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Abstract

Since most currently available solvers for quantified Boolean formulas (QBFs)
process only input formulas in prenex normal form, suitable translations are re-
quired for handling arbitrary formulas. In this paper, we propose a normal form
translation incorporating a certain anti-prenexing step in order to obtain QBFs pos-
sessing quantifier prefixes such that the number of alternating quantifiers is never
greater than the number of alternations obtained by using nondeterministic normal
form translations based on usual quantifier shifting rules. Furthermore, our algo-
rithm is deterministic. We show that anti-prenexing is beneficial in some cases for
QBF-solvers which are able to process arbitrary QBFs, like BDD-based solvers.
We illustrate this point by discussing some experimental results in this direction.

1 Introduction

Solving hard problems like planning or various forms of nonmonotonic reasoning by
encoding them into quantified Boolean formulas (QBFs) and computing the truth value
of the resultant formulas with a QBF-solver has become an attractive and increasingly
important research topic over the last years (cf., e.g., [12, 5, 4, 11]). The QBFs resulting
from the encodings are usualytin a specific normal form which prevents the appli-
cation of most of the available QBF-provers [9, 3, 6, 8, 10, 12] without a translation
into normal form. The only kind of QBF-solvers which can handle arbitrary formulas
is based on binary decision diagrams (BDDs).

In order to make more practicably successful QBF-solvers available for solving the
encoded problems, a transformation of an arbitrary QBF into a specific normal form
(e.g., prenex CNF) is required. Usually, such a transformation consists of two steps,
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namely (i) the generation of a prenex form with an arbitrary quantifier-free matrix,

and (i) the translation of the matrix into normal form (e.g., CNF). Step (i) is usually

based on quantifier-shifting rules derived from well-known equivalences for quantifiers
(cf. Proposition 1 below). For Step (ii), different well-known approaches have been
proposed.

In this paper, we concentrate on strategies related to Step (i). Usually, (non-deter-
ministic) ad-hoc translations are used which result, in general, in formulas with differ-
ent quantifier prefixes. Although these resulting formulas are equivalent to each other,
the running time of a QBF-solver usually depends on the order of quantifiers. More-
over, it is desirable that the normal form(s) of a formula reflect the “inherent” worst-
case complexity of the source formula. This is illustrated in the following example.
Consider the QBF

d = Hp[(Vqﬂr (pVaqV r)) A (HrVq(ﬂp VgV r))] @)

Two equivalent QBFs in prenex form resulting from shifting quantifiers to the left are
immediately apparent:

(bl

IpVqIrIr' Ve ((p VagVr)A(-pVqV 7“’));
®" = IpI'Vq¢ VqIr ((p VaqVr)A(-pVqV 7")).

Two observations are central. First, we need some suitable renaming schema for bound
variables in order to avoid name conflicts. Second, when shifting quantifiers to the left,
formulas may arise with different structures of the quantifier prefix. Here, we claim to
prefer®d” overd’, sinced” yields a smaller number of quantifialternations But is
®" optimal with respect to the minimal number of such alternations? In fact, it is not,
since

Ip Ir I’ Vg V4 ((p VaqVr)A(-pVd{V r’)) (2)

with one quantifier alternation is equivalent®oas well, and, as we will demonstrate,
QBF (2) results fromd by a more sophisticated application of the quantifier shifting
rules. Indeed, the crucial point is to shift quantifiers “down” in the formula tree before
all quantifiers are shifted “upwards” in order to generate the prenex form. Since down-
shifting is opposed to up-shifting (or prenexing), the former is cadletii prenexing
Minimising the number of quantifier alternations can be motivated as follows by
taking computational complexity into account. First, recall that QBFs in prenex form
are identified as prototypical problems for the classes in the polynomial hierarchy [13].
In particular, the structure of the prenex gives an estimation of the inherent worst-case
complexity of a given QBF. Translating arbitrary QBFs into prenex form where the
number of alternating quantifiers is minimised thus gives a good characterisation of
the original QBF. Related to this issue, we mention that Bbttand ®” fulfill the
conditions to be QBFs from the so-called Model A [7]. The methodology of Model A
is frequently used to generate (hard) random QBF instances. However, the example
above illustrates some weakness of Model A because the quantifier-prefikéearial
®" do not sufficiently characterise the inherent complexity of the generated QBF as



reflected by QBF (2}.So we shall also apply QBFs in prenex form to our algorithm to
derive a possibly more adequate prefix.
A second question arises in the following case. Let

U= (HquEJr((p Vg — (rA q))) A (Huﬂv (u A v))
The following QBFs are in prenex form satisfying the minimality criterion from above:
U = FpVqIrIuIv; 3)
U = JuIvIpVgIrey, (4)

withy = ((p V q) — (r A ¢)) A (u A v). Which one should we prefer? At the
moment, we claim that both strategies should be taken into account, and future work
on experimental evaluation shall decide the better strategy. We call the strategy from
which ¥’ is obtained “shift-to-bottom” and the one yielding’ “shift-to-top”. From
an intuitive point of view “shift-to-top” is preferable to “shift-to-bottom” for QBF-
solvers based on the procedure of Davis, (Putnam,) Logemann, and Loveland, since
the number of dependencies of existential variables on universal variables is reduced.
However, it is not so clear whether this observation is true in general (consider, e.g.,
BDD-based solvers).

Finally, there is a certain class of QBFs which is prototypical for a family of com-
plexity classes, namel? . Take the QBF

Q:=dpVyq ((—|p ANgqg)V(pA —\q)> A VTES((—\T Vs)A(rV —\5))

Constructing a purely prenex QBF Ofleads to two different minimal quantifier pre-
fixes, viz.3v3 as well asv3aV. This effect hints that the QBF is in fact related to a
complexity classDf’. From a complexity-theoretical point of view, both prenex forms

are not well suited since they characterise a higher complexity clas<xlitself. It

seems more appropriate to independently evaluate the first and the second conjunct,
respectively.

In this paper, we propose a normal form translation incorporating an anti-prenexing
step in order to obtain QBFs possessing quantifier prefixes such that the number of al-
ternating quantifiers is never greater than the number of alternations obtained by using
nondeterministic normal form translations based on usual quantifier shifting rules. Fur-
thermore, our algorithm is deterministic. We will show that anti-prenexing is beneficial
in some cases for QBF-solvers which are able to process arbitrary QBFs, like BDD-
based solvers. We illustrate this point by discussing some experimental results in this
direction. Let us remark that refinements of our algorithm are possible, e.g., by includ-
ing additional optimisations (“pure literal rule”).

The remainder of this paper is as follows: The next section introduces the relevant
background information. Section 3 sketches an algorithm to prenex formulas. As
an intermediate step within this algorithm, we discuss how QBFs can be sufficiently
characterised. Section 4 concludes the paper, containing a discussion about possible
optimisations within our algorithm, and a brief experimental analysis illustrating the
advantage of anti-prenexing for evaluating QBFs.

10f course, QBF (2) is easily identified as true by pure literals, and thus the quantifier prefix still does
not reflect the complexity. However, the example is just to illustrate the basic ideas.



2 Preliminaries

Let P be a set of propositional atoms. Then, the languégeof quantified Boolean
formulas (QBFs) ovefP is obtained by ordinary propositional formulas (including
propositional constants and_L) overP plus the additional possibility to quantify over
propositional variables. A quantifier is either existentildr universal ¥). QBFs are
denoted by Greek upper-case letters.

For an indexed seP = {p1,...,p,} of propositional variables and a quantifier
Q € {3,V}, we letQP @ stand for the formul&p; Qps . . . Qp,, . We say that a QBF
Q1P ...Q,P, ® is in prenex(normal) form if & is a purely propositional formula,
i.e., ® does not contain any quantifiers. For a quanti@er {3,V}, we defineQ = 3
if Q =V, andQ = Vif Q = 3. As usual, for a QBRp ®, ® is called thescopeof
the quantifier occurrend@p. An occurrence of a propositional variabién a QBF®
is freeiff it does not appear in the scope of a quantifigr (Q € {V, 3}). If ® contains
no free variable occurrences, théris closed otherwise® is open We denote the set
of variables occurring free i by free(®). The set of all quantifiers i@ is given by
Q(®) := {Qp | Qp V¥ is a subformula of }; the set of all quantified variables i is
given by quant(®) := {p | Qp € Q(®)}.

We also use the concept of@mula tree Informally, the formula tre@s of a QBF
& consists of nodes labelled with quantifiers and connectives as well as propositional
variables for leaf nodes, reflecting the formula structuré offhe node labelled with
the main connective cb is called theroot of 74 and appears otp of 7. We under-
stand the branching atownwards Thus, we often use the informal notions of “going
downwards” (towards to the leaves) and “going upwards” (towards the root) within a
formula tree (or simply within a formula).

Concerning the semantics of QBFs, byiaterpretationwe understand a sétff C
‘P of atoms. Informally, an atom is true underM iff p € M. In general, the truth
value,v,; (®), of a QBF® under an interpretatiof is recursively defined as follows:

1. if ® =T, thenvy () = 1;

2. if ® = pis an atom, thew,;(®) = 1if p € M, andvy,(®) = 0 otherwise;
3. if & = —, thenvy (B) = 1 — vy (D);

4. if® = (& A Og), thenvy (@) = min({var (P1), var (P2)});

5. if ® = Vp U, thenvy (®) = vas (U[p/T] A Ulp/L]);

where®[p, /P, ..., p,/®,] denotes the result of uniformly substituting each free oc-
currence of a variablg; in ® by &, for1 <i < n.

The truth conditions for., v, —, =, and3 follow from 1.-5. in the usual way.
Note that3 is defined here similarly as in first-order logic, i.8p ¥ = —Vp -V, for
each formulal. Hence, the truth value fat is given by

vm(Fp W) = v (Y[p/T] VvV ¥[p/L1]).

Due to the associativity and commutativity of and v, we allown-ary conjunctions
and disjunctions (withw > 2) to appear in arbitrary order.



We say thatb is true underM iff vy (®) = 1, otherwised is false underM. If
v (®) = 1, thenM is amodelof ®. If ® is true under every interpretation, théris
valid. As usual, we writd= ® to express thad is valid.

It is easily seen that the truth value of a QBFunder interpretatiol/ depends
only on the free variables ifr. In particular, closed QBFs are either true under every
interpretation or false under every interpretation, i.e., they are either valid or unsatis-
fiable. Two formulas aréogically equivalentff they possess the same models. Thus,
formulas® and ¥ are logically equivalent iffb = W is valid.

In what follows, we note some useful relations concerning the shifting and renam-
ing of quantifiers, paralleling similar results from standard first-order logic.

Proposition 1 Letp, ¢ be atomsQ € {V, 3}, and let®, &, ®,, and¥ be QBFs such
that & does not contain free occurrencespofThen,

1 | (QpU) = ¥;

2. = (Qq¥) = (Qp¥lg/p));

3. F (-Qp®) = Qp(—2);

4. Tp(®y V o) = (Ipdy V Ipby);

5. = Vp (B A B2) = (Vp®1 A Vp®s);

6. Fdp(®1 — ®2) = (VpP1 — IpP2);

7. EQp(®o¥)=(Qp®)oWforoe {A,V};
8. QP — V)= (Qpd — ¥);

9. FQp(¥ — @)= (¥ — Qp®); and

10. = (QpQq¢ @) = (QqQp ®).

Our algorithm basically relies on repetitive application of replacing such equivalent
formulas. Therefore, recall that the replacement theorem holds for QBFs.

Proposition 2 Let ¥ be a subformula of a QB® and assumé= ¥ = ¥’. Then,
E & = @', whered’ results from® by replacing one or more occurrences®fin
by ¥,

Straightforward transformation techniques are usually basedramdeterminis-
tic application of replacements of equivalent subformulas. Therefore, they result in
a number of different prenex forms in general. In other words, considering above
replacements as a set of rewriting rules, we get a non-confluent set. In this paper,
however, we are concerned with a deterministic algorithm,“hiding” possible nondeter-
ministic choices within a construction of a total order of the elemenigimt(P).

Finally, let us briefly recall that QBFs play a central role in complexity theory
representing a natural decision problem for the complexity dR&ERACE. More-
over, the evaluation problem for a QB P; . .. Qi Pr¢ having prenex normal form



with k£ > 1 alternating quantifiers is complete far." if the outermost quantifier is
existential, and complete fdi. if the outermost quantifier is universal. Recall that
2P = NP, 2L = NPYP 118 = co-NPN?, etc. are constituting members of the poly-
nomial hierarchy [13]. We also consider the complexity clagsg¢s & > 1, where
eachD}” consists of all problems expressible as the conjunction of a problénf’in
and a problem ifdI?’. Hence, the problem of (independently) evaluating two QBFs
Q1P ...QrPy¢p and Qi P; ... QP ¢' with k alternating quantifiers is contained in
DP.

3 A Prenex Normal-Form Translation

In order to translate arbitrary QBFs into prenex form, our overall strategy is as follows.
1. shift quantifiers down the formula tree;

2. classify QBFs via those paths in the resulting tree which posses a maximal num-
ber of quantifier alternations;

3. shift quantifiers to the root of the tree by “collecting” all quantifiers on such a
path.

The down shifting of quantifiers (also referred to ai-prenexing is essential
for obtaining prenex QBFs possessing “optimal” quantifier alternations compared to
a straightforward approach based on shifting quantifiers outside using the equivalence
transformations given in Proposition 1. In fact, it holds that, for any @Bthe number
of quantifier alternations in the translated QBfobtained from our algorithm is never
greater than the number of quantifier alternations in a translated @B6&btained
in a normal-form procedure based on a simple out-shifting of quantifiers. Moreover,
reducing the scope of quantifiers is especially beneficial for QBF-solvers allowing input
formulas which are not required to enjoy a particular normal form, like, e.g., BDD-
based solvers which are able to process arbitrary QBFs. We illustrate this point later
on by using particular problem instances in which reducing the quantifier scope yields
a significant speed-up of computation time.

In the following, all of the above steps are shown to be polynomial-time computable
and equivalence preserving. The algorithm is also applicable to open QBFs, leaving
the set of free variables unchanged. With suitable renaming schemes, the original QBF
is in principle also reconstructible from the result. For the sake of simplicity, we define
our algorithm for QBFs built from connectives,, vV and-.

3.1 Down-shifting of Quantifiers

To apply our algorithm, we first use some simple pre-processing deriving so-called
cleansedBFs. A cleansed QB® satisfies the following conditions:

1. free(®) N quant(®) = §; i.e., no atom occurs both free and quantifiedin

2. if Qip; @, andQqp2 @4 are different subformula occurrencesdn thenp, #
D2.



Both properties are easily achieved by renaming bounded variables. The first step
of our algorithm takes an arbitrary cleansed QBRnd shifts quantifiers as deep into
the formula tree/g as possible, using the following extended versions of the equiva-
lence retaining rules from Proposition 1 for conjunction and disjunction.

Lemmal Let® = ®;0...0P, 0¥ 0...0¥,, be a QBF withc € {A, V},

m,n > 0, andm + n > 0, such that an atorp is contained in eacl®, ..., ®,, but
notin¥; o...oWw,,. Moreover, le, . . ., p, be globally new atoms. Then,
1. foro = Vv,

@ Fpe= G alp/pi] V..oV 3pn Pulp/pa] VULV LV W),
b) EVpO=Vp(®1 V...V O,) VI V...V T,

2. foro= A,

@ EVp® = (Yp1 Pilp/p1] A oo AVDR Pulp/pn] A UL A LA T
b) EFpd=Tp(®1 A ... AP AT A ... AT,

Our algorithm starts with quantifiers located lowest in the formulaTéeand then
applies to quantifiers iteratively located upwards. In fact, we use the following concepts
for the iteration order.

Definition 1 Let® be a cleansed QBF and let= Q1p4, ..., Q.p, be a sequence of
all elements fronQ(®).

Then,o is calledpartialif, for all ¢, j withi > j andQ; # Q;, it holds thatQ;p; ¥;
is not a subformula of;p; ¥;. Furthermore,s is calledstrictly partialif it satisfies
the condition for partiality, except that the provi€y # Q; is dropped.

Note that sinceb is assumed to be cleansed, the formulas¥; are unambigu-
ously identifiable. Strictly partial sequences reflect exactly the dependencies of quanti-
fiers in a given QBF, whilst partial sequences extend the freedom of selecting an order
by taking Item (10) from Proposition 1 into account. Obviously, prenex QBFs possess
exactly one strictly partial sequence, viz. the quantifier prefix itself in inverse order.

For illustration, recall QBF (1) and transform it into a cleansed form, e.g., into

Ip[Vg3Ir(p VvV gV r) AN (=pV g V)]
There are several possible partial sequences for this QBF, e.g.,
Ir, Vq, V¢, ', Ip. (5)
(5) is also strictly partial, while
Ir, Vq, V¢, Ip, I’

is partial but not strictly partial.

We continue with the description of our anti-prenexing algorithm. First, we define
the following recursive operatiofi (-). For any QBFV, eachQ < {3,V}, and any
atomp, S+ (Qp V) is given as follows:



. ifp ¢ free(¥), thenSH(Qp V) = V;
. if U =pthenSH(Qp¥) = QpV;
if U = -0/, thenSH(Qp¥) = ~SH(Qp ¥');

B woN e

ifU=Vj0...00; 0¥, 5 0...0W,, with poccurring in¥y, ..., ¥; but not
in (the possibly empty sequencé)., ..., ¥,, andm > [, then

SHQp W) = SHQpy Wi [p/pi]) o ... 0 SHQp Wnp/m]) 0 Wiy10... 00,

wherepy, ..., p; are globally new variables, and= Vv if Q = Jando = A if
Q=Y

5 f U =V 0...00;,0¥;,;0...0W,, with p occurring in¥y, ..., ¥; but not
in¥;,4,...,Y,, andm > [, then

SHQpU) =SHQp(Tio...0W)) oV 10...00,
foro= AifQ=3ando= VvV ifQ=V.

Observe that the recursion also comes to a halt whenever wehavéin Step 5,
or ¥ = Q'q¥’ already has a leading quantifier. This is sufficient for strictly partial
sequences. However, if we deal with partial sequences in general we have to allow that
equal quantifiers are exchangeable with respect to the given sequehies, lets be
a sequence as in Definition 1, theh(Qp V) is extended by the following step.

6. if U =Qq¥’ andQp appears in front oQq in o, thenS (Qp¥) = QgS*(QpY’).

Definition 2 Let® be a cleansed QBF and = Qq p1, ..., Q. p, a partial sequence
for ®. Moreover, letd, = ¢ and let®; be the QBF resulting from replacing the
subformuld Q;p; ¥, in ®;_1 by St (Q;p; V).

Then,®,,, which is the final result of applying!(-) to all elements in the given
sequencer, is called thescope-cleansed form @ (with respect tos), denoted by
Cy, (D).

The adequacy of the algorithm, as stated next, follows from Proposition 1 and
Lemma 1.

Theorem 1 Let ® be an arbitrary cleansed QBF. Then, for each sequencé ele-
ments fromQ(®),

1. C,(®) is equivalent tab;

2. the time to construaf', (®) is at most quadratic in the logical complexity ®f
and

3. free(Cy(®)) = free(®P).

°Note that the scop&; of the quantifierQp; in ® may has changed during the constructiondof
However, the formula is still identifiable by the unique quantificatipm; .




Theorem 2 Let® be an arbitrary cleansed QBF anx , o5 strictly partial sequences
of all members fronQ(®). Then,C,, (®) = C,,(P) holds.

For illustration, recall QBF (1) in the cleansed form as above and consider the
quantifier sequence as in (5).

The first element ir is 3r and thus we start witAr (p vV ¢ V r). Application of
Step 4vyieldsS'(Ir (p V ¢ vV r)) = (p V ¢ V 3ry ). Hence @, is given by

Ip[Vg(p VvV qV Iriry) A IV (=p Vv ¢ V).

We proceed by computing! (Vg (p vV ¢ V 3r171)). Applying Step 5 yieldgp Vv
Vg1 ¢1 vV 3ryr1). Similar applications in the second conjunctiofead to

O, =3p[(p VVgrq1 VIriry) A (=p V Vgaqe V Irars)]. (6)

Now, since here in the iteratiofi! (®,) no further step is applicable, we end up with
the QBFC, (®) = ®,.

Clearly, in (5), subformulas of formdq; ¢g; and3r; 1 could straightforwardly be
replaced by constantls and T, respectively. Note that such simple replacements make
a reconstruction of the original formula impossible in general.

3.2 Classification Step

Having constructed’, () and its formula tree, we are now able to give a suitable
classification ford. We start with the following definitions.

Let 75 be the formula tree of a QBB. A g-path «, in 73 is a sequence of
quantifiersQip; . . . Q,p, resulting from collecting all quantifiers occurring on a path
in 73 starting from the root to its leaf. For a g-paih definen(a) as the number of
quantifier alternations in: plus1, and letQ(«) be the leading quantifie®;, in a.

We now define the following classes of QBFs.

Definition 3 Let® be an arbitrary closed QBF in cleansed for@some quantifieir
a sequence of elements fréx®), andn > 0. Then,

1. ® € CY iff (i) there exists a g-path in ¢, (3) With n(a) = nandQ(a) = Q,
(ii) there is no g-patht of 7¢_ (4 such that(3) > n, and(iii ) each g-pathy of
Tc, (@) Withn(y) = n satisfieQ(a) = Q(v);

2. ® € CP iff (i) there exist g-paths;, 3 of T, (@) With n(a) = n(8) = n and
Q(a) # Q(B), and(ii) there is no g-pathy of 7¢_ () Withn(y) > n.

Lemma 2 The time to classify a QBB with respect to the family of sets in Defini-
tion 3 is linear in the logical complexity af,, (®) (which is at most quadratic in the
complexity ofb).

Obviously, each closed QB® is contained in exactly one of the clasggs CY,
andCP? (n > 0). In fact, it holds that if® is containedZ (resp.CY or C?), then the
evaluation problem fo is in I (resp.IT1Z or DF). In general, this gives a better



upper bound for classifying the computational complexity of evaluating a given QBF
as, e.g., a simple inspection of the quantifier order of the prefix. In Section 4 we briefly
mention some optimisations for sharpening these upper bounds.

The inherent complexity of decision problems associated with open QBFs is treat-
able in a similar manner. If we are interestedsatisfiability of an open QBFD with
free(®) = P, an upper bound for this problem is derivable via determining the corre-
sponding class for the existential closa® ¢ of ®; to classify thevalidity problem of
d, we usevVP ®. With a slight abuse of notation, we say that an open @BE con-
tained in a clasg if its existential (resp. universal) closure is contained in this class,
whenever we are interested in the satisfiability (resp. validity) probler® for

The following theorem expresses a general property for partial sequences, similar
to Theorem 2 given for strictly partial sequences.

Theorem 3 Let & be a cleansed QBF. Then, for each partial sequena#d all ele-
ments fromQ(®), 7¢, (¢) Yields the same classification fdr with respect to the sets
of Definition 3.

Reconsider our running example (6) from above. Here, we identify two g-paths
with a maximal number of quantifier alternations, viz.

o =3dpVqr and ag = JpVe. (7

For both pathsy; (i € {1,2}), we haven(o;) = 2 andQ(«;) = 3. Hence,® is
classified a€5, which correctly reflects our analysis in the introduction (cf. QBF (2)).

3.3 Up-shifting of Quantifiers

We now shift quantifiers upwards again, such that the resulting QBF is in the desired
prenex form. Similarly to the shift-down procedure, we start with a lemma stating an
extended version of quantifier-shifting for conjunction and disjunction.

Lemma3 Let® = ®0...0P,0W; 0...0¥,, beaQBFwitho € { A, V},n >0,
andm > 0, such that eacl®; is of formQp; ®/ and each¥; is either of foerqj \113
or quantifier-free. Moreover, assume eagloccurs only ind; andp is a globally new
atom.

Then,® is equivalent to

1. Qp(®1[p1/plo...0oPu[pn/p])oPi0...0¥,,, foro=V ifQ=Tando = A
if Q=V, and

2.Qpr...Qpn(®r10...00,)0V 0...0V,,, foro= A ifQ=Fando =V if
Q=V.

In the subsequent procedure, we use the following notion. For a®BFb;0...09,,
(0 € {A, V}), we defined? as the result of replacing eadh of form Qp; @’ by ®’.
Moreover, the set of each such atgpis denoted byP (2, Q).

To begin with, we define the followinmerging functionM (-, -). Let ® be a QBF
ofform®;0...0®, (0 € {A, V}). Then,



1. if quant(®) = 0,
thenM (®, Q) = ®; otherwise

2. if, foreachi = 1,...,n, either®; = Qp; ®; or quant(®}) = 0,
thenM (®, Q) = M(®, Q); otherwise

3. iffo=vVvforQ=3oro= A forQ=V,andP(?,Q) = {p1,-..,pr}
thenM (®, Q) = Qp M(®%[p1/p, ..., pr/p), Q), wherep is a globally new vari-
able;

4. iffo= AforQ=3Foro=V forQ=V,andP(®,Q)={p1,..., Dk}
thenM (®,Q) = Qp: ... Qpr M (2%, Q).

The merging functiord/ (-, -) implements the “shift-to-top” strategy as discussed in
Section 1. Slight adoptions for the “shift-to-bottom” strategy are rather easy to obtain,
although the concrete definition would be a little more cumbersome. Note that Step 3
in the merging function implements the concepgofntifier fusion The correctness
of this rule is reflected by Condition 1 of Lemma 3.

We proceed by defining a recursive functisfi,(-, -), as follows. For any QBR
and eact € {3,v}, ST(®, Q) is given as follows:

1. if ® = Qopo @’ with quant(®’) = 0,
thenST(®,Q) = ®;

2. if ® = Qopo @’ with quant(®’) # 0,
thenST (@, Q) = Qopo ST(P", Qo);

3. if® = -9/ andST_((I)/, Q) = Qips1 ... ann@bl,
thenST(®,Q) = Qipi ... Qupn—¢';

4, f®=d;0...0P,,
thenST(®,Q) = M(ST(®1,Q)o...0ST(®,,Q),Q), witho € { A, V1.

To eventually obtain our desired prenex QBF form, we have the following result.

Theorem 4 For any ® € CQ and any sequence of all elements fronQ(®), let
P(®) = ST(®¢,,Q). Then,

1. P(®) is in prenex form;
2. P(®) is equivalent tcb;

3. the time to construcP(®) is at most quadratic in the logical complexity ®f
and

4. free(P(®)) = free(®).

Theorem 5 Let® be an arbitrary cleansed QBF. Then, all strictly partial sequences
of all elements fron®(®) yield syntactically identical QBFS'(®¢,, Q). Moreover,
all partial sequences’ of all elements fron®Q(®) yield equivalent QBF§T(<I>00/ , Q)
having the same quantifier structure in their prefix.



We illustrate the procedurg! (-, -) on our running example
Co(®)=3p[lp VVqrqu V Iriry) A (—p V Vgaqa V Irars)].

We already derive® € C3, thus we have3” as second argument i\’ (-, -). Proceed-
ing with the recursion yields

ST, (@), 3):3pM(M(p VY @iV 3, 3) A M(=pV ¥ae go V Fra 1, 3), 3).

ConsiderM (p V Vq1 ¢1 vV 3ri171,3). Since the second argument is giventywe
first shift 3, up and afterwardsq, , yielding3r, Vg1 (p V ¢1 Vv r1); and similarly in
the second conjunct. Thus, we arrive at

ST(CS((I)),H) = HpM(ﬂqul(p Vg1 Vry) A draVga(-p Vg V rg),ﬂ).

Now we compute the remaining merging function. To this endllet= (p V ¢1 V 1)
and¥s = (—p V g2 V 12). We first considedV/ (Ir1Vq1 U1 A TraVgaUs, 3). Here,

no fusion is possible and, due to Condition 4 of the merging function, we shift both
quantifiers upwards, resulting ir;3roaM (Vg1 %1 A VYg2¥2,3). Since no leading
quantifier is an existential one, we apply Condition 2, getfifivq; U1 A Vg2 P2, V).

Now quantifier fusion is possible, in view of Condition 3, and we'ggt¥[q1/q] A
Us(g2/q]), and thus as final result

ST(C’S(@),EI) =3dpIriIreVe[lp V ¢V r1) A (mp V g V 12)].

In concluding, we briefly sketch how above procedure is applicable if the given QBF
@ isin CP. Omitting further details, we extend the merging functiai-, -) by

5. M(®10...09,,D) = M(P3,3)oM(Dy,V)wheredq denotes the conjunction
or disjunction of thos@; with leading quantifieR;

and start withST(®, D). This yields QBFs of forn®; o &, whered®,, ®, are in prenex

form and the leading quantifiers i, and ®, are different. We call such QBFs as
being inD-normal form Observe that QBFs im-normal form are straightforwardly
evaluated via two independently calls to a QBF-solver, and thus reflect the prototypical
problems for the complexity-classéy,.

4 Discussion and Conclusion

In this paper, we presented an algorithm for generating QBFs in prenex form guarantee-
ing, in some sense, that the resultant QBFs possess an “optimal” number of quantifier
alternations compared to procedures based on a straightforward shifting method. One
of the distinguishing features of our method is an anti-prenexing step, moving quanti-
fiers temporarily to the inside of a formula.

In the following, we briefly point out possible optimisations and discuss some ex-
perimental results concerning the advantage of anti-prenexing with respect to evaluat-
ing QBFs using BDD-based QBF-solvers.



To begin with, we note that the scope-cleansed @Bk®) in (6) can easily be
simplified by replacing subformulas lik@pp by T for Q = 3 and by L for Q = V.
In general, such simplifications may yield that the transformed QBFs possess a smaller
number of quantifier alternations, albeit the additional optimisation steps prevent a
reconstruction of the original QBF. Another issue is that the possible gain in terms of
formula simplification depends on the chosen sequencé the elements of(®).
Thus, classifications of simplified QBFs may yield different results whg(®) is
obtained from different sequences

In any case, we suggest the following extension of our basic algorithm:

1. identify possible simplifications;

2. evaluate the resultant QBFs with respect to subformulas containargl L ;
3. employS!(-);

4. repeat this procedure until no further simplifications are possible.

Currently, the implementation of our algorithm involves the following simplifica-
tions: (i) replacing formulas of formo—po® by T foro = v and by foro = A, and
(ii) the pure literal rule. By a pure literal, we understand a literal such that all bound
occurrences in some given cleansed QBF have the same polarity. Then, the pure literal
rule states that a pure literalis replaced byT if Q = 3 andp occurs only positively
or if Q = V andp occurs only negatively, and hy for the dual cases.

The second step above means formula simplifications based on the usual valid
equivalences associated withand_L, like (T A ¥) = T, etc.

The third step has several consequences. First, it eliminates quantifications which
have no effect due to the optimisations. Second, it allows further shiftings of quantifiers
deeper into the formula tree, which may become attainable after the applied elimina-
tion steps. However, due to possible splittings withir(-), new pure literals may be
identified.

Finally, we mention some experimental results which show the advantage of anti-
prenexing in terms of running time for evaluating QBFs. To wit, we used a class of
benchmark examples taken from [1] and compared their running times using several
QBF-solvers with variations of these formulas where anti-prenexing is applied. More
specifically, we employed the solvessmprop [10], ssolve [6], andboole . The
latter is a BDD-based propositional solver publicly available from [2]. As benchmark
problems we used the examplese-exa2-30  totree-exa2-50  from [1]. For
each of these examples, applying anti-prenexing yielded a significant reduction of run-
ning time for the BDD-solveboole . For instance, fotree-exa2-50 , none of
the applied solvers was able to evaluate this formula within 10 minutes, but the anti-
prenexed version was computediilyole in less than 0.1 second. Although of course
further experimental evaluation is needed to obtain significant results, these examples
show the potential benefit of applying anti-prenexing steps. Other future work includes
exploiting more sophisticated techniques for quantifier shifting which have been pro-
posed for first-order logic as well as a careful evaluation of the potential practical value
of such methods when applied to QBF solving.
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