D)



Table 1: Complexity of deciding strong / weak answer set
existence for dl-program&B (completeness results)

KB=(L,P) | LinSHIF(D) LinSHOIN (D)
positive EXP NEXP
stratified, mon-dl EXP PYEXP | NPNEXP
stratified EXP NPYEXP
general NEXP NPYEXP

(resp., SHOIN (D)) is complete for EXP (exponential
time) (Tobies 2001; Horrocks & Patel-Schneider 2003b)
(resp., NEXP, assuming unary number encoding; cf. (Hor-
rocks & Patel-Schneider 2003b) and the NEXP-hardness
proof for ACLQZO by Tobies (2001), which implies the
NEXP-hardness). Thus, evaluating a ground dl-atoof
form (1) given an interpretatiod, of its input predicates

p = pi1,...,pm (i.€., decidingl = a for eachI that co-
incides orp with 1,,) is complete for EXP (resp., co-NEXP)
for L from SHZF(D) (resp.SHOZIN (D)).

The following theorem shows that deciding the existence
of strong (resp., weak) answer sets of dl-programs wWith
in SHZF (D) is NEXP-complete in the general case, and
EXP-complete in the positive and the stratified case.

Theorem 15 Given® and a dl-programKB=(L, P) with
Lin SHZF (D), deciding whethek B has a strondresp.,
weak answer set is complete fO{EXP in the general case,
and complete foEXP whenKB is positive or stratified.

Proof (sketch). Observe first that for each dl-progralfi,

the number of ground dl-atomsis polynomial, and: has
exponentially many different concrete inpuisin general,
but each of them has polynomial size.

For positive KB, we can computdfp(Tkp) in expo-
nential time. Note that any ground dl-ataimneeds to be
evaluated only polynomially often, as its input can increase
only that many times. Frorifp(Txz), it is then immediate
whetherKB has a strong (resp., weak) answer set, namely
iff {fp(Tkp)+# HBp. For otherKB, we can, one by one,
explore the exponentially many possible inputs of those dI-
atoms which disappear in the transfosdt! (resp.,wPy).

For each input, evaluating these dl-atoms and buildiRg
(resp.,wP}) is feasible in exponential time. If we are left
with a positive or stratified(B’, we aim to computé/xp

by (a sequence of) fixpoint iterations as above, and check
compliance with the inputs of the dl-atoms. For unstratified
KB, we need in addition an (exponential size) guess for the
default-negated classical literals, which brings us to NEXP.

The EXP- and NEXP-hardness for positive and general
KB, respectively, is inherited from the complexity of plain
datalog and normal programs (Dantsiral.2001).0

The next theorem shows that deciding the existence of
strong (resp., weak) answer sets of dl-programs itim
SHOIN (D) ranges from NEXP-completeness in the posi-
tive case to NPFXP-completeness in the general case.

Theorem 16 Given® and a dl-programKB=(L, P) with

L in SHOZN (D), deciding whetherKB has a strong
(resp., weakanswer set is complete foIPNVEXP in the gen-
eral and in the stratified case, complete *X" (resp.,
NPNEXPYy whenKB is stratified and has only monotonic dI-
atoms, and complete fWNEXP whenKB is positive.

Proof (sketch). We use the following observation: A posi-
tive KB has a strong (resp., weak) answer set, just if there
exists an interpretatiod and a subsef C {a € DLp |

I}~ 1, a} such that the positive logic prograR} s, obtained
from ground(P) by deleting each rule that contains a dI-
atoma € S and all remaining dl-atoms, has a strong answer
set included in/. A suitable! and S, along with proofs
L}~raforall ae S, can be guessed and verified in expo-
nential time. The matching NEXP-hardness follows from
co-NEXP-hardness of dl-atom evaluation.

For non-positiveXB, we can guess inputs, for all dI-
atoms, and evaluate them with a NEXP oracle in polyno-
mial time. For the (monotonic) ones remainingsiR; , we
can further guess a chafh= 1) C I} C --- C I} = I,
along which their inputs are increased in a fixpoint compu-
tation for sP/, and evaluate the dl-atoms on it in polyno-
mial time with a NEXP oracle. We then ask a NEXP ora-
cle if an interpretatior/ exists which is the answer set of
sPl (resp.,wP}) compliant with the inputs and valuations
of the dl-atoms and such that their inputs increase in fixpoint
computation. This yields the NFXP upper bounds. For a
strong answer set of a stratified, mon#dB, guesses can be
avoided by increasing the monotonic dl-atoms along a strat-
ification, and the problem is inD#XFP

We can show matching lower bounds by a generic reduc-
tion from Turing machines\/, exploiting the NEXP-hard-
ness proof forACLOZO by Tobies (2001). The idea is to
use a dl-atom to decide the result of thé oracle call made
by a polynomial-time bounded/ with access to a NEXP
oracle, where the results of the previous calls are known
and input to the dl-atom. By a proper sequence of dl-atom
evaluations, the result af/’s computation on inputv can
be obtained; a nondeterministi¢ is modeled by providing
random bits generated by dl-atoms or unstratified rules.

Related Work

The works by Doninket al.(1998), Levy & Rousset (1998),
and Rosati (1999) are representatives of hybrid approaches
using description logic as input. More specifically, Doreni

al. (1998) combine plain datalog (no disjunction and nega-
tion) with the description logicALC. An integrated knowl-
edge base has a structural componendifiC and a rela-
tional component in datalog; their integration lies in us-
ing concepts from the former as constraints in rule bodies
of the latter. Doniniet al.(1998) also present a technique
for answering conjunctive queries (existentially quantified
conjunctions of atoms) with such constraints, where SLD-
resolution is integrated with an inference method A2C.
Closely related is the approach by Levy & Rousset (1998),
combining Horn rules with the description logibLCNR.

In contrast to Doninet al's approach (1998), it allows for
roles as constraints in rule bodies and does not require safety



for variables in constraints. Also Levy & Rousset (1998)

present a technique for answering disjunctive queries, i.e.,

disjunctions of conjunctive queries, conditioned on con-
junctive queries. Finally, Rosati (1999) combines disjunc-
tive datalog (with classical and default negation) witiiC

nically permits only cautious reasoning. Indeed, in Rosati’'s
method, an integrated knowledge bdsB = (L, P) repre-
sents all pairgI, S) of modelsI of L and answer set§

of P, while in our work, KB represents all answer sefs

of P, where queries are evaluatedative to each single an-

based on a generalized answer set semantics. Like Levy & swer setS and all modeld of L. compatible withS. Further-

Rousset (1998), he allows for roles as constraints in rule
bodies, and, similar to Doniret al.(1998), safety is not

more, the technical separation complies with the impedance
mismatch of the usual interpretations of answer set programs

requested. Moreover, answering queries given by ground (finite Herbrand interpretations) and of description logics

atoms is discussed, based on a combination of ordinary an-

swer set programming with inference .C.

(general first-order interpretations over possibly infinite do-
mains). This mismatch cannot be easily eliminated when

Some representatives of approaches reducing descriptioncombining existing implemented systems.

logic inference to logic programming are the works by Van
Belleghemet al. (1997), Baral (2003) (cf. also (Alsa¢c &
Baral 2001)), Swift (2004), Grosddt al.(2003), and Hey-
mans and Vermeir (2003a; 2003b). In detail, Van Belleghem
et al.(1997) presents a mapping of description logic knowl-
edge bases iMLCN to open logic programs, and shows

Finally, we mention recent work by Antoniou (2002),
which deals with a combination of defeasible reasoning with
description logics. Like in other work mentioned above, the
considered description logic serves in that approach only as
an input for the default reasoning mechanism running on
top of it. Also, early work on dealing with default infor-

how other description logics correspond to sublanguages of mation in the context of description logics is the method due

open logic programs. It also explores the computational cor-
respondences between a typical algorithm for description
logic inference and the resolution procedure for open logic
programs. The works by Baral (2003) and Swift (2004) re-
duce inference in the description logicCC Q7 to query an-
swering from the answer sets of logic programs (with de-
fault negation, but no disjunction and classical negation).
Grosof et al.(2003) shows especially how inference in a
subset of the description logi§HOZQ can be reduced

to inference in a subset of Horn programs (in which no
function symbols, negations, and disjunctions are permit-
ted), and vice versa. Finally, Heymans & Vermeir (20033a;
2003b) extend disjunctive logic programming under the an-

to Baader & Hollunder (1995), where Reiter’s default logic
is adapted to terminological knowledge bases, differing sig-
nificantly from our approach. Less closely related work in-
cludes also the investigations by Baumgartner, Furbach, &
Thomas (2002) and Provetti, Bertino, & Salvetti (2003).

Summary and Conclusion

Towards the integration of rules and ontologies in the Se-
mantic Web, we have proposed a combination of logic pro-
gramming under the answer set semantics with the descrip-
tion logicsSHZF (D) andSHOZN (D), which stand be-
hind OWL Lite and OWL DL, respectively. We have in-
troduced dI-programs, which consist of a description logic

swer set semantics by inverses and an infinite universe. As knowledge basd. and a finite setP of dl-rules, which

shown, this extension is decidable for rules forming a tree
structure, and inference I@HZF extended by transitive
role closures can be simulated in it.

Closest in spirit to our work is perhaps the approach by
Rosati (1999), which also combines description logics and

answer set programming. There are, however, several cru-

cial differences. (1) Rather thaddLC, we use the more ex-
pressive description logicSHZF (D) and SHOZN (D),
which underly OWL Lite and OWL DL, respectively. On the

other hand, Rosati (1999) considers disjunctive rule heads;

may also contain queries tb, possibly default negated,

in their bodies. We have defined Herbrand models for dI-
programs, and shown that satisfiable positive dI-programs
have a unigue least Herbrand model. More generally, con-
sistent stratified dl-programs can be associated with a unique
minimal Herbrand model that is characterized through it-
erative least Herbrand models. We have then generalized
the unigue minimal Herbrand model semantics for positive
and stratified dI-programs to a strong answer set semantics
for all dl-programs, which is based on a reduction to the

we refrain from this here, but our approach can be easily ex- least model semantics of positive dl-programs. We have also

tended in this direction (keeping the main conceptual ideas).

(2) Instead of using roles and concepts frbras constraints
in rule bodies of a logic progran®, we allow for queries
to L in rule bodies ofP, where every query also allows for
specifying arinput from P, and thus for dlow of knowledge
from P to L besides the flow of knowledge froih to P.
Thus, in our approach, inference fromalso depends on
what is encoded i, which is not the case in Rosati's ap-
proach. Furthermore, in our approach, querieg tare not

defined a weak answer set semantics based on a reduction
to the answer sets of ordinary logic programs. We have
then given fixpoint characterizations for the unique mini-
mal Herbrand model semantics of positive and stratified dI-
programs, and shown how to compute these models by fi-
nite fixpoint iterations. Furthermore, we have given a pre-
cise picture of the complexity of deciding strong and weak
answer set existence for a dl-program.

On the computational side, we have realized a prototype

subject to any safety condition and can be orthogonally com- implementation for weak answer sets, employing the de-

bined with classical and default negation. (3) We allow for a

scription logic engine RACER (Haarslev & dHler 2001)

technical separation and thus a more flexible combination of and the answer set engibdV (Leoneet al.2002), which is

description logic inference and logic programming. Namely,

based on interleaved calls until a fixpoint is reached. An

our approach permits cautious as well as brave reasoninginteresting subject for further research is to find efficient

under the answer set semantics, while Rosati (1999) tech-

means for implementing the approach as a whole. To this



end, one may investigate mappings to answer set program- > 1 lastname C Person; T C Viastname.Dtring;

ming itself, which may utilize work on mapping description > 1 keyword C Paper, T E Vkeyword. Kw;
logics to (disjunctive) logic programs (Grosef al. 2003; > 1 cites C Paper; T C Vcites. Paper;
Motik, Volz, & Maedche 2003; Swift 2004). Note that > 1 contains C Areq; T C Vcontains. Kw;

the addressed problems of complexity within EXP (resp., > 1 hasAuthor C Paper; T C VhasAuthor.Person;
NEXP) can be polynomially transformed into deciding con- > 1 ezpert C Person; T C Vezpert. Area;
sequence from an ordinary (negation-free) datalog program > 1 inArea C Paper; T C VinArea.Area;

(resp., deciding answer set existence of an ordinary nor- > 1 hasMember C TopicCluster; T T VhasMember.Kw;
mal logic program). The problems with higher complex-  iscontainedIn = contains™;

ity can be polynomially reduced to disjunctive logic pro-  jsAuthorOf = hasAuthor™;

gramming, since NP*XP ¢ NEXPNY| and for disjunctive isMemberOf = hasMember™~;

logic programs, deciding answer set existence, as well as Paper C Publication;

brave reasoning, is NEXP'-complete (Dantsiet al.2001). Referee T Person;

However, intuitively, NP'FXF has much less computational ~ JinArea.{A} = Jkeyword.(JisContainedIn.{A});
power than NEXB' | and thus the full power of disjunctive ~ 3ezpert.{A} = JisAuthorOf .(JinArea.{A});
logic programming may not be needed. It thus remains to 3inArea.{B} = 3keyword.(3isContainedln. { B});
find efficient and useful transformations that are tailored to 3¢2pert-{B} = JisAuthorOf .(3inArea.{ B});

the complexity of the problems at hand. JinArea.{C} = Tkeyword.(JisContainedIn.{C});

Another interesting topic of future research is to extend -¢%¢7t-{C} = JisduthorOf. (Jindrea {C});
- - . - JinArea.{D} = Jkeyword.(JisContainedIn.{D});
our approach to dl-programs with disjunctions, NAF-liter- Jeapert {D} = JisAuthorOf .(JinArea.{D});
als, and dl-atoms in the heads of dl-rules. ’ ’ ' '
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(Ls, Ps) of Example 1. In addition to the dI-rules (1)—(9), Person(per,);

i ; _ . firstname(pery, “Michael”);
the setPs also contains the following dl-rules: lastname(per,. “ Gelfond”);

author (per,); author(per,); author(pers); ...

area(A); area(B); area(C); area(D); Referee(per,);

cluster(T1); cluster(T2); Referee(per,);
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Here, Dging @andDy denote the domains of the datatypes

of strings and natural numbers, respectively.
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