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1. Introduction

Comparing the efficiency of calculi and proof-search strategies is an impor-
tant topic in automated deduction. Usually, measurements and comparisons
are performed on the basis of test sets like the well-known TPTP library.
Only in few publications (like, e.g., [10]), the size of the search space is
analytically analyzed.

In this paper, we compare three different proof-search strategies for a
cut-free propositional sequent calculus, called GOL, characterizing a sub-
classical logic known as orthologic. One of the interesting applications of
this calculus is that it facilitates a decision procedure for the word prob-
lem for free ortholattices [5, 12]. Moreover, orthologic provides important
relationships to other non-classical logics like Sambin’s basic logic [3]. In
general, orthologic emanated from algebraic investigations about the logical
structure of orthomodular lattices, strongly connected to the Hilbert-space
formalism of quantum mechanics [1]. Accordingly, the logic of orthomodular
lattices is also termed quantum logic, whilst orthologic itself is (historically)
referred to as minimal quantum logic.

The distinguishing feature of GOL is the stipulation that sequents contain
at most two formula occurrences. As a consequence, in contrast to classi-
cal propositional logic, not all inferences can be permuted over each other.
Moreover, the usual normal forms like conjunctive or disjunctive normal
form are not possible because distributivity does not hold in general.

The considered strategies for proof search are (i) backward search (from
the end sequent towards the axioms), (ii) a combination of backward and
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forward search, and (iii) forward search (from the axioms to the end sequent).
In the last approach, the subformula property is used in order to distinguish
the relevant axiom and inference schemata.

Our results can be summarized as follows. Using backward search, there
is an infinite class (Fn)n≥0 of formulae such that each proof of Fn is expo-
nential in the size of Fn. Hence, the corresponding search space is trivially
exponential. Using the mixed strategy and a sequence notation for the re-
sulting proofs, all proofs are polynomial, but the potential search space
remains exponential. However, using forward search, all proofs together with

the corresponding search space become polynomial. Consequently, forward
search in GOL implements a polynomial decision procedure for orthologic
(and thus for the word problem for free ortholattices). The interesting point
to note here is that the polynomial decision procedure is established by an
analysis of permutation properties of GOL and the potential search spaces
for different search strategies.

All the mentioned search strategies have been implemented. The first
two strategies are implemented using PROLOG, whereas the last strategy is
implemented in C. We briefly compare running times of our forward search
implementation with running times of examples reported by McCune [8].

The paper is organized as follows. Section 2 gives background termi-
nology and notation. Section 3 explores permutation properties of GOL,
and Section 4 contains the main results. Section 5 concludes with a short
discussion.

2. Background

Throughout this paper, we use a propositional language with ¬,∧,∨ as the
only connectives. Formulae are defined according to the usual formation
rules and are denoted by lower-case letters; sets are denoted by uppercase
letters. In order to save parentheses, we assume that ¬ binds stronger than
∧, which in turn binds stronger than ∨.

Definition 1. The logical complexity of a formula f , denoted by lcomp(f),
is defined as the number of occurrences of logical connectives ¬,∧,∨ in f .

The weight of f , denoted by weight(f), is lcomp(f) plus the number of oc-

currences of atomic formulae in f .

Definition 2. An n–restricted sequent is an ordered pair of the form M `
N , where M and N are sets of formulae and |M | + |N | ≤ n. M is the an-
tecedent, N is the succedent of the sequent, and |X| denotes the cardinality

of the set X.



On Different Proof-Search Strategies for Orthologic 3

M ` a, N

M ` a ∨ b, N
R1

M ` b, N

M ` a ∨ b, N
R2

M, a ` N M, b ` N

M, a ∨ b ` N
R3

M, a ` N

M, a ∧ b ` N
R4

M, b ` N

M, a ∧ b ` N
R5

M ` a, N M ` b, N

M ` a ∧ b, N
R6

M, a ` N

M ` ¬a, N
R7

M ` a, N

M, ¬a ` N
R8

M ` N
M, a ` N

R9
M ` N
M ` a, N

R10

Figure 1. The inference rules of GOL.

For a singleton set M = {f}, we often use M to denote the formula f .
Since sequents consists of two sets (rather than two multisets), implicit

contractions take place if both sequent formulae are identical and occur at
the same side of the sequent.

Definition 3. The degree of a formula f , denoted by deg(f), is defined as

the weight of f . For a 2–restricted sequent S, we define:

deg(S) =







0 if S = ` ;

deg(m) · deg(n) if S is (m ` n), (m,n `) or (` m,n);
deg(m)2 if S is (m `) or (` m).

The last clause in the above definition represents the fact that a sequent
with one formula occurrence coincides with a sequent with two “copies” of
the same formula at the same side.

We use the following sequent calculus, GOL, adapted from the sequent
calculus OCL+ in [12] (see also [5]). Formal objects of GOL are 2–restricted
sequents; (logical) axioms of GOL are of the form a ` a for some formula
a, and the inference rules are depicted in Figure 1.

Principal formulae, side formulae etc. are defined in the usual way. Ap-
plications of inference rules in backward proof search are called reductions.
Rules R1, R2, R4, and R5 are called α–rules; rules R7 and R8 are called
negation rules; rules R3 and R6 are called β–rules; and rules R9 and R10 are
called weakening rules. An α–formula is the principal formula of an α–rule,
and a β–formula is the principal formula of a β–rule. Rules containing a sin-
gle premise are called unary, and rules with two premises are called binary.
The cut rule, given by

M1 ` c, N1 M2, c ` N2

M1, M2 ` N1, N2,
Rcut
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is admissible. The system GOL+Rcut is the calculus GOL extended by the
cut rule.

An occurrence Ψ of a formula g in a formula f is positive (negative) if Ψ
is preceeded by an even (odd) number of negation signs. In such a case, we
also say that g occurs in positive (negative) polarity in f .

Let S : M ` N be a sequent. Following Smullyan [14], we represent S by
a set of signed formulae of the form {TM, FN }, where the sign T is chosen
for antecedent formulae and the sign F is chosen for succedent formulae. The
choice of T for the antecedent formulae and F for the succedent formulae is
for historical reasons where, instead of a proof of a formula, a refutation of
the negated formula is considered. Therefore, positive formula occurrences
of the end sequent occur in the succedent; the sign of such a formula is
F. Likewise, negative formula occurrences of the end sequent occur in the
antecedent; the sign of such a formula is T.

We use K and L as meta-variables for signs. For a sign K, K = T if K = F,
and K = F if K = T.

An important feature of cut-free proofs is the subformula property, which
states that each proof α with end sequent ` f contains only subformulae
of f . This property holds in a strict sense for the calculus GOL: for each
sequent M ` N occurring in proof α of ` f , elements of M are negative
subformula occurrences of f , and elements of N are positive subformula
occurrences of f .

We consider two different types of proofs in GOL. Proofs of the first type
are usual tree proofs, and proofs of the second type are sequence proofs. In
both cases, if we speak about proofs, we usually mean cut-free proofs. In
addition to the axioms of GOL, we allow non-logical axioms in intermediate
proofs, but we eventually replace non-logical axioms S by a GOL-proof with
end sequent S.

Definition 4. A sequence proof of a sequent S from a set of non-logical

axioms A in GOL is a sequence S1, . . . , Sn of sequents such that S = Sn

and, for 1 ≤ m ≤ n and k, l < m,

1. Sm is a logical or non-logical axiom, or

2. Sm is the conclusion of a unary inference with premise Sk, or

3. Sm is the conclusion of a binary inference with premises Sk and Sl.

We denote proofs by lower-case Greek letters. The number of sequents
in a (tree or sequence) proof ϕ is denoted by #seq(ϕ).
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For a tree proof ϕ of a sequent S in GOL, there are many corresponding
sequence proofs of the same end sequent. We can speak about the sequence
proof corresponding to ϕ, if we choose a deterministic translation.

Definition 5. Let T be the set of tree proofs in GOL, and S the set of

sequence proofs in GOL. We define the map θ : T → S as follows:

θ(ϕ) =















U if ϕ is an axiom U (logical or non-logical);

θ(ϕ1)U if ϕ is of the form ϕ1

U
;

θ(ϕ1) θ(ϕ2)U if ϕ is of the form ϕ1 ϕ2

U
.

It is easily shown that θ is well defined and that #seq(ϕ) = #seq(θ(ϕ)).

3. Proof Normal Forms in GOL

In this section, we study normal forms of proofs in GOL. We use some permu-
tation properties of inferences in GOL, but, due to lack of space, we cannot
discuss all of them. In contrast to full propositional logic, where all inferences
can be permuted over each other, there are so-called non-permutabilities of
inferences in GOL.1

In the following, we consider permutation schemata (R,R′) where R,R′

are one of α (for α–rules), β (for β–rules), w (for weakening rules) or n (for
negation rules).

Definition 6. Rule R′ is permutable over rule R (towards the axioms), if

for all applications r of R and r′ of R′ such that

1. r occurs immediately above r′,

2. the principal formula fr of r is not a side formula of r′, and

3. A is the set of all premises of r, S the conclusion of r, r′ takes premises

from B∪{S} (|B| = 0 if r′ is unary, and |B| = 1 otherwise) and yields

the conclusion S ′,

there is a proof of S ′ from A∪B′ in which an application of R′, preceded by

zero or one weakening, occurs immediately above an application of R, which

is followed by zero or one weakening. B ′ is obtained as follows. If B = ∅
then B′ = ∅. If B = {Q } then reduce fr in Q by applying r. This results

either in one premise B′ = {Q1 } or in two premises B′ = {Q1, Q2 }.

1See [6, 15, 2] for a discussion of permutation properties in calculi for classical and
intuitionistic first-order logic.
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The construction of B′ is required for the permutation schemata (β, β)
and (n, β) in a full discussion of all permutation properties. The weakenings
above an application of R and below an application of R′ (after permutation)
are necessary if implicit contractions occur in the inference figures. Implicit
contractions occur (in a backward search) when a side formula of the applied
inference already occurs in the conclusion.

In the following, we investigate some permutation properties of GOL,
which can be used in the search for proofs in order to restrict the potential
search space.

Theorem 7. In GOL-proofs, rule R′ cannot be permuted over R (towards

the axioms) in the following cases:

R α α w

R′ β w β

Moreover, weakening is permutable over β–rules and negation rules.

Proof. Sequents justifying the non-permutabilities (R,R′) are as follows:

(α, β) : a ∨ b ` b ∨ a ;

(α, w): a ` b ∨ ¬b ;

(w, β) : b ∧ ¬b ∨ a ` a.

The permutation schemata for (β, w) and (n, w) are as follows (recall
that K and L denote signs).

(β, w):

Ka Kb
Ka ◦ b

β

Ka ◦ b Lc
w

Ka
Ka Lc

w Kb
Kb Lc

w

Ka ◦ b Lc
β

(n, w):

Ka
K¬a

n

K¬a Lb
w

Ka

Ka Lb
w

K¬a Lb
n

By using the permutations of inferences from Theorem 7, we show in
Lemma 9 that we can restrict our attention to proofs where weakenings
occur directly below α–rules. Proofs having this property are said to be in
weakening normal form.

Definition 8. Let ϕ be a tree proof of ` f in GOL. ϕ is in weakening
normal form (WNF ) if any application of R9 or R10 occurs immediately

below an application of an α–rule. ϕ is called simple if it is weakening-free.

Lemma 9. Let ψ be a tree proof of ` f in GOL. Then, there is a tree proof

ψ′ of ` f in WNF, and the number of branches in ψ′ is not greater than

the number of branches in ψ.
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Proof. Let ψ be a tree proof of ` f . We first replace inferences stemming
from implicit contractions (i.e., a premise consists of one formula although
the conclusion consists of two formulae and the inference rule is different
from weakening) by weakenings. We then remove weakenings, where the
weakening formula appears already in the premise. Finally, we eliminate
weakenings below applications of β–rules and negation rules.

Let b be an α–formula with immediate subformulae b1 and b2. Consider
the α–rule

Kb1
KbKb1

α

where b is the principal formula of this inference. Replace this α–rule by the
weakening rule

Kb1
KbKb1.

w

Proceed similarly for negations and β–formulae and use the following two
pairs of inference schemata:

Kb

KbK¬b
n Kb

KbK¬b
w Kb1 Kb1 Kb2

KbKb1
β

Kb1
KbKb1

w

Let ψ1 be the result of these transformations. Obviously, the number of
branches in ψ1 is not greater than the number of branches in ψ.

Next, those applications of weakening are removed from ψ1 where the
weakening formula appears already in the premise. The situation is as follows
(M ∪N 6= ∅):

M ` N
M ` N

w (∗)

The newly introduced (occurrence of the) weakening formula is removed by
an implicit contraction due to the idempotence property of sets. Let ϕ be
the proof obtained from ψ1 by omitting such weakenings.

Let us now turn our attention to applications of weakening directly be-
low applications of β–rules or negation rules. Let w(ϕ) be the number of
applications of weakening immediately below an application of these rules,
and let W1(ϕ), . . . ,Ww(ϕ)(ϕ) denote these applications. Moreover, let mi(ϕ)
(1 ≤ i ≤ w(ϕ)) be the maximal number of applications of β–rules or nega-
tion rules between the current weakening Wi(ϕ) and the first application of
an α–rule above Wi(ϕ). Observe that, on any branch from Wi(ϕ) towards
the axioms, there must be (at least) one application of an α–rule. This fol-
lows immediately from the removal of all weakenings of the form (∗), and
therefore the premises of all remaining weakenings must consist of exactly
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one formula. Since ϕ is a proof, each of these premises must be provable.
Consequently, there must be an application of an α–rule on every branch
from a premise to an axiom. Moreover, there is no application of weak-
ening between Wi(ϕ) and the first application of an α–rule above Wi(ϕ).
Otherwise, the unprovable empty sequent ` would occur in a proof.

Let Sw(ϕ) =
∑w(ϕ)

i=1 3mi(ϕ) for w(ϕ) > 0 and Sw(ϕ) = 0 otherwise. Since
mi(ϕ) ≥ 1 (1 ≤ i ≤ w(ϕ)), Sw(ϕ) ≥ w(ϕ) ≥ 0. We show that ϕ can
be transformed into WNF without changing the number of branches. The
proof is by induction on k(ϕ) = w(ϕ) + Sw(ϕ).

Induction Basis. Assume k(ϕ) = 0. Then w(ϕ) = 0 and ϕ is already in
WNF.

Induction Step. Assume k(ϕ) = n > 0, and suppose that, for all tree
proofs ϕ′ with k(ϕ′) < n, there is a tree proof π (of the same end sequent)
in WNF with the same number of branches as in ϕ′.

Let us arbitrarily choose an application Wj(ϕ) (1 ≤ j ≤ w(ϕ)) such that
no other Wl(ϕ) (l 6= j) occurs in the tree proof of the premise of Wj(ϕ).
Without loss of generality, we assume that Wj(ϕ) is an application of R9.
We distinguish two cases:

Case 1. The rule immediately above the considered weakening rule is a β–
rule (this corresponds to the case (β, w) in the proof of Theorem 7). Then
we have the situation

ϕ1

M1 ` N1

ϕ2

M2 ` N2

M ` N
β

M, a ` N
R9

(the value of M,N,M1,M2, N1, N2 depends on the particular β–rule at
hand). The indicated weakening rule Wj(ϕ) is permuted over the β–rule
immediately above, without changing the number of branches. The result-
ing tree proof, ϕ′, is

ϕ1

M1 ` N1

M1, a ` N1
R9

ϕ2

M2 ` N2

M2, a ` N2
R9

M, a ` N.
β

We distinguish two cases depending on the value of mj(ϕ).

Subcase 1. mj(ϕ) = 1. By the indicated permutation of inference rules,
w(ϕ′) = w(ϕ) − 1 because the two indicated weakenings are now directly
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below applications of an α–rule. For ϕ′, we estimate:

k(ϕ′) = w(ϕ′) +

w(ϕ′)
∑

i=1

3mi(ϕ
′)

= w(ϕ) − 1 +

j−1
∑

i=1

3mi(ϕ) +

w(ϕ)
∑

i=j+1

3mi(ϕ) < k(ϕ).

Subcase 2. mj(ϕ) > 1. By the indicated permutation of inference rules,
w(ϕ′) = w(ϕ) + 1, but mj(ϕ

′) = mj(ϕ) − 1. For ϕ′, we estimate:

k(ϕ′) = w(ϕ′) +

w(ϕ′)
∑

i=1

3mi(ϕ
′)

= w(ϕ) + 1 +

j−1
∑

i=1

3mi(ϕ) +

w(ϕ)
∑

i=j+1

3mi(ϕ) + 2 · 3mj(ϕ)−1

= w(ϕ) + 1 +

j−1
∑

i=1

3mi(ϕ) +

w(ϕ)
∑

i=j+1

3mi(ϕ) + 3 · 3mj(ϕ)−1 − 3mj(ϕ)−1

= w(ϕ) + 1 + Sw(ϕ) − 3mj(ϕ)−1 < k(ϕ).

In both subcases, the induction hypothesis yields a tree proof ψ in WNF
with exactly the same number of branches as in ϕ.

Case 2. The rule immediately above the considered weakening rule is a
negation rule (this corresponds to the case (¬, w) in the proof of Theorem 7).
Then we have the situation

ϕ1

M1 ` N1

M ` N
n

M, a ` N
R9

(the value of M,N,M1,M2, N1, N2 depends on the particular negation rule
at hand). The indicated weakening rule Wj(ϕ) is permuted over the nega-
tion rule immediately above without changing the number of branches. The
resulting proof, ϕ′, is

ϕ1

M1 ` N1

M1, a ` N1
R9

M, a ` N.
n
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an ` an

` an,¬an
R7

αn−1

` fn−1

` an, fn−1
R10

` an,¬an ∧ fn−1
R6

....
` an, fn

βn

` bn, fn

` an ∧ bn, fn
R6

α′
n

` an ∧ cn, fn

` (an ∧ bn) ∧ (an ∧ cn), fn
R6

` (an ∧ bn) ∧ (an ∧ cn) ∨ (((¬an ∧ fn−1) ∨ ¬bn) ∨ ¬cn)
R1

Figure 2. Duplication of subproofs.

By the indicated permutation of inference rules, either w(ϕ′) = w(ϕ)−1
or w(ϕ′) = w(ϕ). In the latter case, mj(ϕ

′) = mj(ϕ) − 1. In both cases,
k(ϕ′) < k(ϕ), and the induction hypothesis yields a proof ψ in WNF with
exactly the same number of branches as in ϕ.

It is immediately apparent that, in a proof in WNF, the premise of an
application of a weakening rule consists of exactly one formula.

4. On Proof Length and Search Space in GOL

In this section, the length of proofs and the potential search spaces are an-
alyzed for different search strategies. We first show that backward search
can result in minimal tree proofs whose number of sequents is exponential in
the weight of the input formula. The corresponding search space is also ex-
ponential. Then we discuss a combination of forward and backward search,
for which all proofs are polynomial but the search space remains exponen-
tial in the worst case. Finally, we show that forward search implements a
polynomial decision procedure.

4.1. A Class of Hard Formulae for Backward Search

Let a0, ai, bi, ci (1 ≤ i ≤ n) be atoms and let f0 be the formula a0 ∨¬a0. For
n > 0, we define:

fn : (an ∧ bn) ∧ (an ∧ cn) ∨ (((¬an ∧ fn−1) ∨ ¬bn) ∨ ¬cn).

Obviously, weight(f0) = 4 and weight(fn) = 17n+ 4 for n > 0.
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Lemma 10. Any tree proof of ` fn in GOL has more than 2n sequents.

Proof Sketch. For n = 0, any proof of fn obviously has more than 20 = 1
sequents. For n > 0, the reduction of the formula an∧bn must be prior to the
reduction of (¬an∧fn−1)∨¬bn, since otherwise we get a classically unprovable
sequent. Similarly, the reduction of the formula an ∧ cn must be prior to
the reduction of ((¬an ∧ fn−1)∨¬bn)∨¬cn, for the same reason. But then,
fn−1 has to be proven in two independent branches. The inference figure
in Figure 2 illustrates this fact, where α′

n is similar to the left gray-shaded
subproof with bn replaced by cn and some α–rules being deleted. Iterating
this procedure eventually yields the desired minimal proof length.

4.2. A Mixed Proof Search Strategy

We have seen in Lemma 9 that we can restrict our attention to proofs in
weakening normal form, where applications of weakening occur only below
α–rules. We now discuss the mixed proof strategy where backward search is
combined with forward search.

The basic idea underlying our procedure, prove-cf, is as follows. Since
proofs without weakenings are short, we rely on backward proof search in the
restricted weakening-free calculus. The proof procedure is called prove-cfs.
An important property of this proof procedure is its ability to allow addi-
tional non-logical axioms. But which sequents should be considered as non-
logical axioms? The key observation is to (potentially) allow sequents S of
the form b ` a or a ` b where a is a proper α–subformula of f and b

is a subformula of f . Consider the following (partial) proof ϕ in weakening
normal form:

φ1
S
` a

α

b ` a.
w

In order to avoid the application of the weakening rule, we allow the sequent
b ` a to be a non-logical axiom. Moreover, to ensure a correct procedure,
it must be guaranteed that b ` a is provable in GOL. Let A be the set of
non-logical axioms which is initially empty. A is constructed iteratively as
follows.

1. We check for each proper α–subformula of f (in order of increasing
weight) whether either ` a or a ` has a weakening-free tree proof
from A (at most one of the above sequents can be provable).
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2. If one of the above sequents (say ` a) is provable, we extend the set
of non-logical axioms by the set:

{ b ` a | b is subformula of f } ∪ { ` b, a | b is subformula of f }

which consists of all sequents derivable from ` a by weakening.

If A is actually extended, we try to prove the initial sequent ` f from
the new set of non-logical axioms using prove-cfs. If the result is fail,
the generation of non-logical axioms is continued; otherwise, we are done.
In the success case, we can construct, out of the different tree proofs for the
appropriate α–subformulae of f , a sequence proof ϕ of ` f which has no
non-logical axioms and such that the number of sequents in ϕ is polynomial
in deg(f). In the failure case, i.e., whenever there is no set A such that ` f

is provable from A, it is guaranteed that ` f is not provable in GOL.

4.2.1. The Search for Weakening-free Proofs

In this subsection, we establish that weakening-free proofs have, in contrast
to unrestricted tree proofs, a pleasant feature: for a sequent of the form
` f , all proofs in tree form have at most deg(f)2 branches. The underly-
ing restricted calculus, i.e., GOL without the weakening rules, is obviously
correct but incomplete. Later, we define a proof procedure based on this
restricted calculus which is complete and which generates only short (poly-
nomial) proofs (not necessarily in tree form).

Theorem 11. Let S be a 2-restricted sequent of the form M ` N . Let ϕ

be a simple tree proof of S from a set A of (non-atomic) non-logical axioms.

Then, deg(S) is greater than or equal to the number of branches in ϕ.

Proof. The proof is by induction on l = #seq(ϕ).

Induction Basis. Assume l = 1. Then S is an axiom or S ∈ A. Therefore,
the only sequent in ϕ is S. Clearly, ϕ has exactly one branch and deg(S) ≥ 1
is greater than or equal to the number of branches in ϕ.

Induction Step. Assume l > 1, and suppose that, for all simple tree proofs
ϕ′ with #seq(ϕ′) < l,

(∗) deg(Tϕ′) is not less than the number of branches in ϕ′,

where Tϕ′ is the end sequent of ϕ′.

We distinguish the different possibilities for the last rule I in ϕ.
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Case 1. I = R7 (I = R8). Then S is of the form M ` ¬a, N (M, ¬a `
N). By the induction hypothesis, we have a simple tree proof ψ of T : M, a `
N (T : M ` a, N) satisfying (∗). An additional application of R7 (R8)
yields a simple tree proof of S with the same number of branches as in ψ.

Case 2. I = R1 (I = R2). Then S is of the form M ` a ∨ b, N . By the
induction hypothesis, we have a simple tree proof ψ of T : M ` a, N or of
T : M ` b, N satisfying (∗). An additional application of R1 or R2 yields
a simple tree proof of S with the same number of branches as in ψ.

Case 3. I = R4 (I = R5). Symmetric to Case 2 with a final application of
R4 or R5.

Case 4. I = R3. Then S is of the form M, a ∨ b ` N . By the induction
hypothesis, we have two simple tree proofs ψ1 of T1 : M, a ` N and ψ2 of
T2 : M, b ` N satisfying (∗). An additional application of R3 yields a proof
ψ of S.

For calculating the number of branches of ψ, we assume without loss of
generality that M = ∅ (recall the restriction that a sequent consists of at
most two formula occurrences). Then we have:

deg(T1) =

{

deg(a) · deg(N) if N 6= ∅ ∧N 6= {a};
deg(a)2 else.

deg(T2) =

{

deg(b) · deg(N) if N 6= ∅ ∧N 6= {b};
deg(b)2 else.

deg(S) =

{

deg(a ∨ b) · deg(N) if N 6= ∅ ∧N 6= {a ∨ b};
deg(a ∨ b)2 else.

Since deg(a∨b) = deg(a)+deg(b)+1, we have deg(S) > deg(T1)+deg(T2) in
both cases. Furthermore, since deg(Ti) (i = 1, 2) is not less than the number
of branches in ψi, we get that deg(S) is not less than the sum of branches of
ψ1 and ψ2, which in turn gives us that deg(S) is not less than the number
of branches in ψ.

Case 5. I = R6. Symmetric to Case 4 with a final application of R6.

Backward proof search in GOL for simple tree proofs terminates inde-
pendently from the used strategy. Observe that, for proofs with weakenings,
termination of backward proof search depends on the chosen strategy. Of-
ten, a loop check is required in order to guarantee termination. There are
formulae for which there is no simple proof in tree form, i.e., weakening is
essential for completeness.
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4.2.2. The Search for Arbitrary Proofs

Let us now turn our attention to the general case. In order to get a complete
procedure for GOL, we extend the incomplete proof search for weakening-
free proofs by the generation of lemmata which can eventually be used to
construct a short sequence proof with weakenings.

Lemma 12. Let f be a formula. If there is no proper α–subformula g of f

such that ` g or g ` has a simple tree proof, then ` f has a tree proof

iff ` f has a simple tree proof.

Proof. (⇐) Trivial.

(⇒) Assume that ϕ is a tree proof of ` f with weakenings. Due to
Lemma 9, it is sufficient to restrict ϕ to be in WNF. There must be at least
one application of R9 or R10 and the premise sequent of all applications
of R9 or R10 must consist of exactly one formula. Due to the subformula
property of cut-free proofs, this single formula must be a subformula of f .

Let us arbitrarily choose an application, r, of R9 or R10 such that no
other application of R9, R10 occurs in the tree proof of the premise of r.
Let the premise sequent of r be of the form ` g or g ` , where g is a
proper α–subformula of f . There must be a simple tree proof ψ of ` g

or g ` which occurs as a subproof in ϕ, because we have chosen r in such
a way that no other application of R9 or R10 occurs in ψ. The existence
of a simple tree proof ψ contradicts our global assumption that there is no
proper α–subformula g of f such that ` g or g ` has a simple tree proof.
Consequently, ϕ must be simple.

In the procedure prove-cf depicted in Figure 3, prove-cfs, car, and
cdr are used. The last two items are usual LISP functions: car returns
the first element of a nonempty list, or nil otherwise; cdr returns the list
without the first element for a list with more than one element, or nil

otherwise. The procedure prove-cfs(T, A) searches backward for a simple

tree proof of the input sequent T with non-logical axioms from A. It returns
the proof or fail. Recall that prove-cfs is correct but incomplete.

The procedure prove-cf(f) “computes” a cut-free sequence proof of
` f or returns fail, if no such proof exists. The following properties of the
algorithm are proved in the sequel:

• The algorithm terminates with less than 3·deg(f) calls of the procedure
prove-cfs. Moreover, the degrees of the arguments are polynomially
bounded. This is shown in Lemma 13.
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ϕ := prove-cfs( ` f, ∅);
if ϕ 6= fail then return ϕ;
A := ∅;
S : list of unprocessed proper α-subformulae of f,

sorted by increasing weight;

while S 6= nil ∧ ϕ = fail do
h := car(S);

S := cdr(S);

ϕ
p
h

:= prove-cfs( ` h, A);

if ϕp
h

= fail then
ϕn
h

:= prove-cfs(h ` , A);

if ϕn
h
6= fail then

A := A∪{ (h ` m), (h, m ` ) | m is a subformula of f};
ϕ := prove-cfs( ` f, A);

fi
else
A := A∪{ (m ` h), ( ` m, h) | m is a subformula of f};
ϕ := prove-cfs( ` f, A);

fi
od
return ϕ;

Figure 3. The procedure prove-cf.

• Correctness and completeness is shown in Theorem 16 and Theorem 17,
respectively.

• If the return value of prove-cf(f) is not fail, then a polynomial
sequence proof ϕ can be constructed from all simple tree proofs gen-
erated by prove-cfs (Theorem 17).

In what follows, nα(f) denotes the number of proper α–subformulae of f .

Lemma 13. The procedure prove-cf(f) terminates with less than 3 ·deg(f)
calls of the subroutine prove-cfs with arguments g1, . . . , gm and A1, . . . , Am

(m ≤ nα(f) + 1) such that

deg(gi) + deg(Ai) < deg(f) + 2 · nα(f) · deg(f)3. (1)
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Proof. First, recall that prove-cfs terminates and that the length of the
list S before the while statement in prove-cf is nα(f). In the body of the
while statement, the first element of S is selected and this selected item is
removed from S. The loop invariant is:

length of S + # of repetitions of the while statement = nα(f). (2)

The while statement terminates after at most nα(f) iterations. In each
of these iterations, at most three calls of prove-cfs are performed. Since
nα(f) < deg(f), the total number of prove-cfs calls in prove-cf(f) is less
than 3·deg(f). The first arguments of all calls of prove-cfs are subformulae
of f ; therefore, deg(gi) ≤ deg(f) for 1 ≤ i ≤ m, m ≤ nα(f) + 1. For each
of the at most 2 · nα(f) · deg(f) non-logical axioms, the degree is less than
deg(f)2. Thus, the degree of the arguments of a call of prove-cfs is at most
deg(f) + 2 · nα(f) · deg(f)3.

Lemma 14. Let (hi)1≤i≤l be the sequence of proper α–subformulae of f in

increasing weight for which a proof ϕi of either ` hi or hi ` is obtained

in a single call of prove-cf(f), and let Ai be the corresponding set of non-

logical axioms. Then, there exist tree proofs ϕ′
i of either ` hi or hi ` in

GOL without non-logical axioms, for 1 ≤ i ≤ l.

Proof Sketch. The proof is by induction on l.

Induction Basis. Assume l = 1. Then, A1 = ∅ and ϕ1 does not have
non-logical axioms.

Induction Step. Assume l > 1, and suppose that for all m < l, either
` hm or hm ` has a proof ϕ′

m in GOL without non-logical axioms.
Consider hl and ϕl. This proof can have non-logical axioms either of the

form a ` hm or of the form hm ` a, for a subformula a of f and m < l.
Proofs for all non-logical axioms are provided by the induction hypothesis
together with weakening. Replacing all non-logical axioms in ϕl by their
proofs results in a proof ϕ′

l without non-logical axioms.

Corollary 15. Let A be the set of all non-logical axioms in prove-cf.

Then, all elements from A are provable in GOL without non-logical axioms.

Theorem 16. Let f be a formula unprovable in GOL. Then, the procedure

prove-cf(f) returns fail.

Proof. Obviously, the result fail can only be returned in the last line
of prove-cf because prove-cfs( ` f,∅) returns fail for an unprovable
formula f . The proof is by reductio ad absurdum.
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Assume that ` f is not provable in GOL but prove-cf(f) returns a
value ϕ different from fail. Then a call of prove-cfs( ` f, A) must return
ϕ. Since all non-logical axioms from A are provable in GOL without non-
logical axioms, there is a proof of ` f in GOL without non-logical axioms.
This, however, contradicts our assumption that f is not provable in GOL.

Theorem 17. Let (hi)1≤i≤m be the sequence of proper α–subformulae of f

in increasing weight for which a proof of either ` hi or hi ` is obtained

in a single call of prove-cf(f). Let (Ai)1≤i≤m be the corresponding sets

of non-logical axioms and let (ϕi)1≤i≤m be the corresponding proofs. More-

over, let ϕ be the last proof generated by prove-cf(f). Then, there exists a

sequence proof of ` f in GOL without non-logical axioms and with at most

2 · deg(f)4 sequents.

Proof. First, observe that, whenever hi is a proper subformula of hj , then
i < j. Furthermore, recall that #seq(θ(ϕ)) = #seq(ϕ) for a tree proof ϕ.
The mapping θ is applied to each subproof obtained in a call of prove-cfs,
i.e.,

ψ : θ(ϕ1) . . . θ(ϕm) θ(ϕ).

Obviously, ψ represents a correct sequence proof of ` f without non-logical
axioms.

It remains to be shown that #seq(ψ) ≤ 2 · deg(f)4. Recall that any
simple proof ϕi (i = 1, . . . ,m) of hi from Ai has no more than deg(hi)

2

branches, and the number of sequents of a branch in ϕi is bounded by
2 · deg(hi). Similarly, any simple proof ϕ of f from Am has no more than
deg(f)2 branches, and the number of sequents of a branch in ϕ is bounded
by 2 · deg(f). Therefore, the number of sequents in ϕi and ϕ is bounded by
2 · deg(hi)

3 and 2 · deg(f)3, respectively. So, we get the following estimate
(with m < deg(f) and deg(hi) < deg(f)):

#seq(ψ) = #seq(θ(ϕ1)) + · · · + #seq(θ(ϕm)) + #seq(θ(ϕ))

= #seq(ϕ1) + · · · + #seq(ϕm) + #seq(ϕ)

< 2 ·m · deg(f)3 + 2 · deg(f)3

≤ 2 · deg(f)4.

This concludes the proof of the theorem.

An immediate consequence is that the decision problem whether ` f

has a cut-free sequence proof in GOL is in NP, i.e., the problem can be solved
by a nondeterministic Turing machine running in polynomial time. We show
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in the next subsection that this problem is actually in P ⊆ NP, where P is
the class of all problems solvable in deterministic polynomial time.

Recall that the procedure prove-cfs(T, X) searches backwards for a
simple tree proof of the input sequent T with non-logical axioms from X.
The search space of prove-cfs is exponential in the worst case. Let A(0, p, ◦)
be p0, and let A(n, p, ◦) be pn ◦A(n− 1, p, ◦) for n > 0 and ◦ ∈ {∧,∨}. Fur-
thermore, let Sq,r denote the sequent A(q, a,∧) ` A(r, b,∨) and consider
Sn,n. Obviously, weight(A(n, p, ◦)) = 2n + 1. Due to the subformula prop-
erty and the search for a simple proof (in prove-cfs), α–rules are the only
applicable inferences. Without optimizations, prove-cfs has to exhaust all
possible combinations of applications of α–rules resulting in an exponential
potential search space in the worst case.

Theorem 18. For n > 0, the number of sequents generated by procedure

prove-cfs in a proof attempt of Sn,n is not smaller than 22n−1.

Proof. More generally, we show by induction on k(q, r) = q + r that, for
q, r > 0,

(∗) the number of sequents generated by prove-cfs in a proof attempt of
Sq,r is not smaller than 2q+r−1.

Induction Basis. Assume k(q, r) = 2. For the sequent A(1, a,∧) `
A(1, b,∨), there are (at least) two sequents, A(0, a,∧) ` A(1, b,∨) and
A(1, a,∧) ` A(0, b,∨), which are generated by prove-cfs.

Induction Step. Assume k(q, r) = l > 2, and suppose that for all q ′, r′

with k(q′, r′) < l, (∗) holds. There are at least two sequents which have to
be generated by prove-cfs in an attempt to prove Tq,r, namely Tq−1,r and
Tq,r−1. The induction hypothesis yields 2q+r−2 many sequents for each case.
Hence, the number of sequents generated by prove-cfs in a proof attempt
of Tq,r is not smaller than 2q+r−1. The desired result follows.

For the sequent Sn,n, the size of the search space can be decreased if
we optimize the search procedure. Since α–rules can be permuted over
α–rules, backtracking can be significantly reduced in the course of a proof
attempt for Sn,n, because not all possible sequences of rule applications have
to be performed. This optimization fails, however, for sequents for which
β–formulae are present as subformulae in the antecedent or the succedent.
Consider the following (unprovable) sequent

Tn,n : Ln ` Rn
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where

Ln : (a0 ∨ (b0 ∧Bn)) ∧An;

Rn : (b0 ∧ (a0 ∨An)) ∨Bn;

An : a1 ∧ . . . ∧ an;

Bn : b1 ∨ . . . ∨ bn.

For Tn,n, a result similar to Theorem 18 can be proved. Additionally, an
exponentially increasing running time (with respect to n) can be empirically
observed with an implementation of a simple backward search procedure for
weakening-free proofs.

4.3. Forward Proof Search and a Simple Polynomial Decision

Procedure

We now discuss the efficiency of forward proof search in GOL. This procedure
is sometimes called inverse (search) method and is due to Maslov [7] (cf. also
[16]). Many researchers consider simple forward search methods as inefficient
because they are not goal (or end sequent) oriented. The key feature to get
efficient search procedures is to take the (subformulae of the) end sequent
into account when instances of axioms and inference rules are generated.
Only those instances of inference rules can occur in the search space for a
proof of an end sequent which have subformulae of the end sequent (in the
right polarity) in their conclusion.

We show that a polynomial decision procedure for GOL can be obtained
if a forward search (with the optimizations mentioned above) is applied. Let
` f be the end sequent to be proved, let U(f) = U+(f)∪U−(f) be the set of
all subformulae occurring in f , where U p(f) are the subformulae of f having
polarity p ∈ {+,−}, and let c(f), c+(f), and c−(f) be the cardinalities of
U(f), U+(f), and U−(f), respectively. Furthermore, let s(f) be the number
of possible sequents which can be build from subformulae of f . Then:

s(f) = (c+(f) + 1) · (c−(f) + 1) + (c+(f))2 + (c−(f))2 ≤ 6(c(f))2.

The product is the number of sequents of the form a ` b, a ` , or
` b together with ` , whereas the last two summands are the number of
sequents of the form ` a, b or a, b ` , respectively. Rule instances are
ordered pairs or triples of the form T1 | T and T1, T2 | T for unary and
binary rules, respectively. A rule instance for a formula f is a rule instance
with f as its principal or weakening formula. Let r1(f) be the cardinality
of the set of all unary rule instances for subformulae of f , and let r2(f) be



20 Uwe Egly and Hans Tompits

the cardinality of the set of all binary rule instances for subformulae of f .
Obviously, r1(f) ≤ s(f)2 and r2(f) ≤ s(f)3. Then, define

S0 = { a ` a | a ∈ U+(f) ∩ U−(f) } and

Sn = Sn−1 ∪ {T | T is consequence of a rule instance with

premises in Sn−1 }.

Since any rule application introduces at least one connective or atom, n can
be bounded by c(f). Moreover, any Si has no more than s(f) elements. The
total number of sequents which can be build in each step is r1(f) + r2(f) ≤
s(f)2 + s(f)3. Duplicate sequents are removed immediately because Si is
a set of sequents. The total number of generated sequents is bounded by
(s(f)2 + s(f)3) · c(f) ≤ 252(c(f))7.

Theorem 19. The problem whether a sequent ` f is provable in GOL is

polynomially decidable.

This result implies that the word problem for free ortholattices is solvable
in polynomial time. We remark that a similar consequence is already evident
from results given by Skolem in 1920 [13], based on different grounds. More
specifically, Skolem showed that the universal first-order theory of lattices is
decidable, from which a polynomial decision procedure for finitely presented
lattices can be derived. However, as pointed out in [4], this result of Skolem
went largely unnoticed by lattice theorists, until it was resurrected by Stan
Burries in his studies of the history of logic.

5. Conclusion

We compared three different proof-search strategies for a cut-free sequent cal-
culus for orthologic, namely backward search, a combined forward and back-
ward approach, and forward search. We estimated proof length and search-
space size for the backward strategy and the mixed strategy, and showed
that forward search yields a polynomial decision procedure for free ortholat-
tices. Our results can be summarized as follows (“polynomial” means that
the respective quantity is always polynomial in the degree of the formula to
be proved, and “exponential” means that there are classes of formulae for
which the respective quantity is always exponential):

backward search mixed strategy forward search
proof length exponential polynomial polynomial
search space exponential exponential polynomial
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Since GOL formalizes orthologic, the question whether a formula is prov-
able in this logic has also a polynomial decision procedure. Furthermore,
the technique described in this paper can be used to get similar procedures
for other logics as well. For instance, basic logic [3, 11] can be formulated as
a cut-free Gentzen calculus based on 3-restricted sequents (if we are inter-
ested in proving formulae). Moreover, for other algebraic structures closely
related to ortholattices (like, e.g., ascensive grids [12]), polynomial decision
procedures for the usual word problems for these structures can be obtained
by our approach.

From a more practical point of view, automated proof procedures for
(minimal) quantum logic have gained some attention because they can be
used as a “calculator” by physicists working in the field of quantum logic.
McCune reported in [8] that he was asked (by the authors of [9]) to check
whether three rather complicated formulae, E1, E2, and E3, are provable
in orthologic. McCune used OTTER and MACE to solve this task, which
took 15 minutes for the unprovable formula E1, 4 seconds for the provable
formula E2, and 22 hours for the provable formula E3. With our polynomial
decision procedure implemented in C, all these formulae together are decided
(on comparable hardware) within 1 second.
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