
On Quantifier Shifting
for Quantified Boolean Formulas∗

Uwe Egly Hans Tompits Stefan Woltran

Institut für Informationssysteme,
Abteilung Wissensbasierte Systeme 184/3,

Technische Universität Wien,
Favoritenstrasse 9–11, A-1040 Vienna, Austria

[uwe,tompits,stefan]@kr.tuwien.ac.at

Abstract

Since most currently available solvers for quantified Boolean formulas (QBFs)
process only input formulas in prenex normal form, suitable translations are re-
quired for handling arbitrary formulas. In this paper, we propose a normal form
translation incorporating a certain anti-prenexing step in order to obtain QBFs pos-
sessing quantifier prefixes such that the number of alternating quantifiers is never
greater than the number of alternations obtained by using nondeterministic normal
form translations based on usual quantifier shifting rules. Furthermore, our algo-
rithm is deterministic. We show that anti-prenexing is beneficial in some cases for
QBF-solvers which are able to process arbitrary QBFs, like BDD-based solvers.
We illustrate this point by discussing some experimental results in this direction.

1 Introduction

Solving hard problems like planning or various forms of nonmonotonic reasoning by
encoding them into quantified Boolean formulas (QBFs) and computing the truth value
of the resultant formulas with a QBF-solver has become an attractive and increasingly
important research topic over the last years (cf., e.g., [12, 5, 4, 11]). The QBFs resulting
from the encodings are usuallynot in a specific normal form which prevents the appli-
cation of most of the available QBF-provers [9, 3, 6, 8, 10, 12] without a translation
into normal form. The only kind of QBF-solvers which can handle arbitrary formulas
is based on binary decision diagrams (BDDs).

In order to make more practicably successful QBF-solvers available for solving the
encoded problems, a transformation of an arbitrary QBF into a specific normal form
(e.g., prenex CNF) is required. Usually, such a transformation consists of two steps,

∗The work was partially supported by the Austrian Science Foundation under grant P15068.



namely (i) the generation of a prenex form with an arbitrary quantifier-free matrix,
and (ii) the translation of the matrix into normal form (e.g., CNF). Step (i) is usually
based on quantifier-shifting rules derived from well-known equivalences for quantifiers
(cf. Proposition 1 below). For Step (ii), different well-known approaches have been
proposed.

In this paper, we concentrate on strategies related to Step (i). Usually, (non-deter-
ministic) ad-hoc translations are used which result, in general, in formulas with differ-
ent quantifier prefixes. Although these resulting formulas are equivalent to each other,
the running time of a QBF-solver usually depends on the order of quantifiers. More-
over, it is desirable that the normal form(s) of a formula reflect the “inherent” worst-
case complexity of the source formula. This is illustrated in the following example.
Consider the QBF

Φ := ∃p
[(
∀q ∃r (p ∨ q ∨ r)

)
∧

(
∃r ∀q (¬p ∨ q ∨ r)

)]
. (1)

Two equivalent QBFs in prenex form resulting from shifting quantifiers to the left are
immediately apparent:

Φ′ := ∃p∀q ∃r ∃r′ ∀q′
(
(p ∨ q ∨ r) ∧ (¬p ∨ q′ ∨ r′)

)
;

Φ′′ := ∃p∃r′ ∀q′ ∀q ∃r
(
(p ∨ q ∨ r) ∧ (¬p ∨ q′ ∨ r′)

)
.

Two observations are central. First, we need some suitable renaming schema for bound
variables in order to avoid name conflicts. Second, when shifting quantifiers to the left,
formulas may arise with different structures of the quantifier prefix. Here, we claim to
preferΦ′′ overΦ′, sinceΦ′′ yields a smaller number of quantifieralternations. But is
Φ′′ optimal with respect to the minimal number of such alternations? In fact, it is not,
since

∃p∃r ∃r′ ∀q ∀q′
(
(p ∨ q ∨ r) ∧ (¬p ∨ q′ ∨ r′)

)
(2)

with one quantifier alternation is equivalent toΦ as well, and, as we will demonstrate,
QBF (2) results fromΦ by a more sophisticated application of the quantifier shifting
rules. Indeed, the crucial point is to shift quantifiers “down” in the formula tree before
all quantifiers are shifted “upwards” in order to generate the prenex form. Since down-
shifting is opposed to up-shifting (or prenexing), the former is calledanti-prenexing.

Minimising the number of quantifier alternations can be motivated as follows by
taking computational complexity into account. First, recall that QBFs in prenex form
are identified as prototypical problems for the classes in the polynomial hierarchy [13].
In particular, the structure of the prenex gives an estimation of the inherent worst-case
complexity of a given QBF. Translating arbitrary QBFs into prenex form where the
number of alternating quantifiers is minimised thus gives a good characterisation of
the original QBF. Related to this issue, we mention that bothΦ′ andΦ′′ fulfill the
conditions to be QBFs from the so-called Model A [7]. The methodology of Model A
is frequently used to generate (hard) random QBF instances. However, the example
above illustrates some weakness of Model A because the quantifier-prefixes inΦ′ and
Φ′′ do not sufficiently characterise the inherent complexity of the generated QBF as



reflected by QBF (2).1 So we shall also apply QBFs in prenex form to our algorithm to
derive a possibly more adequate prefix.

A second question arises in the following case. Let

Ψ :=
(
∃p∀q ∃r ((p ∨ q) → (r ∧ q))

)
∧

(
∃u ∃v (u ∧ v)

)
.

The following QBFs are in prenex form satisfying the minimality criterion from above:

Ψ′ := ∃p∀q ∃r ∃u ∃v ψ; (3)

Ψ′′ := ∃u ∃v ∃p∀q ∃r ψ, (4)

with ψ = ((p ∨ q) → (r ∧ q)) ∧ (u ∧ v). Which one should we prefer? At the
moment, we claim that both strategies should be taken into account, and future work
on experimental evaluation shall decide the better strategy. We call the strategy from
which Ψ′ is obtained “shift-to-bottom” and the one yieldingΨ′′ “shift-to-top”. From
an intuitive point of view “shift-to-top” is preferable to “shift-to-bottom” for QBF-
solvers based on the procedure of Davis, (Putnam,) Logemann, and Loveland, since
the number of dependencies of existential variables on universal variables is reduced.
However, it is not so clear whether this observation is true in general (consider, e.g.,
BDD-based solvers).

Finally, there is a certain class of QBFs which is prototypical for a family of com-
plexity classes, namelyDP

k . Take the QBF

Ω := ∃p∀q
(
(¬p ∧ q) ∨ (p ∧ ¬q)

)
∧ ∀r ∃s

(
(¬r ∨ s) ∧ (r ∨ ¬s)

)
.

Constructing a purely prenex QBF ofΩ leads to two different minimal quantifier pre-
fixes, viz.∃∀∃ as well as∀∃∀. This effect hints that the QBF is in fact related to a
complexity classDP

k . From a complexity-theoretical point of view, both prenex forms
are not well suited since they characterise a higher complexity class thanΩ itself. It
seems more appropriate to independently evaluate the first and the second conjunct,
respectively.

In this paper, we propose a normal form translation incorporating an anti-prenexing
step in order to obtain QBFs possessing quantifier prefixes such that the number of al-
ternating quantifiers is never greater than the number of alternations obtained by using
nondeterministic normal form translations based on usual quantifier shifting rules. Fur-
thermore, our algorithm is deterministic. We will show that anti-prenexing is beneficial
in some cases for QBF-solvers which are able to process arbitrary QBFs, like BDD-
based solvers. We illustrate this point by discussing some experimental results in this
direction. Let us remark that refinements of our algorithm are possible, e.g., by includ-
ing additional optimisations (“pure literal rule”).

The remainder of this paper is as follows: The next section introduces the relevant
background information. Section 3 sketches an algorithm to prenex formulas. As
an intermediate step within this algorithm, we discuss how QBFs can be sufficiently
characterised. Section 4 concludes the paper, containing a discussion about possible
optimisations within our algorithm, and a brief experimental analysis illustrating the
advantage of anti-prenexing for evaluating QBFs.

1Of course, QBF (2) is easily identified as true by pure literals, and thus the quantifier prefix still does
not reflect the complexity. However, the example is just to illustrate the basic ideas.



2 Preliminaries

Let P be a set of propositional atoms. Then, the languageLP of quantified Boolean
formulas (QBFs) overP is obtained by ordinary propositional formulas (including
propositional constants> and⊥) overP plus the additional possibility to quantify over
propositional variables. A quantifier is either existential (∃) or universal (∀). QBFs are
denoted by Greek upper-case letters.

For an indexed setP = {p1, . . . , pn} of propositional variables and a quantifier
Q ∈ {∃,∀}, we letQP Φ stand for the formulaQp1Qp2 . . .Qpn Φ. We say that a QBF
Q1P1 . . .QnPn Φ is in prenex(normal) form if Φ is a purely propositional formula,
i.e.,Φ does not contain any quantifiers. For a quantifierQ ∈ {∃,∀}, we defineQ̄ = ∃
if Q = ∀, andQ̄ = ∀ if Q = ∃. As usual, for a QBFQpΦ, Φ is called thescopeof
the quantifier occurrenceQp. An occurrence of a propositional variablep in a QBFΦ
is free iff it does not appear in the scope of a quantifierQp (Q ∈ {∀,∃}). If Φ contains
no free variable occurrences, thenΦ is closed, otherwiseΦ is open. We denote the set
of variables occurring free inΦ by free(Φ). The set of all quantifiers inΦ is given by
Q(Φ) := {Qp | QpΨ is a subformula ofΦ}; the set of all quantified variables inΦ is
given byquant(Φ) := {p | Qp ∈ Q(Φ)}.

We also use the concept of aformula tree. Informally, the formula treeTΦ of a QBF
Φ consists of nodes labelled with quantifiers and connectives as well as propositional
variables for leaf nodes, reflecting the formula structure ofΦ. The node labelled with
the main connective ofΦ is called theroot of TΦ and appears ontop of TΦ. We under-
stand the branching asdownwards. Thus, we often use the informal notions of “going
downwards” (towards to the leaves) and “going upwards” (towards the root) within a
formula tree (or simply within a formula).

Concerning the semantics of QBFs, by aninterpretationwe understand a setM ⊆
P of atoms. Informally, an atomp is true underM iff p ∈ M . In general, the truth
value,νM (Φ), of a QBFΦ under an interpretationM is recursively defined as follows:

1. if Φ = >, thenνM (Φ) = 1;

2. if Φ = p is an atom, thenνM (Φ) = 1 if p ∈M , andνM (Φ) = 0 otherwise;

3. if Φ = ¬Ψ, thenνM (Φ) = 1− νM (Ψ);

4. if Φ = (Φ1 ∧ Φ2), thenνM (Φ) = min({νM (Φ1), νM (Φ2)});

5. if Φ = ∀pΨ, thenνM (Φ) = νM (Ψ[p/>] ∧ Ψ[p/⊥]);

whereΦ[p1/Φ1, . . . , pn/Φn] denotes the result of uniformly substituting each free oc-
currence of a variablepi in Φ by Φi, for 1 ≤ i ≤ n.

The truth conditions for⊥, ∨ , → , ≡, and∃ follow from 1.–5. in the usual way.
Note that∃ is defined here similarly as in first-order logic, i.e.,∃pΨ = ¬∀p¬Ψ, for
each formulaΨ. Hence, the truth value for∃ is given by

νM (∃pΨ) = νM (Ψ[p/>] ∨ Ψ[p/⊥]).

Due to the associativity and commutativity of∧ and ∨ , we allown-ary conjunctions
and disjunctions (withn ≥ 2) to appear in arbitrary order.



We say thatΦ is true underM iff νM (Φ) = 1, otherwiseΦ is false underM . If
νM (Φ) = 1, thenM is amodelof Φ. If Φ is true under every interpretation, thenΦ is
valid. As usual, we write|= Φ to express thatΦ is valid.

It is easily seen that the truth value of a QBFΦ under interpretationM depends
only on the free variables inΦ. In particular, closed QBFs are either true under every
interpretation or false under every interpretation, i.e., they are either valid or unsatis-
fiable. Two formulas arelogically equivalentiff they possess the same models. Thus,
formulasΦ andΨ are logically equivalent iffΦ ≡ Ψ is valid.

In what follows, we note some useful relations concerning the shifting and renam-
ing of quantifiers, paralleling similar results from standard first-order logic.

Proposition 1 Letp, q be atoms,Q ∈ {∀,∃}, and letΦ, Φ1, Φ2, andΨ be QBFs such
thatΨ does not contain free occurrences ofp. Then,

1. |= (QpΨ) ≡ Ψ;

2. |= (QqΨ) ≡ (QpΨ[q/p]);

3. |= (¬QpΦ) ≡ Q̄p(¬Φ);

4. |= ∃p (Φ1 ∨ Φ2) ≡ (∃pΦ1 ∨ ∃pΦ2);

5. |= ∀p (Φ1 ∧ Φ2) ≡ (∀pΦ1 ∧ ∀pΦ2);

6. |= ∃p (Φ1 → Φ2) ≡ (∀pΦ1 → ∃pΦ2);

7. |= Qp (Φ ◦Ψ) ≡ (QpΦ) ◦Ψ for ◦ ∈ {∧,∨};

8. |= Qp (Φ → Ψ) ≡ (Q̄pΦ → Ψ);

9. |= Qp (Ψ → Φ) ≡ (Ψ → QpΦ); and

10. |= (QpQqΦ) ≡ (QqQpΦ).

Our algorithm basically relies on repetitive application of replacing such equivalent
formulas. Therefore, recall that the replacement theorem holds for QBFs.

Proposition 2 Let Ψ be a subformula of a QBFΦ and assume|= Ψ ≡ Ψ′. Then,
|= Φ ≡ Φ′, whereΦ′ results fromΦ by replacing one or more occurrences ofΨ in Φ
byΨ′.

Straightforward transformation techniques are usually based on anondeterminis-
tic application of replacements of equivalent subformulas. Therefore, they result in
a number of different prenex forms in general. In other words, considering above
replacements as a set of rewriting rules, we get a non-confluent set. In this paper,
however, we are concerned with a deterministic algorithm,“hiding” possible nondeter-
ministic choices within a construction of a total order of the elements inquant(Φ).

Finally, let us briefly recall that QBFs play a central role in complexity theory
representing a natural decision problem for the complexity classPSPACE. More-
over, the evaluation problem for a QBFQ1P1 . . .QkPkφ having prenex normal form



with k ≥ 1 alternating quantifiers is complete forΣP
k if the outermost quantifier is

existential, and complete forΠP
k if the outermost quantifier is universal. Recall that

ΣP
1 = NP, ΣP

2 = NPNP, ΠP
2 = co-NPNP, etc. are constituting members of the poly-

nomial hierarchy [13]. We also consider the complexity classesDP
k , k ≥ 1, where

eachDP
k consists of all problems expressible as the conjunction of a problem inΣP

k

and a problem inΠP
k . Hence, the problem of (independently) evaluating two QBFs

Q1P1 . . .QkPkφ and Q̄1P
′
1 . . . Q̄kP

′
kφ

′ with k alternating quantifiers is contained in
DP

k .

3 A Prenex Normal-Form Translation

In order to translate arbitrary QBFs into prenex form, our overall strategy is as follows.

1. shift quantifiers down the formula tree;

2. classify QBFs via those paths in the resulting tree which posses a maximal num-
ber of quantifier alternations;

3. shift quantifiers to the root of the tree by “collecting” all quantifiers on such a
path.

The down shifting of quantifiers (also referred to asanti-prenexing) is essential
for obtaining prenex QBFs possessing “optimal” quantifier alternations compared to
a straightforward approach based on shifting quantifiers outside using the equivalence
transformations given in Proposition 1. In fact, it holds that, for any QBFΦ, the number
of quantifier alternations in the translated QBFΦ′ obtained from our algorithm is never
greater than the number of quantifier alternations in a translated QBFΦ′′ obtained
in a normal-form procedure based on a simple out-shifting of quantifiers. Moreover,
reducing the scope of quantifiers is especially beneficial for QBF-solvers allowing input
formulas which are not required to enjoy a particular normal form, like, e.g., BDD-
based solvers which are able to process arbitrary QBFs. We illustrate this point later
on by using particular problem instances in which reducing the quantifier scope yields
a significant speed-up of computation time.

In the following, all of the above steps are shown to be polynomial-time computable
and equivalence preserving. The algorithm is also applicable to open QBFs, leaving
the set of free variables unchanged. With suitable renaming schemes, the original QBF
is in principle also reconstructible from the result. For the sake of simplicity, we define
our algorithm for QBFs built from connectives,∧ , ∨ and¬.

3.1 Down-shifting of Quantifiers

To apply our algorithm, we first use some simple pre-processing deriving so-called
cleansedQBFs. A cleansed QBFΦ satisfies the following conditions:

1. free(Φ) ∩ quant(Φ) = ∅; i.e., no atom occurs both free and quantified inΦ;

2. if Q1p1 Φ1 andQ2p2 Φ2 are different subformula occurrences inΦ, thenp1 6=
p2.



Both properties are easily achieved by renaming bounded variables. The first step
of our algorithm takes an arbitrary cleansed QBFΦ and shifts quantifiers as deep into
the formula treeTΦ as possible, using the following extended versions of the equiva-
lence retaining rules from Proposition 1 for conjunction and disjunction.

Lemma 1 Let Φ = Φ1 ◦ . . . ◦ Φn ◦ Ψ1 ◦ . . . ◦ Ψm be a QBF with◦ ∈ {∧ , ∨},
m,n ≥ 0, andm + n > 0, such that an atomp is contained in eachΦ1, . . . ,Φn but
not inΨ1 ◦ . . . ◦Ψm. Moreover, letp1, . . . , pn be globally new atoms. Then,

1. for ◦ = ∨ ,

(a) |= ∃pΦ ≡ (∃p1 Φ1[p/p1] ∨ . . . ∨ ∃pn Φn[p/pn] ∨ Ψ1 ∨ . . . ∨ Ψm);

(b) |= ∀pΦ ≡ ∀p(Φ1 ∨ . . . ∨ Φn) ∨ Ψ1 ∨ . . . ∨ Ψm;

2. for ◦ = ∧ ,

(a) |= ∀pΦ ≡ (∀p1 Φ1[p/p1] ∧ . . . ∧ ∀pn Φn[p/pn] ∧ Ψ1 ∧ . . . ∧ Ψm);

(b) |= ∃pΦ ≡ ∃p(Φ1 ∧ . . . ∧ Φn) ∧ Ψ1 ∧ . . . ∧ Ψm.

Our algorithm starts with quantifiers located lowest in the formula treeTΦ and then
applies to quantifiers iteratively located upwards. In fact, we use the following concepts
for the iteration order.

Definition 1 LetΦ be a cleansed QBF and letσ = Q1p1, . . . ,Qnpn be a sequence of
all elements fromQ(Φ).

Then,σ is calledpartialif, for all i, j with i > j andQi 6= Qj , it holds thatQipi Ψi

is not a subformula ofQjpj Ψj . Furthermore,σ is calledstrictly partial if it satisfies
the condition for partiality, except that the provisoQi 6= Qj is dropped.

Note that sinceΦ is assumed to be cleansed, the formulasΨi, Ψj are unambigu-
ously identifiable. Strictly partial sequences reflect exactly the dependencies of quanti-
fiers in a given QBF, whilst partial sequences extend the freedom of selecting an order
by taking Item (10) from Proposition 1 into account. Obviously, prenex QBFs possess
exactly one strictly partial sequence, viz. the quantifier prefix itself in inverse order.

For illustration, recall QBF (1) and transform it into a cleansed form, e.g., into

∃p[∀q ∃r (p ∨ q ∨ r) ∧ ∃r′ ∀q′ (¬p ∨ q′ ∨ r′) ].

There are several possible partial sequences for this QBF, e.g.,

∃r, ∀q, ∀q′, ∃r′, ∃p. (5)

(5) is also strictly partial, while

∃r, ∀q, ∀q′, ∃p, ∃r′

is partial but not strictly partial.
We continue with the description of our anti-prenexing algorithm. First, we define

the following recursive operationS↓(·). For any QBFΨ, eachQ ∈ {∃,∀}, and any
atomp, S↓(QpΨ) is given as follows:



1. if p /∈ free(Ψ), thenS↓(QpΨ) = Ψ;

2. if Ψ = p thenS↓(QpΨ) = QpΨ;

3. if Ψ = ¬Ψ′, thenS↓(QpΨ) = ¬S↓(Q̄pΨ′);

4. if Ψ = Ψ1 ◦ . . . ◦ Ψl ◦ Ψl+1 ◦ . . . ◦ Ψm with p occurring inΨ1, . . . ,Ψl but not
in (the possibly empty sequence)Ψl+1, . . . ,Ψm andm ≥ l, then

S↓(QpΨ) = S↓(Qp1 Ψ1[p/p1]) ◦ . . . ◦ S↓(Qpl Ψn[p/pl]) ◦Ψl+1 ◦ . . . ◦Ψm,

wherep1, . . . , pl are globally new variables, and◦ = ∨ if Q = ∃ and◦ = ∧ if
Q = ∀;

5. if Ψ = Ψ1 ◦ . . . ◦ Ψl ◦ Ψl+1 ◦ . . . ◦ Ψm with p occurring inΨ1, . . . ,Ψl but not
in Ψl+1, . . . ,Ψm andm > l, then

S↓(QpΨ) = S↓(Qp (Ψ1 ◦ . . . ◦Ψl)) ◦Ψl+1 ◦ . . . ◦Ψm

for ◦ = ∧ if Q = ∃ and◦ = ∨ if Q = ∀.

Observe that the recursion also comes to a halt whenever we havem = l in Step 5,
or Ψ = Q′qΨ′ already has a leading quantifier. This is sufficient for strictly partial
sequences. However, if we deal with partial sequences in general we have to allow that
equal quantifiers are exchangeable with respect to the given sequenceσ. Thus, letσ be
a sequence as in Definition 1, thenS↓(QpΨ) is extended by the following step.

6. if Ψ=QqΨ′ andQp appears in front ofQq in σ, thenS↓(QpΨ) = QqS↓(QpΨ′).

Definition 2 Let Φ be a cleansed QBF andσ = Q1 p1, . . . ,Qn pn a partial sequence
for Φ. Moreover, letΦ0 = Φ and letΦi be the QBF resulting from replacing the
subformula2 Qipi Ψ′

i in Φi−1 byS↓(Qipi Ψ′
i).

Then,Φn, which is the final result of applyingS↓(·) to all elements in the given
sequenceσ, is called thescope-cleansed form ofΦ (with respect toσ), denoted by
Cσ(Φ).

The adequacy of the algorithm, as stated next, follows from Proposition 1 and
Lemma 1.

Theorem 1 Let Φ be an arbitrary cleansed QBF. Then, for each sequenceσ of ele-
ments fromQ(Φ),

1. Cσ(Φ) is equivalent toΦ;

2. the time to constructCσ(Φ) is at most quadratic in the logical complexity ofΦ;
and

3. free(Cσ(Φ)) = free(Φ).

2Note that the scopeΨi of the quantifierQpi in Φ may has changed during the construction ofΦi.
However, the formula is still identifiable by the unique quantificationQipi.



Theorem 2 LetΦ be an arbitrary cleansed QBF andσ1, σ2 strictly partial sequences
of all members fromQ(Φ). Then,Cσ1(Φ) = Cσ2(Φ) holds.

For illustration, recall QBF (1) in the cleansed form as above and consider the
quantifier sequenceσ as in (5).

The first element inσ is ∃r and thus we start with∃r (p ∨ q ∨ r). Application of
Step 4 yieldsS↓(∃r (p ∨ q ∨ r)) = (p ∨ q ∨ ∃r1 r1). Hence,Φ1 is given by

∃p [∀q (p ∨ q ∨ ∃r1 r1) ∧ ∃r′∀q′(¬p ∨ q′ ∨ r′)].

We proceed by computingS↓(∀q (p ∨ q ∨ ∃r1 r1)). Applying Step 5 yields(p ∨
∀q1 q1 ∨ ∃r1 r1). Similar applications in the second conjunct ofΦ lead to

Φ4 = ∃p [(p ∨ ∀q1 q1 ∨ ∃r1 r1) ∧ (¬p ∨ ∀q2 q2 ∨ ∃r2 r2)]. (6)

Now, since here in the iterationS↓(Φ4) no further step is applicable, we end up with
the QBFCσ(Φ) = Φ4.

Clearly, in (5), subformulas of form∀q1 q1 and∃r1 r1 could straightforwardly be
replaced by constants⊥ and>, respectively. Note that such simple replacements make
a reconstruction of the original formula impossible in general.

3.2 Classification Step

Having constructedCσ(Φ) and its formula tree, we are now able to give a suitable
classification forΦ. We start with the following definitions.

Let TΦ be the formula tree of a QBFΦ. A q-path, α, in TΦ is a sequence of
quantifiersQ1p1 . . .Qnpn resulting from collecting all quantifiers occurring on a path
in TΦ starting from the root to its leaf. For a q-pathα, definen(α) as the number of
quantifier alternations inα plus1, and letQ(α) be the leading quantifier,Q1, in α.

We now define the following classes of QBFs.

Definition 3 LetΦ be an arbitrary closed QBF in cleansed form,Q some quantifier,σ
a sequence of elements fromQ(Φ), andn > 0. Then,

1. Φ ∈ CQ
n iff (i) there exists a q-pathα in TCσ(Φ) with n(α) = n andQ(α) = Q,

(ii ) there is no q-pathβ of TCσ(Φ) such thatn(β) > n, and(iii ) each q-pathγ of
TCσ(Φ) with n(γ) = n satisfiesQ(α) = Q(γ);

2. Φ ∈ CD
n iff (i) there exist q-pathsα, β of TCσ(Φ) with n(α) = n(β) = n and

Q(α) 6= Q(β), and(ii ) there is no q-pathγ of TCσ(Φ) with n(γ) > n.

Lemma 2 The time to classify a QBFΦ with respect to the family of sets in Defini-
tion 3 is linear in the logical complexity ofCσ(Φ) (which is at most quadratic in the
complexity ofΦ).

Obviously, each closed QBFΦ is contained in exactly one of the classesC∃n, C∀n,
andCD

n (n > 0). In fact, it holds that ifΦ is containedC∃n (resp.C∀n or CD
n ), then the

evaluation problem forΦ is in ΣP
n (resp.ΠP

n or DP
n ). In general, this gives a better



upper bound for classifying the computational complexity of evaluating a given QBF
as, e.g., a simple inspection of the quantifier order of the prefix. In Section 4 we briefly
mention some optimisations for sharpening these upper bounds.

The inherent complexity of decision problems associated with open QBFs is treat-
able in a similar manner. If we are interested insatisfiabilityof an open QBFΦ with
free(Φ) = P , an upper bound for this problem is derivable via determining the corre-
sponding class for the existential closure∃P Φ of Φ; to classify thevalidity problem of
Φ, we use∀P Φ. With a slight abuse of notation, we say that an open QBFΦ is con-
tained in a classC if its existential (resp. universal) closure is contained in this class,
whenever we are interested in the satisfiability (resp. validity) problem forΦ.

The following theorem expresses a general property for partial sequences, similar
to Theorem 2 given for strictly partial sequences.

Theorem 3 Let Φ be a cleansed QBF. Then, for each partial sequenceσ of all ele-
ments fromQ(Φ), TCσ(Φ) yields the same classification forΦ with respect to the sets
of Definition 3.

Reconsider our running example (6) from above. Here, we identify two q-paths
with a maximal number of quantifier alternations, viz.

α1 = ∃p∀q1 and α2 = ∃p∀q2. (7)

For both pathsαi (i ∈ {1, 2}), we haven(αi) = 2 andQ(αi) = ∃. Hence,Φ is
classified asC∃2 , which correctly reflects our analysis in the introduction (cf. QBF (2)).

3.3 Up-shifting of Quantifiers

We now shift quantifiers upwards again, such that the resulting QBF is in the desired
prenex form. Similarly to the shift-down procedure, we start with a lemma stating an
extended version of quantifier-shifting for conjunction and disjunction.

Lemma 3 LetΦ = Φ1 ◦ . . . ◦Φn ◦Ψ1 ◦ . . . ◦Ψm be a QBF with◦ ∈ {∧ , ∨}, n > 0,
andm ≥ 0, such that eachΦi is of formQpi Φ′

i and eachΨj is either of formQ̄qj Ψ′
j

or quantifier-free. Moreover, assume eachpi occurs only inΦi andp is a globally new
atom.

Then,Φ is equivalent to

1. Qp (Φ1[p1/p] ◦ . . . ◦Φn[pn/p]) ◦Ψ1 ◦ . . . ◦Ψm, for ◦ = ∨ if Q = ∃ and◦ = ∧
if Q = ∀; and

2. Qp1 . . .Qpn(Φ1 ◦ . . . ◦Φn) ◦Ψ1 ◦ . . . ◦Ψm, for ◦ = ∧ if Q = ∃ and◦ = ∨ if
Q = ∀.

In the subsequent procedure, we use the following notion. For a QBFΦ = Φ1◦. . .◦Φn

(◦ ∈ {∧ , ∨}), we defineΦQ as the result of replacing eachΦi of form Qpi Φ′
i by Φ′

i.
Moreover, the set of each such atompi is denoted byP (Φ,Q).

To begin with, we define the followingmerging function, M(·, ·). Let Φ be a QBF
of form Φ1 ◦ . . . ◦ Φn (◦ ∈ {∧ , ∨}). Then,



1. if quant(Φ) = ∅,
thenM(Φ,Q) = Φ; otherwise

2. if, for eachi = 1, . . . , n, eitherΦi = Q̄pi Φ′
i or quant(Φ′

i) = ∅,
thenM(Φ,Q) = M(Φ, Q̄); otherwise

3. if ◦ = ∨ for Q = ∃ or ◦ = ∧ for Q = ∀, andP (Φ,Q) = {p1, . . . , pk},
thenM(Φ,Q) = QpM(ΦQ[p1/p, . . . , pk/p],Q), wherep is a globally new vari-
able;

4. if ◦ = ∧ for Q = ∃ or ◦ = ∨ for Q = ∀, andP (Φ,Q)={p1, . . . , pk},
thenM(Φ,Q) = Qp1 . . .Qpk M(ΦQ,Q).

The merging functionM(·, ·) implements the “shift-to-top” strategy as discussed in
Section 1. Slight adoptions for the “shift-to-bottom” strategy are rather easy to obtain,
although the concrete definition would be a little more cumbersome. Note that Step 3
in the merging function implements the concept ofquantifier fusion. The correctness
of this rule is reflected by Condition 1 of Lemma 3.

We proceed by defining a recursive function,S↑(·, ·), as follows. For any QBFΦ
and eachQ ∈ {∃,∀}, S↑(Φ,Q) is given as follows:

1. if Φ = Q0p0 Φ′ with quant(Φ′) = ∅,
thenS↑(Φ,Q) = Φ;

2. if Φ = Q0p0 Φ′ with quant(Φ′) 6= ∅ ,
thenS↑(Φ,Q) = Q0p0 S

↑(Φ′,Q0);

3. if Φ = ¬Φ′ andS↑(Φ′, Q̄) = Q1p1 . . .Qnpnφ
′,

thenS↑(Φ,Q) = Q̄1p1 . . . Q̄npn¬φ′;

4. if Φ = Φ1 ◦ . . . ◦ Φn,
thenS↑(Φ,Q) = M(S↑(Φ1,Q) ◦ . . . ◦ S↑(Φn,Q),Q), with ◦ ∈ {∧ , ∨}.

To eventually obtain our desired prenex QBF form, we have the following result.

Theorem 4 For any Φ ∈ CQ
n and any sequenceσ of all elements fromQ(Φ), let

P (Φ) = S↑(ΦCσ
,Q). Then,

1. P (Φ) is in prenex form;

2. P (Φ) is equivalent toΦ;

3. the time to constructP (Φ) is at most quadratic in the logical complexity ofΦ;
and

4. free(P (Φ)) = free(Φ).

Theorem 5 LetΦ be an arbitrary cleansed QBF. Then, all strictly partial sequencesσ
of all elements fromQ(Φ) yield syntactically identical QBFsS↑(ΦCσ

,Q). Moreover,
all partial sequencesσ′ of all elements fromQ(Φ) yield equivalent QBFsS↑(ΦCσ′ ,Q)
having the same quantifier structure in their prefix.



We illustrate the procedureS↑(·, ·) on our running example

Cσ(Φ) = ∃p [(p ∨ ∀q1 q1 ∨ ∃r1 r1) ∧ (¬p ∨ ∀q2 q2 ∨ ∃r2 r2)].

We already derivedΦ ∈ C∃2 , thus we have “∃” as second argument inS↑(·, ·). Proceed-
ing with the recursion yields

S↑(Cσ(Φ),∃)=∃pM
(
M(p ∨ ∀q1 q1 ∨ ∃r1 r1,∃) ∧M(¬p ∨ ∀q2 q2 ∨ ∃r2 r2,∃),∃

)
.

ConsiderM(p ∨ ∀q1 q1 ∨ ∃r1 r1,∃). Since the second argument is given by∃, we
first shift∃r1 up and afterwards∀q1, yielding∃r1 ∀q1(p ∨ q1 ∨ r1); and similarly in
the second conjunct. Thus, we arrive at

S↑(CS(Φ),∃) = ∃pM
(
∃r1∀q1(p ∨ q1 ∨ r1) ∧ ∃r2∀q2(¬p ∨ q2 ∨ r2),∃

)
.

Now we compute the remaining merging function. To this end, letΨ1 = (p ∨ q1 ∨ r1)
andΨ2 = (¬p ∨ q2 ∨ r2). We first considerM(∃r1∀q1Ψ1 ∧ ∃r2∀q2Ψ2,∃). Here,
no fusion is possible and, due to Condition 4 of the merging function, we shift both
quantifiers upwards, resulting in∃r1∃r2M(∀q1Ψ1 ∧ ∀q2Ψ2,∃). Since no leading
quantifier is an existential one, we apply Condition 2, gettingM(∀q1Ψ1 ∧ ∀q2Ψ2,∀).
Now quantifier fusion is possible, in view of Condition 3, and we get∀q(Ψ1[q1/q] ∧
Ψ2[q2/q]), and thus as final result

S↑(CS(Φ),∃) = ∃p∃r1 ∃r2 ∀q[(p ∨ q ∨ r1) ∧ (¬p ∨ q ∨ r2)].

In concluding, we briefly sketch how above procedure is applicable if the given QBF
Φ is in CD

n . Omitting further details, we extend the merging functionM(·, ·) by

5. M(Φ1◦. . .◦Φn, D) = M(Φ∃,∃)◦M(Φ∀,∀) whereΦQ denotes the conjunction
or disjunction of thoseΦi with leading quantifierQ;

and start withS↑(Φ, D). This yields QBFs of formΦ1◦Φ2 whereΦ1, Φ2 are in prenex
form and the leading quantifiers inΦ1 andΦ2 are different. We call such QBFs as
being inD-normal form. Observe that QBFs inD-normal form are straightforwardly
evaluated via two independently calls to a QBF-solver, and thus reflect the prototypical
problems for the complexity-classesDP

k .

4 Discussion and Conclusion

In this paper, we presented an algorithm for generating QBFs in prenex form guarantee-
ing, in some sense, that the resultant QBFs possess an “optimal” number of quantifier
alternations compared to procedures based on a straightforward shifting method. One
of the distinguishing features of our method is an anti-prenexing step, moving quanti-
fiers temporarily to the inside of a formula.

In the following, we briefly point out possible optimisations and discuss some ex-
perimental results concerning the advantage of anti-prenexing with respect to evaluat-
ing QBFs using BDD-based QBF-solvers.



To begin with, we note that the scope-cleansed QBFCσ(Φ) in (6) can easily be
simplified by replacing subformulas likeQp p by > for Q = ∃ and by⊥ for Q = ∀.
In general, such simplifications may yield that the transformed QBFs possess a smaller
number of quantifier alternations, albeit the additional optimisation steps prevent a
reconstruction of the original QBF. Another issue is that the possible gain in terms of
formula simplification depends on the chosen sequenceσ of the elements ofQ(Φ).
Thus, classifications of simplified QBFs may yield different results whenCσ(Φ) is
obtained from different sequencesσ.

In any case, we suggest the following extension of our basic algorithm:

1. identify possible simplifications;

2. evaluate the resultant QBFs with respect to subformulas containing> and⊥;

3. employS↓(·);

4. repeat this procedure until no further simplifications are possible.

Currently, the implementation of our algorithm involves the following simplifica-
tions: (i) replacing formulas of formp◦¬p◦Φ by> for ◦ = ∨ and by⊥ for ◦ = ∧, and
(ii) the pure literal rule. By a pure literal, we understand a literal such that all bound
occurrences in some given cleansed QBF have the same polarity. Then, the pure literal
rule states that a pure literalp is replaced by> if Q = ∃ andp occurs only positively
or if Q = ∀ andp occurs only negatively, and by⊥ for the dual cases.

The second step above means formula simplifications based on the usual valid
equivalences associated with> and⊥, like (> ∧ Ψ) ≡ Ψ, etc.

The third step has several consequences. First, it eliminates quantifications which
have no effect due to the optimisations. Second, it allows further shiftings of quantifiers
deeper into the formula tree, which may become attainable after the applied elimina-
tion steps. However, due to possible splittings withinS↓(·), new pure literals may be
identified.

Finally, we mention some experimental results which show the advantage of anti-
prenexing in terms of running time for evaluating QBFs. To wit, we used a class of
benchmark examples taken from [1] and compared their running times using several
QBF-solvers with variations of these formulas where anti-prenexing is applied. More
specifically, we employed the solverssemprop [10], ssolve [6], andboole . The
latter is a BDD-based propositional solver publicly available from [2]. As benchmark
problems we used the examplestree-exa2-30 to tree-exa2-50 from [1]. For
each of these examples, applying anti-prenexing yielded a significant reduction of run-
ning time for the BDD-solverboole . For instance, fortree-exa2-50 , none of
the applied solvers was able to evaluate this formula within 10 minutes, but the anti-
prenexed version was computed byboole in less than 0.1 second. Although of course
further experimental evaluation is needed to obtain significant results, these examples
show the potential benefit of applying anti-prenexing steps. Other future work includes
exploiting more sophisticated techniques for quantifier shifting which have been pro-
posed for first-order logic as well as a careful evaluation of the potential practical value
of such methods when applied to QBF solving.



References

[1] http://wwwjessen.informatik.tu-muenchen.de/∼letz/semprop/.

[2] http://www.cs.cmu.edu/∼modelcheck/bdd.html.

[3] M. Cadoli, A. Giovanardi, and M. Schaerf. An Algorithm to Evaluate Quantified
Boolean Formulae. InProceedings of the 15th National Conference on Artificial
Intelligence (AAAI-98), pages 262–267, 1998.

[4] U. Egly, T. Eiter, R. Feldmann, V. Klotz, S. Schamberger, H. Tompits, and
S. Woltran. On Mechanizing Modal Nonmonotonic Logics. InProceedings of
the 5th Dutch-German Workshop on Nonmonotonic Reasoning Techniques and
their Applications (DGNMR-01), pages 44–53, 2001.

[5] U. Egly, T. Eiter, H. Tompits, and S. Woltran. Solving Advanced Reasoning
Tasks Using Quantified Boolean Formulas. InProceedings of the 17th National
Conference on Artificial Intelligence (AAAI-00), pages 417–422, 2000.

[6] R. Feldmann, B. Monien, and S. Schamberger. A Distributed Algorithm to Evalu-
ate Quantified Boolean Formulas. InProceedings of the 17th National Conference
on Artificial Intelligence (AAAI-00), pages 285–290, 2000.

[7] I. P. Gent and T. Walsh. Beyond NP: The QSAT Phase Transition. InProceedings
of the 16th National Conference on Artificial Intelligence (AAAI-99), pages 648–
653, 1999.

[8] E. Giunchiglia, M. Narizzano, and A. Tacchella. Backjumping for Quantified
Boolean Logic Satisfiability. InProceedings of the 17th International Joint Con-
ference on Artificial Intelligence (IJCAI-01), 2001.

[9] H. Kleine-Büning, M. Karpinski, and A. Fl̈ogel. Resolution for Quantified
Boolean Formulas.Information and Computation, 117(1):12–18, 1995.

[10] R. Letz. Advances in Decision Procedures for Quantified Boolean Formulas. In
Proceedings of the IJCAR 2001 Workshop on Theory and Applications of Quan-
tified Boolean Formulas (QBF-01), pages 55–64, 2001.

[11] D. Pearce, H. Tompits, and S. Woltran. Encodings for Equilibrium Logic and
Logic Programs with Nested Expressions. InProceedings of the 10th Portuguese
Conference on Artificial Intelligence (EPIA-01), pages 306–320, 2001.

[12] J. Rintanen. Improvements to the Evaluation of Quantified Boolean Formulae. In
Proceedings of the 16th International Joint Conference on Artificial Intelligence
(IJCAI-99), pages 1192–1197, 1999.

[13] L. J. Stockmeyer. The Polynomial-Time Hierarchy.Theoretical Computer Sci-
ence, 3:1–22, 1977.


