
Extending a Tableau-based
SAT Procedure with

Techniques from CNF-based
SAT

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Computational Intelligence

ausgeführt von

Leopold Carl Robert Haller
Matrikelnummer 0355898

an der
Fakultät für Informatik der Technischen Universität Wien

Betreuung:
Betreuer: Ao. Univ.-Prof. Dr. Uwe Egly

Wien, 1.12.2008 _______________________ ______________________
(Unterschrift Verfasser) (Unterschrift Betreuer)

Technische Universität Wien
A-1040 Wien ▪ Karlsplatz 13 ▪ Tel. +43/(0)1/58801-0 http://www.tuwien.ac.at

http://www.tuwien.ac.at/

Abstract

Das propositionale Erfüllbarkeitsproblem (SAT) ist ein klassisches Entscheidungsprob-
lem der theoretischen Informatik. Es war das erste Entscheidungsproblem, für das NP-
Vollständigkeit bewiesen wurde, und Implementierungen von Lösungsalgorithmen für
SAT-Instanzen werden seit den frühen 1960ern erforscht. Ein spezieller Fokus liegt hier
historisch auf der Betrachtung von SAT-Problemen, die in konjunktiver Normalform
(KNF) gegeben sind.

In den letzten fünfzehn Jahren hat sich die Effizienz solcher KNF-basierter Lösungs-
algorithmen enorm verbessert. Programme, die das Erfüllbarkeitsproblem lösen (soge-
nannte SAT-Solver), finden heute vielfältige Anwendung in Industrie und Forschung,
etwa in Soft- und Hardwareverifikation und in Logik-basierter Planung.

In vielen praktischen Anwendungsgebieten von SAT-Solvern sind die Eingabedaten
als strukturierte Formeln oder Schaltkreise gegeben. Um solche Instanzen mit KNF-
basierten Solvern zu lösen muss zuerst ein Übersetzungsschritt durchgeführt werden.
Dabei geht die ursprüngliche Strukturinformation der Formel verloren, wodurch der Ein-
satz strukturbasierter Heuristiken zum Beschleunigen des Lösungsprozesses unmöglich
wird.

In dieser Arbeit wird eine Erweiterung des BC-Tableaukalküls zur Feststellung der
Erfüllbarkeit von beschränkten kombinatorischen Schaltkreisen vorgestellt. Eine kurze
Einführung in propositionale Logik und das Erfüllbarkeitsproblem (SAT) wird gegeben,
und es wird der klassische Davis-Logemann-Loveland-Algorithmus (DLL) zur Lösung von
SAT-Instanzen in konjunktiver Normalform präsentiert. Es wird aufgezeigt, wie moderne
KNF-Solver das grundlegende DLL-Schema um nicht-chronologisches Backtracking und
Lernen erweitern. Techniken werden beschrieben, mithilfe derer SAT-Solver in der Lage
sind praktisch relevante Probleme in Industrie und Forschung zu lösen, und es werden
Ansätze diskutiert um das Lösen des SAT-Problems in Schaltkreisinstanzen zu beschle-
unigen.

Es wird gezeigt, dass eine Implementierung des BC-Tableaus als generalisierte DLL-
Prozedur gesehen werden kann, und es wird dargestellt, wie sich Techniken aus dem Be-
reich des KNF-basierten SAT-Solving in das BC-Tableau integrieren lassen. Ein Proto-
typ einer solchen erweiterten Tableauprozedur wurde entwickelt und seine Effektivität im
Vergleich zu bestehenden SAT-Solvern evaluiert. Es zeigt sich, dass die Erweiterung des
BC.Tableaus die durchschnittliche Geschwindigkeit in Benchmarks wesentlich verbessert,
und dass das erweiterte BC-Tableau als Grundlage für Schaltkreis-basierte SAT-Solver
durchaus mit modernen KNF-basierten Implementierungen Schritt halten kann.

Abstract

The propositional satisfiability problem (SAT) is one of the central decision problems in
theoretical computer science. It was the first decision problem that was proven to be NP
complete, and the study of implementations of decision procedures for SAT date back
to the early 1960s. In the area of satisfiability research, work on SAT instances given in
conjunctive normal form (CNF) has been a major focus of research.

In the last 15 years, the efficacy of CNF-based SAT algorithms, i.e., algorithms for
instances of propositional formulas in conjunctive normal form (CNF), has increased
significantly. Today, SAT solvers are employed in a number of applications in industry
and science such as software and hardware verification or logic-based planning.

In many application areas of SAT, the instances are originally given as structured
formulas or circuit instances. Using a CNF-based SAT solver on such instances requires
a translation step from the original formula to CNF. The result lacks the structural
information of the original instance, which could have been used heuristically to speed
up the solving process.

In this thesis, we present an extension of the BC tableau calculus for determining
satisfiability of constrained Boolean circuits. We give a short introduction to proposi-
tional logic and the SAT problem, and we present classical algorithms for solving SAT
such as the Davis-Putnam (DP) procedure and the Davis-Logemann-Loveland (DLL)
procedure. Modern extensions to the basic DLL framework, such as non-chronological
backtracking and clause learning, are discussed, which reduce solving time on industrial
instances considerably. We also present some approaches for solving the SAT problem
in circuits.

We show that a BC-tableau-based SAT algorithm can be seen as a generalization of
the basic DLL procedure and how techniques from CNF-based SAT can be integrated
into such a tableau procedure. We present a prototypical implementation of these ideas
and evaluate it using a set of benchmark instances. The extensions increase the efficiency
of the basic BC tableau considerably, and the framework of our extended BC-tableau
solver is shown to be competitive with state-of-the-art CNF-based solving procedures.

Contents

1 Introduction 3

2 The Propositional Satisfiability Problem 5
2.1 Basic Definitions and Terminology . 5

2.1.1 Propositional Logic . 5
2.1.2 Boolean Circuits . 8

2.2 The Propositional Satisfiability Problem 10
2.3 Basic Algorithms for the SAT-Problem . 11

2.3.1 The Davis-Putnam Algorithm . 13
2.3.2 The Davis-Logemann-Loveland Algorithm 15

2.4 Practical Applications of SAT-Solvers . 17
2.4.1 Bounded Model Checking . 17
2.4.2 Automatic Test Pattern Generation 18

3 Improvements Over The Standard DLL Framework 21
3.1 The DLL Algorithm Revisited . 22
3.2 Clause Learning and Non-Chronological Backtracking 23

3.2.1 Clause Learning . 23
3.2.2 Non-Chronological Backtracking 26
3.2.3 DLL with Clause Learning and Non-Chronological Backtracking . 27
3.2.4 Backtracking to the Second-Highest Decision Level 27
3.2.5 Clause-Database Management . 32

3.3 Strategies for Clause Learning . 32
3.3.1 Unique Implication Points (UIP) 33
3.3.2 Choosing a Cut for a Learned Clause 35

3.4 Efficient Datastructures for BCP . 36
3.4.1 Counter-Based Approaches . 36
3.4.2 Head/Tail Lists and Literal Watching 37
3.4.3 Special Handling of Small Clauses 39

3.5 Variable Selection Heuristics . 41
3.5.1 Early Heuristics . 41
3.5.2 Second-Order Heuristics . 42

3.6 Restarting and Randomizing the Search 43

1

3.7 Simplifying CNF formulas . 44
3.7.1 Preprocessing SAT Instances . 46
3.7.2 On-the-fly Clause-Database Simplifications 48

4 Solving SAT in Circuits 50
4.1 Efficient Circuit-to-CNF Translations . 51

4.1.1 The Tseitin Transformation . 51
4.1.2 Producing Short Clause-Forms . 56
4.1.3 Enriching CNF with Deduction Shortcuts 57

4.2 Combining Circuit-SAT and CNF-SAT . 59
4.2.1 Introducing Circuit Information into CNF-SAT 59
4.2.2 Circuit-SAT with Clause Learning 61

4.3 Circuit-based Approaches . 63

5 Implementing an Extended Tableau-Based SAT Solver 66
5.1 Tableau-Based SAT Solving . 66

5.1.1 The BC Tableau . 67
5.1.2 Circuit Reduction . 72
5.1.3 Tableau-Based SAT as Generalized DLL 75
5.1.4 BC with Learning and Non-Chronological Backtracking 76
5.1.5 Datastructures for Deduction . 78

5.2 Implementing an Enhanced Tableau-Based Solver 81
5.2.1 Basic Datastructures . 82
5.2.2 Deduction . 82
5.2.3 Conflict Analysis, Learning and Backjumping 84
5.2.4 Circuit Reduction . 86
5.2.5 One-Step Lookahead . 86
5.2.6 Decision Variable Selection . 87
5.2.7 Restarts . 88

6 Results 90
6.1 Comparing Decision Heuristics . 90
6.2 Evaluating Lookahead . 92
6.3 Restarting Schemes . 96
6.4 Comparing BattleAx3 with other SAT Solvers 96

7 Conclusion 100
7.1 Evaluating Results . 100
7.2 Open Questions and Research Opportunities 101
7.3 Concluding Remarks . 102

2

Chapter 1

Introduction

The propositional satisfiability problem (SAT) is the problem of deciding for a proposi-
tional formula whether there is a variable assignment under which the formula evaluates
to true. In computer science, the SAT problem has a history as a problem of both
theoretical and practical interest. Early implementations of solvers, such as the Davis-
Logemann-Loveland procedure, date back to the early 1960s [12; 13]. The SAT problem
was also the first decision problem proved to be NP complete in the early 1970s [10].

More recently, work on the propositional satisfiability problem has shifted somewhat
towards the practical side. SAT solvers have been applied to a number of real-world
problems, including hardware and software verification and logic-based planning. At
the same time, building efficient solvers for the propositional satisfiability problem has
become a major focus of research.

An enormouse effort so far has concentrated on extending the basic Davis-Logemann-
Loveland procedure which works on satisfiability instances given in conjunctive normal
form (CNF), but, increasingly, this work is being extended to non-clausal SAT instances.
Intuitively, it seems likely that the added structural information can be used to speed
up the solving process, but work on non-clausal SAT still has a long way to go. At
this time, state-of-the-art CNF-based SAT solvers coupled with translation front-ends
for non-clausal instances still outperform dedicated non-clausal solvers [45].

One of the reasons for this is that a lot of effort has been invested into engineering
efficient CNF-based solvers. The structurally simple CNF format lends itself very well
to fast and cache-efficient low-level implementation techniques and can be naturally
extended with techniques such as clause-learning and non-chronological backtracking.
Circuit-based solvers have yet to match this level of engineering.

In this thesis, we will give a brief introduction to propositional logic, the propositional
satisfiability problem, and its applications. We will explain some techniques from the
area of CNF-based SAT which have proven to increase efficiency in practical instances,
and we will show some of the attempts that have been made to solve the SAT problem
directly in structured problem instances. Finally, we will present the BC tableau, a
tableau calculus for solving the SAT problem in Boolean circuits, and we will discuss
how a BC tableau procedure can be extended in a generalized DLL framework with

3

many of the techniques used in CNF-based SAT, such as non-chronological backtracking,
learning, and restarts. We present BattleAx3 (“BattleAx Cube” being an anagram of
“BC Tableau Ext.”), a prototype of such an extended BC-based procedure, describe its
implementation, and compare it both to the original BC procedure and to MiniSAT, an
efficient CNF-based solver.

The structure of this thesis is as follows. Chapter 2 introduces basic terminology and
notation and gives a brief introduction to propositional logic. It also presents the original
Davis-Putnam (DP) [12] and Davis-Logemann-Loveland (DLL) [13] procedures that form
the basics of modern solvers. Chapter 3 gives an overview of modern CNF-based SAT
solving. We explain extensions to the basic DLL framework such as non-chronological
backtracking and learning, efficient implementation techniques, and common solving
heuristics. In Chapter 4, the area of solving SAT for circuit instances is discussed.
This includes a description of circuit-to-CNF translation techniques, circuit extensions
for CNF-based SAT solvers, and dedicated circuit-based solvers. Chapter 5 presents
the BC tableau and shows how a BC-based solver can be implemented in a generalized
DLL framework and extended with many of the techniques found in CNF-based SAT. It
also gives a detailed description of the prototypical implementation BattleAx3. Chapter
6 provides benchmarking results for BattleAx3, compares a number of different solving
strategies, and compares it with the original BC procedure and the CNF-based MiniSAT
SAT solver. Finally, Chapter 7 provides a conclusion.

4

Chapter 2

The Propositional Satisfiability
Problem

The propositional satisfiability problem is a central problem in computer science from
a theoretical as well as from a practical point of view. It has historical importance
as the first problem that was proven to be NP-complete [10], and its analysis and the
development of satisfiability decision procedures have spawned a vast array of literature.

One of the main reasons for the high interest in the satisfiability problem is that
implementations of satisfiability decision procedures, so-called SAT solvers, have a wide
range of possible applications, many of them industrial rather than academic in nature.
Advances in SAT-solving from the last fifteen years have made it possible to go beyond
toy instances and solve propositional encodings of real-world problems from various
domains, such as logic-based planning, automated test pattern generation, and software
and hardware verification.

This chapter will serve as a short introduction to propositional logic and the propo-
sitional SAT problem. The DP algorithm and its successor, the DLL algorithm, will be
described, the latter being the algorithmic framework that still forms the basis of most
modern SAT solvers.

2.1 Basic Definitions and Terminology

The work in this thesis uses two closely related notions to describe problem instances
of satisfiability, propositional logic and Boolean circuits. In this section, we introduce
basic terminology and notation and formally characterize both of them.

2.1.1 Propositional Logic

Propositional logic (also called propositional calculus, sentential logic, or combinatorial
logic) is a branch of mathematical logic that deals with the analysis of well-formed logical
formulas built up from propositional atoms and logical connectives.

5

First, we introduce the syntax of propositional logic by giving an inductive definition
of the set F of propositional formulas.

Definition 1. Let B be a countable set of Boolean variables. Then the set F of all
well-formed propositional formulas is defined inductively as follows.

(i) B ∪ {>,⊥} ⊂ F .

(ii) If φ ∈ F , then (¬φ) ∈ F .

(iii) If φ, ψ ∈ F , then (φ ◦ ψ) ∈ F for ◦ ∈ {∧(conjunction),∨(disjunction),⇒
(implication),⇔ (equivalence)}.

For easier readability, brackets may be omitted. In this case, we define the order of
binding strength (from strongest to weakest) to be ¬,∧,∨,⇒,⇔.

A formula v ∈ B is called a propositional atom. An atom or a negated atom is called
a literal. Such a literal is said to be in positive or negative phase depending on whether
its variable is negated. An unnegated variable is said to be in positive phase, while a
negated variable is said to be in negative phase. The opposite phase literal to a literal l
is referred to as l. A disjunction of literals is called a clause.

Definition 2. Let V = {T,F} be the set of Boolean values. A function f : Vn 7→ V is
called a Boolean function of arity n.

Atoms represent simple statements which can assume the Boolean values true (T)
or false (F) when modeling some arbitrary domain with propositional logic. Atoms may
represent any such proposition, such as “it is raining” or “the value of variable x is
greater than zero”. Non-atomic formulas describe compound statements whose truth
value is related to the component truth values by a Boolean formula. A statement

“it is raining”⇒ “Anne will stay at home”

for example, is false only if it is raining and Anne leaves her home and true otherwise.
This relationship does not depend on the semantic contents of the propositions that
are associated with the atoms, but only on their truth values. In order to be able
to determine the truth value of such arbitrary statements mechanically, we need to
introduce the formal semantics of propositional logic. The first step is to introduce a
formal device that assigns truth values to atomic propositions.

Definition 3. For a set of Boolean variables P, a (possibly partial) function I : P 7→ V
is called an interpretation.

We will call a function I interpretation of a formula φ if I is an interpretation of
the Boolean variables occurring in φ. If I is a partial function, we refer to it as a
partial interpretation. Interpretations will also be referred to as variable assignments.
An interpretation I ′ is an extension of an interpretation I, or more concisely, I ⊆ I ′, iff

for any x, if I(x) is defined, then I(x) = I ′(x)

Since we want to be able to evaluate the truth values of arbitrary formulas, we extend
I to formulas in the following way.

6

Definition 4. For a given interpretation I ′, let I : F 7→ V be its extension to formulas,
defined in the following way:

(i) I(>) = T

(ii) I(⊥) = F

(iii) I(v) = I ′(v) iff v ∈ B

(iv) I(¬φ) = T iff I(φ) = F

(v) I(φ ∧ ψ) = T iff I(φ) = I(ψ) = T

(vi) I(φ ∨ ψ) = T iff I(φ) = 1 or I(ψ) = T

(vii) I(φ⇒ ψ) = T iff I(φ) = F or I(ψ) = T

(viii) I(φ⇔ ψ) = T iff I(φ) = I(ψ) = T or I(φ) = I(ψ) = F

For easier readability, no distinction will be made between interpretations and their
extensions to formulas. Furthermore, if it is clear from the context which interpretation
I is being referred to, we will use the notation v := X to indicate that I(v) = X. We
now introduce some further notions that will be needed later on.

Definition 5. An interpretation I of a propositional formula φ is called a model of φ
iff I(φ) = T. The set of all models of φ is Mod(φ).

For example, given the formula a ⇒ b, both {a 7→ F, b 7→ T} and {a 7→ T, b 7→ F}
are interpretations, but only the former is a model. A number of equivalent ways will
be used to express the model attribute of an interpretation.

Remark. Given a propositional formula φ, the following notions are equivalent:

(i) I is a model of φ

(ii) I |= φ

(iii) I satisfies φ

(iv) I ∈ Mod(φ)

Definition 6. A formula φ is satisfiable iff Mod(φ) 6= ∅, otherwise it is unsatisfiable.

Definition 7. A formula φ is valid iff for every interpretation I, it holds that I |= φ.

We now define the subformula relations on formulas.

Definition 8. The formula φ is an immediate subformula of ψ iff one of the following
conditions holds

(i) ψ = ¬φ,

(ii) ψ = (φ ◦ ω) or ψ = (ω ◦ φ) for ◦ ∈ {∧,∨,⇒,⇔}.

The formula φ is a subformula of ψ iff (φ, ψ) is in the transitive closure of the
immediate subformula relation.

7

2.1.2 Boolean Circuits

Boolean circuits are mathematical models of digital combinatorial circuits, i.e., digital
circuits where no outputs are fed back into the circuit as inputs. They are closely related
to propositional formulas. Translation strategies will be described in Chapter 4.

The following characterization of Boolean circuits is mostly taken from Drechsler,
Juntilla, and Niemelä [14].

Definition 9. A Boolean circuit C is a pair (G, E), where

(i) G is a non-empty finite set of gates

(ii) E is a set of equations where

• each equation is of the form g := fg(g1, . . . , gn), where g, g1, . . . gn ∈ G and
fg : Vn 7→ V is a Boolean function,

• each gate g ∈ G appears at most once on the left-hand side in the equations
in E, and

• the dependency graph, graph(C) = (G, {(g, g′) | g := f(. . . , g′, . . .)}) is acyclic,
i.e., no gate is defined recursively.

A gate that does not occur on the left hand side of any equation in E is called a
primary input gate, a set that does not occur on the right hand side of any equation is
called a primary output gate. The set of primary input and primary output gates of a
circuit C is designated by input(C) and output(C) respectively.

For any gates g and g′, if g′ appears on the right-hand side of g’s equation, we call g a
parent of g′ and g′ a child of g. The ancestor and descendant relation between gates are
defined intuitively as the transitive closures of the parent and child relation respectively.

A subcircuit is a part of a larger circuit,

Definition 10. Given two Boolean circuits C = (G, E) and C ′ = (G′, E ′), we call C ′ a
subcircuit of C iff

• E ′ ⊆ E and

• G′ = { v, c1, . . . , cn | v := fv(c1, . . . , cn) ∈ E ′ }

In this thesis, only certain classes of Boolean functions will be associated with gates
in gate equations. These include

• the constant functions true() = T and false() = F,

• not : V 7→ V, not(T) = F, not(F) = T

• and : Vn 7→ V, and(v1, . . . , vn) = T iff all v1 to vn are T.

• or : Vn 7→ V, or(v1, . . . , vn) = T iff at least one of v1 to vn is T.

8

• ite: V3 7→ V, this is the if-then-else construct. The value of ite(vc, v1, v2) is the
value of v1 if vc = T and the value of v2 if vc = F.

• odd : Vn 7→ V, odd(v1, . . . , vn) = T iff the number of input values vc with vc = T
is odd.

• even: Vn 7→ V, even(v1, . . . , vn) = T iff the number input values vc with vc = T is
even.

• equiv : Vn 7→ V, equiv(v1, . . . , vn) = T iff v1 = · · · = vn.

• cardyx : Vn 7→ V, this is the cardinality gate, cardyx(v1, . . . , vn) = T iff at least x
and at most y input values are T.

We call a (possibly partial) function τ : G 7→ B a truth assignment of C. A partial
truth assignment is a truth assignment whose function is partial. If for a gate g, τ(g) is
defined, we say that g is assigned. A truth assignment in which all gates are assigned is
a total truth assignment.

A truth assignment τ ′ is an extension of an assignment τ iff τ(g) = τ ′(g) for all gates
g ∈ G that are assigned in τ , i.e., τ ⊆ τ ′.

A total truth assignment τ is consistent in a circuit C iff, for each gate g ∈ G with
associated Boolean function fg(g1, . . . , gn), it holds that fg(τ(g1), . . . , τ(gn)) = τ(g). We
call a gate g justified in a truth assignment τ if, for any satisfying truth assignment
τ ′ where for each of g’s children gc τ

′(gc) = τ(gc) (if τ(gc) is defined), it holds that
τ(g) = τ ′(g). Intuitively, a gate is justified in τ if its output is fully explained by the
values of its children that are set in τ . An AND-gate with value F in τ , for example, is
justified, if one of its children also has value F in τ . No matter what values the other
children will take on, the gate output will not change.

It is easy to see that a given circuit C has 2|input (C)| consistent truth assignments,
that is, there is one distinct satisfying truth assignment for each truth assignment on the
input gates. Such an assignment can be found by determining the values of all non-input
gates by applying the corresponding gate function in a bottom-up fashion.

A constrained circuit is a pair (C, τ) where C is a Boolean circuit and τ is a non-empty
(possibly partial) truth assignment. A constrained circuit is called satisfiable, iff there
is an extension τ ′ of τ that is consistent in C.

The behavior of a Boolean circuit can be modeled by a propositional formula. The
Boolean function for the value of a given output gate can be determined by starting
with its associated Boolean function and replacing each gate occurrence with its own
function in turn, until no more replacements are possible. We will denote this exhaustive
replacement process of a formula f with expand(f). A full propositional modeling of a
circuit C’s behavior is then given by∧

o∈output(C)

o⇔ expand(fo)

A serious drawback of this translation is that the formula size may increase exponen-
tially when transforming it into a normal form. More sophisticated translation strategies

9

e

=1

1

≥ 1

≥ 1

&

i2

i1

i3
o2

o1

φC = o1 ⇔ ((i1 ∧ i2) ∨ (i2 ⇔ ¬i3)) ∧ o2 ⇔ ((i2 ⇔ ¬i3) ∨ ¬i3)

Figure 2.1: Example of a Boolean circuit and a corresponding propositional formula.

which circumvent this problem will be described in detail in Chapter 4. An example of
a Boolean circuit and a corresponding propositional formula is shown in Figure 2.1.

2.2 The Propositional Satisfiability Problem

The propositional satisfiability problem (SAT) is a central decision problem in computer
science, and it can be stated in its general form in the following way:

Definition 11. For a given propositional formula φ, the Boolean satisfiability problem
(SAT) is to decide whether φ is satisfiable, i.e., whether there is an interpretation I of
φ so that I |= φ.

The propositional satisfiability problem was the first decision problem proven to be
NP-complete in [10], that is, it can be solved by a non-deterministic Turing machine in
polynomial time, and every other member of NP can be cast into an instance of SAT
by a polynomial-time transformation algorithm. All known algorithms that decide the
Boolean satisfiability problem have an exponential worst-case time complexity.

Much work on the SAT-problem has been done on propositional formulas in normal
forms, the most prominent being conjunctive normal form (CNF). A CNF formula is a
conjunction of clauses, it can be pictured as a two-level circuit where multiple OR-gates
feed into one AND gate. We can easily transform any given formula φ into an equivalent
CNF-formula by exhaustively replacing subformulas of φ with the substitutions from
Table 2.1.

The problem with this kind of transformation is that a non-normalized propositional
formula can be exponentially more succinct than its corresponding CNF. In Chapter 4,

10

original substitution
¬¬φ φ

¬(φ ∨ ψ) ¬φ ∧ ¬ψ
¬(φ ∧ ψ) ¬φ ∨ ¬ψ
φ⇒ ψ ¬φ ∨ ψ
φ⇔ ψ (φ⇒ ψ) ∧ (ψ ⇒ φ)

(φ1 ∧ φ2) ∨ ψ (φ1 ∨ ψ) ∧ (φ2 ∨ ψ)

Table 2.1: Simple transformation to CNF.

more sophisticated translation strategies will be described which avoid this problem by
introducing new variables for subformulas.

For many problems, a circuit is a more direct representation of the original problem.
We have already determined that a Boolean circuit C has 2|input (C)| consistent truth
assignments, therefore it only makes sense to determine the satisfiability of a constrained
circuit. For constrained circuits, we can define the satisfiability problem in the following
way.

Definition 12. For a constrained circuit (C, τ), the Boolean circuit satisfiability prob-
lem (CIRCUIT-SAT) is to decide whether (C, τ) is satisfiable, i.e., whether there is a
consistent extension of τ .

A number of decision problems about propositional formulas can be cast into the
form of a satisfiability problem.

Remark. For two propositional formulas φ and ψ it holds that

(i) φ is valid iff ¬φ is unsatisfiable.

(ii) φ |= ψ iff ¬(φ⇒ ψ) is unsatisfiable.

(iii) φ and ψ are equivalent iff ¬(φ⇔ ψ) is unsatisfiable.

Furthermore, most SAT-solvers do not simply return a binary answer to the satisfia-
bility problem, but they also provide a model for satisfiable instances. The information
encoded in this model can be used to gain more information about the problem. In SAT
instances obtained from hardware or software verification problems, an interpretation
can yield an error trace leading up to a problem state, in SAT-based planning, an inter-
pretation can be transformed into a ready-made plan. A number of decision problems
about propositional formulas can be cast into the form of a satisfiability problem.

For an illustration of how a given problem can be encoded into a propositional form,
see the example provided in Figure 2.2.

2.3 Basic Algorithms for the SAT-Problem

Developing solvers that perform reasonably well on interesting classes of instances (such
as encodings of real-world problems) is a hard problem, both from a theoretical as well

11

4

2

31
Sudoku is a simple puzzle that can be easily transformed into a
SAT-instance. In the small example to the left it consists of a
2 × 2 arrangement of 2 × 2 boxes. Each small 2 × 2 box should
be filled with the numbers from 1 to 4, likewise, each row and
column should contain each of the numbers. In our encoding, we
use variables of the form nx,y, where I(nx,y) = 1 means that the
number n is at the location x, y. In order to represent the puzzle
rules we need to define some propositional constraints.

First of all, an auxiliary construction is needed that builds from a set of propositional
atoms S a propositional formula that is true iff exactly one of the atoms in S is true.

exactlyOne(S) =
∨
q∈S

q ∧
∧
q∈S

(
∧

r∈S\{q}

¬q ∨ ¬r)

We can now define the actual constraints of the Sudoku domain.

uniqueAtLoc =
∧

(x,y)∈{1,2,3,4}2
exactlyOne({1x,y, 2x,y, 3x,y, 4x,y})

uniqueInRow(n, y) = exactlyOne({n1,y, n2,y, n3,y, n4,y})
uniqueInCol(n, x) = exactlyOne({nx,1, nx,2, nx,3, nx,4})

uniqueInBox(n, bx, by) = exactlyOne({n2∗bx+∆x,2∗by+∆y | (∆x,∆y) ∈ {1, 2}2})

These constraints encode that each grid location contains exactly one number
(uniqueAtLoc), and that each row, column, and 2×2 box contain each number from one
to four exactly once (uniqueInRow, uniqueInCol, uniqueInBox). Now we only need to
set up the initial information set in the instance shown in the picture above,

init = 11,1 ∧ 32,1 ∧ 42,2 ∧ 24,3

The resulting propositional formula is now,

φ = uniqueAtLoc ∧ init

∧
∧

n∈{1,2,3,4}

∧
(bx,by)∈{0,1}2

(uniqueInBox (n, bx, by))

∧
∧

n∈{1,2,3,4}

∧
i∈{1,2,3,4}

(uniqueInRow(n, i) ∧ uniqueInCol(n, i))

After finding an interpretation that satisfies φ we can simply extract a solution to the
Sudoku instance by looking at the values of the variables of the form nx,y. If there is no
solution, a SAT-solver would report the instance to be unsatisfiable.

Figure 2.2: Example for SAT encoding.

12

as from an engineering point of view. A conceptually simple but inefficient algorithm to
determine the satisfiability of a given formula φ, would be to enumerate all possible inter-
pretations I and check whether any of those I satisfies φ. Although this algorithm shares
with all other known SAT algorithms a worst-case exponential time-complexity, it is not
competitive in the average case for instances occurring in practice. This enumeration
procedure also makes the NP-membership of SAT intuitive: A non-deterministic Turing
machine can “guess” an interpretation I and then check in polynomial time whether I
satisfies φ.

In the literature, most algorithms are based on propositional formulas given in CNF.
These can be further divided into two main classes, stochastic algorithms and systematic
algorithms. The former tend to view SAT as an optimization problem with the goal
of maximizing the number of satisfied clauses and employ stochastic search strategies
through the space of interpretations. If such strategies are not combined with systematic
approaches, stochastic procedures are incomplete, that is, they may be able to find a
satisfying interpretation for a formula, but they cannot show that a given instance is
unsatisfiable.

An incomplete SAT solver can still be useful. In many verification applications, for
example, a satisfying interpretation yields a trace leading up to an error state. In such
a case, an incomplete solver can help to find bugs, but it can never prove that the given
system is bug-free.

Systematic algorithms, on the other hand, typically build partial assignments in a
systematic way until a satisfying assignment is found or until the space of interpretations
has been fully explored. Most systematic algorithms are based on the Davis-Logemann-
Loveland (DLL) [13] procedure, which in turn is based on the Davis-Putnam (DP)
procedure [12]. Since the work presented in this thesis is closely related to the DLL
procedure, both of them will be described in this section.

2.3.1 The Davis-Putnam Algorithm

The DP algorithm was first presented in Davis and Putnam [12] and was originally used
as part of a procedure for determining the validity of first order formulas (a problem
that is, in general, undecidable). The DP algorithm works on a propositional formula in
CNF and essentially combines the resolution rule with a search procedure.

Definition 13. Given two clauses c1 = a1∨. . .∨ai∨. . .∨al and c2 = b1∨. . .∨bj∨. . .∨bk
where ai and bj are literals of the same variable v in opposite phases, i.e., ai = bj, we
call the clause

c3 = a1 ∨ . . . ∨ ai−1 ∨ ai+1 ∨ . . . ∨ al ∨ b1 ∨ . . . ∨ bj−1 ∨ bj+1 ∨ . . . ∨ bk

the resolvent of c1 and c2 (c1 ⊗v c2). The variable v is the variable resolved upon.

The resolution rule states that given two clauses c1 and c2, we can infer any of their
resolvents c3.

13

Given a SAT instance as a propositional formula in CNF, the original DP procedure
iteratively modifies the formula by a sequence of satisfiability-preserving steps using the
following rules.

Literal elimination If a pair of one-literal clauses, c1 = a and c2 = ¬a exists where
a is a propositional atom, conclude that the instance is unsatisfiable. If this is
not the case, and a clause c = l exists where l is a literal, remove all clauses that
contain l and remove l from all remaining clauses. If the resulting formula is empty,
conclude that the instance is satisfiable.

Affirmative-negative rule For every variable that occurs only in one phase as a literal
in the CNF, remove all clauses containing that literal.

Elimination rule for propositional variables (originally referred to as “elimination
rule for atomic formulas” in Davis and Putnam [12]). Choose a decision variable
v and construct all possible resolvents upon that variable. Replace the original
formula by a conjunction of the resolvents and all clauses in the original formula
that do not contain a literal of v.

Upon closer analysis, it becomes clear that the first two rules are conceptually sub-
sumed by the elimination rules if the critical variable v is chosen as decision variable. In
order to show why this is true, consider the following scenario. If there is a one-literal
clause c = l on decision variable v, all opposite phase occurrences are automatically
eliminated. If a second one-literal c′ = l existed, its resolvent with c is the empty clause.
The empty clause evaluates to false under any interpretation, therefore the instance is
unsatisfiable.

A similar line of reasoning can be employed to show that the affirmative-negative
rule is subsumed by the elimination rule. If a literal l only occurs in one phase, and its
variable is chosen as elimination-rule variable, it has no possible resolvents. No additional
clauses are therefore added to the formula in the elimination rule, but all clauses are
removed that contain v. The result is then the elimination of all clauses that contained
v.

By eliminating the first two rules, we can then gain a conceptually simpler variant
of the DP algorithm.

Init Let φ be the input formula.

Step 1 If φ contains the empty clause, conclude unsatisfiability. If φ is the empty
conjunction, conclude satisfiability.

Step 2 Let v be a variable occurring in φ. Let R be the set of all possible resolvent
clauses upon the variable v from the clauses in φ.

Step 3 Let φ′ be the conjunction of R and all clauses in φ that do not contain v.

Step 4 φ := φ′. Goto step 1.

14

While this method terminates after a linear number of such high-level steps, the
formula may grow exponentially in size during the resolution step. The algorithm is
therefore of limited use for practically interesting problem instances.

2.3.2 The Davis-Logemann-Loveland Algorithm

The DLL procedure (also referred to as DPLL) is a highly-efficient, backtracking-based
algorithm for the SAT problem. It was presented in the 1962 paper by Davis, Logemann,
and Loveland [13] as an improvement of the DP procedure, and it forms the basis of
most competitive SAT solvers even today.

Originally, the DLL procedure was simply the DP procedure with the elimination
rule replaced by the splitting rule due to the excessive worst-case memory consumption
of the former.

Splitting rule Let v be variable occurring in φ. Let A be the conjunction of those
clauses that contain v in positive phase, let B be the conjunction of clauses that
contain v in negative phase, and let R be the conjunction of clauses where v does
not occur. Create A\v and B\¬v by removing all occurrences of v and ¬v from
the clauses in A and B respectively. Recursively determine the satisfiability of the
formulas A\v ∧R and B\¬v ∧R. Conclude satisfiability if either of the formulas is
satisfiable, else conclude unsatisfiability.

The splitting rule transforms the earlier resolution-based method into a backtrack
search procedure. We will therefore recharacterize the DLL procedure in a slightly
different way which emphasizes the idea of search and is closer in spirit with modern
implementations of DLL and its variants.

We can view the DLL algorithm as a depth-first-search (DFS) procedure in the
space of partial assignments where, between each step of the search, the following two
deduction rules are applied to prune parts of the search space.

Pure literal rule If a literal occurs only in one phase in the set of unsatisfied clauses,
it is set to be true in the current partial assignment.

Unit rule Let I be the current partial interpretation. If, in an unsatisfied clause, all
but one literals evaluate to false, then the remaining literal is set to be true in I.

The process is initialized with the empty partial assignment and incrementally ex-
pands this assignment through search and deduction. Under the current partial assign-
ment, a clause is called conflicting if it evaluates to false, satisfied if it evaluates to true,
unit if all but one of its literals evaluate to false, and unresolved otherwise.

If a conflict occurs, that is, if a clause is conflicting under the current partial assign-
ment, then the DFS search backtracks to an earlier node in the search tree and continues
the search from there.

The simplified structure of the DLL algorithm can be seen in Algorithm 2.1; an
example run is shown in Figure 2.3. The deduce function exhaustively applies the two
deduction rules presented above. In modern implementations, the pure literal rule is

15

Algorithm 2.1: DLL
input : I - a partial interpretation, φ - a CNF formula
output: Satisfiability of φ

if deduce(I, φ)=Conflict then
return false;

if allVarsAssigned(I, φ) then
return true;

v ← chooseVar(I, φ);
return DLL(I ∪ {v := T}, φ) ∨ DLL(I ∪ { v := F}, φ)

�
�

�
�
�
�	

@
@
@
@
@
@R

�
�
�

�
�
�	

@
@
@
@
@
@R

(iii): Conflict
(ii): v4 = 0

(v): Conflict
(iv): v5 = 1

v3 = 0v3 = 1

(i): v2 = 1

Pure: v4 = 1
(vi): v2 = 1, (vii): v3 = 1

Satisfiable

v1 = 1 v1 = 0

φ

(i) (ii) (iii) (iv)
(¬v1 ∨ v2) (¬v1 ∨ ¬v2 ∨ ¬v3 ∨ ¬v4) (¬v1 ∨ ¬v3 ∨ v4) (v3 ∨ v5)

(v) (vi) (vii) (viii)
(¬v2 ∨ v3 ∨ ¬v5) (v1 ∨ v2) (v1 ∨ ¬v2 ∨ v3) (v4 ∨ v5)

The above diagram depicts an example run of the DLL procedure on the input formula
φ, with clauses numbered (i) through (viii). The tree is expanded left-to-right, applica-
tions of the unit rule and conflicts are prefixed with the numeral of the relevant clause,
applications of the pure-literal rule are prefixed with “pure”.

Figure 2.3: Exemplary DLL run on formula φ.

16

only used in preprocessing since the overhead costs necessary to detect the applicability
of the rule outweigh the benefits of the additional deductions.

The DLL procedure is highly sensitive to the choice of decision variables. Usually,
some kind of greedy heuristic is used that aims at maximizing the occurrence of possible
unit-rule applications or conflicts. In most modern DLL-based solvers, heuristics are
chosen which aim to produce conflicts as early as possible in order to avoid entering
unnecessary regions of the search space.

2.4 Practical Applications of SAT-Solvers

Modern SAT solvers have reached a degree of efficiency where they are able to solve
real-world instances with hundreds of thousands of variables. There is a multitude
of possible applications, including applications in software and hardware verification,
hardware testing, and logic-based planning.

In order to give some insight in how SAT solvers can be used to solve problems of
practical interest, a small selection of them will be presented here.

2.4.1 Bounded Model Checking

For purposes of CNF-SAT based verification, a given Boolean circuit can be transformed
into a propositional formula. Such a formula is trivially satisfiable as long as the circuit is
unconstrained, i.e., as long as there is no gate that is forced to assume a specified output
value. A satisfiable assignment can easily be found by assigning random values to all
inputs and propagating them across the circuit. If one wants to test certain properties
about the given circuit, those properties must be encoded in propositional form and
added to the formula as constraints.

As an example, imagine a circuit controlling the launch of a nuclear weapon. As
a security measure, two keys need to be inserted into the launching mechanism and
turned at the same time in order to fire the weapon, thus requiring at least two people
to initiate a launch. Let C be a Boolean circuit model of the controlling circuit. In
the circuit model, the fact that a key has been turned is represented by the primary
inputs k1 and k2 for the first and second key respectively. An assignment k1 := T and
k2 := T would therefore represent that both keys are currently turned, and that the
weapon should thus be fired. This should also be the only assignment to k1 and k2 that
should initiate the launch sequence, which is represented itself by the primary output
assignment l := T. We could therefore introduce a design specification (l⇒ (k1 ∧ k2)).

In order to verify this specification, we could translate the behaviour of the circuit
into a propositional formula φ and check the formula ψ = φ ⇒ (l ⇒ (k1 ∧ k2)) for
validity. We can do this by using a SAT solver on the formula ¬ψ. If the solver returns
that the formula is satisfiable, there is an error in the design of our circuit C. In the
model that is returned, a state is encoded where the launch sequence is initiated (l := T)
but at least on of the keys is not turned (k1 := F or k2 := F).

17

- - -

BMC instance for k = 3Original sequential circuit

Cseq1Cseq Cseq2 Cseq3

Figure 2.4: Instancing a sequential circuit for BMC.

Real problems in hardware or software verification do not come in the form of com-
binatorial circuits, but are usually sequential in nature. A sequential circuit cannot
trivially be transformed into a propositional formula, but it is possible to construct a
combinatorial circuit which simulates its behavior up to a fixed number of time-steps.
The resulting circuit, together with certain properties that specify the expected be-
haviour can be modeled as a propositional formula and checked using a SAT solver.
This technique is called bounded model checking (BMC) and was pioneered in Biere,
Cimatti, Clarke, Fujita, and Zhu [7].

The main idea is fairly simple and will be briefly sketched here. Given a sequential
circuit and a bound k, we first model the circuit as a Boolean circuit Cseq by removing
all feedback loops. Then, k instances Cseq1 to Cseqk of Cseq are created where in each,
the gates are replaced by a fresh set of identical gates. Finally, for each instance, each
primary output gate that feeds back into the circuit in the original sequential circuit is
connected to the input gate of the next instance, e.g., the outputs of Cseq1 are connected
to Cseq2 , etc. Figure 2.4 provides an example.

The resulting Boolean circuit is then translated into a propositional formula. Speci-
fications given in some formal language such as temporal logic are translated into propo-
sitional form as well, and the conjunction of the specification and the circuit description
is evaluated using a SAT solver.

By running multiple iterations of this process with increasing values of k, counterex-
amples to the specification with minimal length can be found. This iterative procedure is
only complete if it is run until k exceeds a certain completeness threshold that depends
on the BMC instance. If the minimal counterexample that is needed to produce the
error is longer than the highest bound k that is tested, it is possible for errors to remain
undetected.

2.4.2 Automatic Test Pattern Generation

During the production of microchips, certain imprecisions in the production process can
lead to faulty circuits. In order to ensure the correct functioning of a chip, it is necessary
to apply test input patterns to the circuit and compare them with the expected outputs.
Since exhaustively testing the circuit is usually intractable, a certain set of test patterns
have to be selected. This selection process, if it is to ensure the correct functioning of
the chip, is not trivial. Faulty outputs of gates in the circuit may be masked by other
values under certain conditions, or a gate could never be accessed in a way that produces

18

a faulty output.
The basic problem in automatic test pattern generation (ATPG) is finding test inputs

which cause output values to diverge if a specified defect exists in the circuit.
In order to be able to detect a certain class of fault, a fault model is needed first,

that is, a mathematical description of the fault. One of the most commonly used models
is the stuck-at-fault model (SAFM). It assumes that a gate, instead of calculating the
appropriate Boolean function, is stuck at a constant truth value. In the stuck-at-fault-
model, the ATPG problem for a gate g is to find input patterns that cause the output
values of a circuit to diverge from the original circuit’s behavior if g’s output is a constant
true or false signal.

While many dedicated algorithms have been developed to solve this problem, encod-
ing the problem as an instance of SAT has proven to be very efficient given the speed
of modern solvers. In a 1996 paper, Stephan, Brayton, and Sangiovanni-Vincentelli [41]
already show a SAT solver to be a very robust alternative to dedicated algorithms. Since
then, SAT-solver performance has increased considerably.

The basic idea for a SAT-based encoding is sketched in Figure 2.5. A circuit is
constructed which encodes relevant parts of the original as well as the faulty circuit,
both being connected to the same inputs. A checker is introduced, which compares the
output of the two subcircuits and reports divergences. This circuit is encoded into a
propositional formula, and a constraint is added that forces the checker to be true, i.e.,
the compound circuits’ output to diverge. If a satisfying assignment is found for this
circuit (which should be the case if the faulty gate is not redundant), the input values
can be extracted from the satisfying interpretation and used as a test pattern.

19

e

e

��

��

≥ 1

= 1

1

≥ 1

&

&

&

original circuit

faulty circuiti1

i2

i3

i4

o

Figure 2.5: Circuit construction for ATPG-to-SAT transformation. A stuck-at-true fault
for an AND-gate is analyzed. The primary output o is true if i1 to i4 are set the values
that make the output of the original and faulty circuit diverge.

20

Chapter 3

Improvements Over The
Standard DLL Framework

While the DLL procedure has proven to be a highly efficient framework for the devel-
opment of SAT solvers, a naive implementation is unlikely to be competitive on any
realistic set of benchmarks. The combination of non-chronological backtracking and
learning with the DLL procedure (independently introduced in the solver Grasp [33]
and in the work of Bayardo and Schrag [2]) in the mid-1990s increased the interest in
the DLL procedure as a framework for SAT solvers considerably. Since then, numerous
improvements and refinements have been proposed for the standard algorithm which
increase its speed considerably. These can be grouped into two main categories.

First, datastructures and implementation techniques have been proposed which,
while not changing the high-level behaviour of the procedure, allow for considerable
speed-ups. For SAT solvers, low-level efficiency is extremely important. In modern im-
plementations, about 90% of the runtime is spent in Boolean Constraint Propagation
(BCP), i.e., in the exhaustive application of the unit rule. Low-level improvements can
therefore easily lead to big overall speed-ups. CNF is a structurally very simple format
for propositional formulas and lends itself especially well to efficient implementation
techniques.

Second, improvements have been made to the way the DLL procedure searches the
space of partial assignments. These include the development of various heuristics which
aim at finding good decision variables and the analysis of conflicts. The information
gained from a conflict can be used to prune unnecessary parts of the search space and
learn deduction shortcuts that can be applied if a similar region of the search space is
reentered at a later time.

In this section, low-level as well as high-level improvements to the DLL procedure
will be presented that have been shown to work well on practical problem instances.

21

3.1 The DLL Algorithm Revisited

A recursive version of the DLL algorithm was already presented in Chapter 2. In Algo-
rithm 3.1, a basic iterative version of the DLL algorithm is shown. This formulation is
closer to actual implementations, and will be used in order to fix some basic definitions
and notation.

First, a check is performed whether a conflict occurs without making any decisions,
and if that is the case, the algorithm returns the instance to be unsatisfiable. Otherwise,
we enter the main loop of the procedure.

First, the decide function is called, which either makes a decision and returns true,
or returns false if no more unassigned variables exist. In the latter case, the instance
is satisfied and the algorithm stops. Otherwise, the decision assignment is propagated
via BCP in the deduce function. If a conflict occurs, the procedure backtracks to the
last level where the decision variable has not been tried out in both phases. If no such
level exists, that is, if all branches have been explored and found to be conflicting, the
algorithm returns the instance to be unsatisfiable. After backtracking, the solver enters
an unexplored branch of the search tree by flipping the previous decision assignment on
the backtracking level (flipLastDecision).

Algorithm 3.1: Iterative DLL
input : A CNF formula φ
output: Satisfiability of φ

I ← ∅;
dLevel← 0;
if deduce(I, φ) = Conflict then

return unsat;
while true do

// Check if all variables are assigned, else make decision assignment

if ¬decide(I, φ) then
return sat;

dLevel← dLevel + 1;
while deduce(I, φ) = Conflict do

repeat
undoAssignments(I, dLevel);
dLevel← dLevel− 1;

until dLevel > 0 ∧ triedBothPhases(dLevel) ;
if dLevel = 0 then

return unsat;
else

dLevel← dLevel + 1;
flipLastDecision(dLevel);

The variable dLevel denotes the current decision level of the solver. The decision

22

level equals the number of decisions made on the current search branch. The decision
level of a variable v, dLevel(v), is the decision level of the solver when the assignment
was made. The assignment of a variable v to a value x ∈ {T,F} in the current partial
interpretation will be denoted by v := x. When necessary, this notation is extended to
v := x@d where d = dLevel(v).

Note, that only the unit-rule is used in the deduce step. The pure-literal rule is
usually too expensive to be applied in every step of the search process, and its elimination
does not affect completeness.

3.2 Clause Learning and Non-Chronological Backtracking

In the mid-nineties, two improvements, non-chronological backtracking and clause learn-
ing were first used in SAT solving [33; 2]. In clause learning, new clauses are added to
the clause database when a conflict is encountered. Such new clauses serve as deduction
shortcuts if a similar region of the search space is entered later on. Non-chronological
backtracking uses conflict analysis to identify possibilities for jumping back past unex-
plored branches, if those branches of the search tree are sure to lead to conflicts.

The combination of these techniques increased solving efficiency considerably. The
general framework of the DLL algorithm with clause learning and non-chronological
backtracking has been the foundation for the most efficient solvers for industrial instances
to date.

3.2.1 Clause Learning

The original DLL procedure is simply a systematic search process through the space
of partial assignments. Assignments are iteratively enlarged until either a satisfying
assignment is found or a conflict is encountered, which causes the algorithm to backtrack.
Many of the conflicts that occur during the search procedure may have the same or
similar causes. Consider as an example the following CNF formula φ,

φ = (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ ¬x3) ∧ (. . . ∨ . . . ∨ . . .) ∧ . . . ∧ (. . . ∨ . . . ∨ . . .).

If x1 and x2 are both false at some point during the search, a conflict will occur since
we can deduce that x3 = T and that x3 = F using the unit rule. This conflict may occur
exponentially often in the number of variables of φ. To a human, it would become clear
soon that x1 must be true whenever x2 is false, and vice versa. This information can be
used to avoid entering regions of the search space that are sure to lead to conflicts.

It is surprisingly easy to add this technique to a DLL framework. In our case, we can
simply use the propositional constraint ¬(¬x1 ∧¬x2) to encode our knowledge that not
both x1 or x2 may be false. Pushing the negation down to the literals with De Morgan’s
rule leaves us with the clause (x1 ∨ x2) which subsumes both of the original clauses and
can be added to our original formula. Note, that this would also be the resolvent of the
two clauses.

23

Whenever one of the two variables now becomes false, the unit rule can be immedi-
ately used to determine that the other variable must be true. We therefore save a decision
and the additional inspection of the search tree that it would entail. Such a clause is
called a learned clause or a conflict clause (a conflicting clause, in contrast, is a clause
that evaluates to false under the current partial interpretation). The learned clause is
redundant, the new formula with the added learned clause is therefore logically equiv-
alent to the original one. One can think of the learned clause as a deduction shortcut
since the information it encodes is already contained in the original CNF formula.

The main idea behind conflict analysis and clause learning is to generalize the above
idea. Information is extracted from conflicts which is then used to avoid entering similar
regions of the search space later on. This is done by tracing back a conflict to a responsible
variable assignment.

Given a CNF formula φ, We call an assignment A responsible for a conflict, if A is
sufficient for producing the conflict via BCP. More formally, an assignment A is respon-
sible for an extension A′ of A iff A′ can be produced by repeatedly extending A using the
unit rule. We call A responsible for a conflict, if it is responsible for a total assignment
that is not a model.

After identifying such a responsible assignment, we can add a clause which prevents
any extension of that assignment from occurring again. Intuitively, we try to find and
encode the reasons for a given conflict in order to avoid running into the same conflict
again later on.

In general, such an assignment can be found by repeatedly resolving the conflicting
clause with those clauses that led up to the conflict by inducing assignments in BCP.
Instead of using such a resolution-based characterization, we will use the notion of an
implication graph.

Definition 14. At a given step of the DLL procedure on CNF formula φ, the implication
graph is a directed acyclic graph (A, E) where

• A = A′∪� and A′ is the set of all possible variable assignments, i.e., A′ = { (v :=
X) | v ∈ vars(φ), X ∈ {T,F} } with vars(φ) being the set of Boolean variables
occurring in φ. The box � is a special conflict node.

• There is an edge (ak, al) ∈ E iff

– al was implied in the current DLL search branch during BCP by a clause c
which contains the literal that is made to evaluate to false by ak or

– al = � and ak makes a literal in the conflicting clause evaluate to false.

When a conflict occurs, we can traverse the implication graph (A, E) backwards from
the conflict node in order to identify a responsible assignments. This can be done by
choosing a set of vertices S ⊆ V , so that each path on the implication graph from a
decision to the current conflict passes through at least one node in S. The set of prede-
cessors of the conflict node, for example, constitutes a trivial responsible assignment for
the conflict. By replacing nodes with their predecessors (if such predecessors exist), we

24

...
...

...

dlevel 4 v4 := 0@4

v7 := 1@4

dlevel 5
v2 := 1@5

v5 := 1@5
v1 := 0@5

...
...

...

dlevel 11

v11 := 1@11

v3 := 1@11

v12 := 0@11

v8 := 1@11

v6 := 0@11

v9 := 1@11

v10 := 0@11 Conflict

responsible
assignment

Above, an example of an implication graph at a conflict is shown. The chosen responsible assignment is
indicated by the red area, the resulting conflict clause is cconfl = ¬v7 ∨ v1 ∨ v10.

Newer implementations of conflict-driven backtracking (red) differ slightly from Grasp’s original
backtracking strategy [33] (green). Grasp backtracks to the highest decision level, newer solvers to the
second-highest level.

...
...

...

dlevel 4 v4 := 0@4

v7 := 1@4

dlevel 5
v2 := 1@5

v5 := 1@5
v1 := 0@5

v10 := 1@5

...
...

...

dlevel 11

v10 := 1@11

Figure 3.1: Example for learning, non-chronological backtracking, and conflict-driven
assignments.

25

can generate other responsible assignments. This “replacement” is actually a resolution
step, as was briefly described before, the variable resolved upon being the variable that
was assigned a value due to BCP. For an example of a responsible assignment after a
conflict, consider Figure 3.1.

We can then create a clause which acts as a constraint, ensuring that the same
set of assignments will not occur again. For the set of responsible assignments S, the
added conflict clause cS contains exactly those literals which are contradicted by the
assignments in S, e.g., for S = {x1 := >, x2 := ⊥, x3 = >} we would have cS =
¬x1 ∨ x2 ∨ ¬x3. The next time a similar region of the search space is encountered, the
added clause may act as an implication shortcut which may instantly force a variable
assignment via BCP, where otherwise, the solver would have to resort to decisions to
determine the value of the variable.

3.2.2 Non-Chronological Backtracking

After a conflict has been identified, traditional implementations of the DLL procedure
would backtrack chronologically, i.e., they would reset the solver to the highest decision
level where both values of a decision variable have not been tried out. The solver would
then proceed the solving process by assigning to this variable the so far untried value.
This technique is called chronological backtracking.

In non-chronological backtracking (also referred to as conflict directed backjumping),
a solver may backtrack further than that, essentially leaving a number of branches unex-
plored. The main idea is that in backtracking, a SAT solver can skip over all unexplored
branches which are sure not to lead to a satisfiable assignment. The identification of
the backtracking level relies on the implication graph described above and is closely
connected with the idea of learned clauses.

Non-chronological backtracking was not invented in SAT solving, but is a well studied
technique originating in the area of constraint satisfaction problems under the name of
“dependency directed backtracking” [40].

When a conflict is encountered, a clause is learned by analyzing the conflict and
identifying a responsible assignment S from the implication graph. From this responsible
assignment, we can determine the maximal decision level associated with any individual
assignment in S

dmax = max
(v:=X)∈S

dLevel(v).

Since the learned clause is added to the instance, resulting in a logically equivalent
instance, the solver state will remain conflicting until at least one of the assignments in
S is undone. Even if the learned clause is not added to the clause database, the solver
is guaranteed to encounter only conflicts if we backtrack to any decision level d ≥ dmax

since the learned clause just provides a shortcut to an exploration of a certain part of the
search space in the original instance. The unexplored branches from the current level
up to the start of dmax can safely be skipped.

Each of the skipped branches could theoretically unfold to a partial search tree that is
exponential in the size of the remaining variables. Non-chronological backtracking can

26

result in considerable performance improvements because it prevents the solver from
entering or staying in such uninteresting regions of the search space.

We can also think of non-chronological backtracking as a way of recovering the solver
from the negative consequences of bad decision orderings. In a good variable ordering,
conflicts are produced as soon as possible, i.e., conflicting decisions are grouped close
together. In the case of a bad ordering in the traditional DLL procedure, the variable
assignments for a given conflict may occur on widely separated decision levels, which
may lead to an exponential increase in runtime compared to a good ordering. Non-
chronological backtracking can help to identify this wide level-span between conflicting
variables and jump back to the earlier levels sooner.

3.2.3 DLL with Clause Learning and Non-Chronological Backtracking

Since clause learning and non-chronological backtracking change the structure of the DLL
procedure considerably, it is useful to recharacterize DLL in the iterative formulation
in Algorithm 3.2. The deduce function performs BCP and determines if a conflict has
occurred, decide performs a decision assignment or returns false if no more decisions
can be made. The analyze function is called when a conflict has occurred. It adds a
conflict clause to the clause database and determines a backtracking level. If it would
be necessary to undo assignments at decision level 0, that is, if the conflict does not
depend on any decisions made, the instance is unsatisfiable. Otherwise, backtracking is
performed and the newly learned clause is used in BCP to advance into new parts of the
search space.

The code in Figure 3.2 is very close to how the DLL procedure is actually imple-
mented. Since the structure of the algorithm is somewhat complex, a more abstract,
graphical representation is also given in Figure 3.2.

3.2.4 Backtracking to the Second-Highest Decision Level

Grasp’s backtracking strategy is rather complex. There, the backtracking level is the
most recent decision level found in the chosen responsible assignment. The first conflict
of a decision always contains a literal of the most-recent decision level in any responsible
assignment. Therefore, Grasp always backtracks chronologically after the first conflict
that is encountered right after a decision. After this step, the first assignment that
is made is the result of a learned clause, i.e., its node in the implication graph has
antecedent vertices from earlier decision levels. If, at this point, a second conflict occurs,
a responsible assignment can be found that contains only assignments made on earlier
decision levels (by traversing the implication graph backwards past the initial assignment
of the most recent decision level).

In contrast, modern solvers backtrack up to the second-highest decision level encoun-
tered in the conflict clause that is, they backtrack as far as it is possible for the conflict
clause to stay an asserting clause, i.e., a clause where all but one literal evaluate to false
under the current partial assignment. The assignments made on the second-highest deci-
sion level are not undone. Now, upon resuming BCP, the asserting clause becomes unit

27

Algorithm 3.2: DLL with clause learning and non-chronological backtracking.
input : φ - a CNF formula
output: Satisfiability of φ

I ← ∅;
if deduce(I, φ) = Conflict then

return unsat;
while true do

// Check if all variables are assigned, else make decision assignment

if ¬decide(I, φ) then
return sat;

while deduce(I, φ) = Conflict do
(backtrackLevel, conflictClause)← analyze(I, φ);
φ← φ ∪ conflictClause;
if backtrackLevel < 0 then

return unsat;
else

backtrack(I, backtrackLevel);

BCP analyze
conflict

learn
clause,

backtrack

make
decision

UNSATSAT

conflictno conflict

all assigned conflict at root level

Figure 3.2: The DLL algorithm with learning and backtracking.

28

and the resulting conflict-driven assignment takes the SAT solver into an unexplored
region of the search space. In Figure 3.1, an illustration of the two different approaches
is presented via the implication graph.

The branches that are skipped between the highest and second-highest decision level
of the clause are not guaranteed to lead to conflicts. Essentially, part of the viable search
space is thrown away and has to be explored again. The reasons for this counter-intuitive
strategy seem to be twofold, one systematic, the other technical in nature.

First, being able to deduce more at an earlier decision level may allow the solver
to make heuristically smarter decisions on the direction of the search. The solver may
otherwise end up in a region of the search space which—while viable in the sense that
a satisfying assignment may be found—it would not have chosen heuristically given
the information learned in that region. Second, jumping back to the second-highest
decision level is easier to implement for a number of reasons. Together with the First-
UIP clause-learning strategy (to be discussed in Section 3.3), it always produces asserting
clauses. Also, in Grasp’s strategy, conflict clauses may be used in BCP only some
search levels after they become eligible for BCP. Consider a responsible assignment
S = {v1 := 0@3, v2 := 1@4, v3 := 1@7}. Grasp would backtrack to decision level 7 and
assign v3 := 0 via BCP, while, in fact, it could have already been assigned at decision
level 4. When subsequently backtracking to level 5, for example, care should be taken
that v3 := 0 is not undone along with the other assignments.

Ideally, a SAT solver will choose a clause learning strategy which produces conflict
clauses that are asserting clauses. This has the advantage that upon backtracking, the
conflict clause becomes a unit clause and causes the solver to enter another part of the
search space. This new variable assignment is then called conflict-driven assignment.

Conflict-driven backtracking raises the issue of completeness. If parts of the viable
search space are thrown away, can we be sure that the solver does not run into a cycle
where a number of partial assignments are repeated? Indeed, we can; as long as the
solver produces only asserting clauses, we can prove that a solver can never run into a
partial interpretation twice. First, we need to introduce some concepts that allow us to
formalize parts of the DLL procedure:

For a SAT instance φ, we define the state of a DLL solver that follows the framework
of Algorithm 3.2 as the number of times the deduce-function was called. A state S is
later than a state S′ if S′ < S, and earlier if S < S′. The current partial interpretation
for a state S is denoted by I(S), the current decision level for a state is denoted by
dLevel(S). A state S is non-conflicting if no clause is false under I(S).

Theorem 3.2.1. Given a DLL solver that follows the framework of Algorithm 3.2,
produces only asserting conflict clauses, and backtracks to the second-highest decision
level of a responsible assignment. Then there can be no pair of distinct non-conflicting
states (S1, S2) where S2 is later than S1 and I(S1) = I(S2).

The following induction proof is based on the shorter proof given in Kröning and
Strichman [27]. The main intuition is that whenever a solver backtracks, the search is
taken to a fresh region of the search space through the conflict-driven assertion.

29

dLevel = 0

. . .

S−− (dl−−)

. . .

S− (dl−)

. . .

S1 (dl)

. . .

� (dl+)

. . .

�

. . .

S∗2

. . .

S2

Figure 3.3: An illustration of the induction step of the proof of Theorem 3.2.1.

Proof. Let S1 be a non-conflicting state at decision level dl. Assume furthermore, that
there is another, later state S2 distinct from S1 where I(S1) = I(S2), which would be a
necessary requirement for a cycle to occur.

If the solver is to proceed from S1 to S2, it must encounter a conflict at a decision
level dl+ > dl which causes the solver to backtrack to a state S− at a decision level
dl− ≤ dl.

We claim that, for any such pair of states (S1, S2) and any such decision level dl−,
it holds that I(S2) 6⊆ I(S1) and therefore I(S1) 6= I(S2). We use induction over dl− to
prove this.

First, take the case where dl− = 0. Let cdl+ be the conflict clause that was learned in
the conflict at dl+. Since, by assumption, cdl+ is an asserting clause, it is unit at decision
level 0 and produces a conflict-driven assignment (a := v) ∈ I(S−). The conflict-driven
assignment must be the opposite phase to an assignment a := v that was made on a
decision level dl′ with dl < dl′ ≤ dl+. Therefore, it holds that (a := v) /∈ I(S1). Since
S− is at decision level 0, any interpretation I(S′) of a subsequent state S′ must be an
extension of I(S−) and therefore contain (a := v). Since S2 is such a subsequent state,
I(S2) must contain (a := v). Since (a := v) /∈ I(S1), it holds that I(S2) 6⊆ I(S1)

We can now formulate our induction hypothesis as follows:

30

For any pair of states (S1, S2) where S1 is earlier than S2 and the first backtrack
after S1 to a decision level smaller or equal than dLevel(S1) is to a level smaller than
dl−, it holds that I(S2) 6⊆ I(S1).

It remains to show that I(S1) ⊆ I(S2) ⇒ I(S2) 6⊆ I(S1) if the first backtrack to
a level smaller or equal than dLevel(S1) is to dl−. Let S− again be the state after
backtracking and assume that S2 ≥ S−. We can distinguish two cases.

• S2 is reached from the original backtracking state S− without any further back-
tracks to decision levels smaller or equal to d−.

Then we can reason analogously to the case dl− = 0 that I(S2) contains a conflict-
driven assignment which is not contained in I(S1). Therefore, it holds that I(S2) 6⊆
I(S1).

• At least one conflict is encountered between S− and S2 that causes a backtrack to
a decision level smaller than dl−. Since this case is rather complex, an illustration
is given in Figure 3.3. Now let S−− be the latest state with S− < S−− < S2,
where

∀S′ : S− < S′ < S2 ⇒ dLevel(S−−) ≤ dLevel(S′)

Thus, S−− is the state right after the last minimum-decision-level backtrack that
occurs between S− and S2.

Now assume that I(S2) ⊆ I(S1). To reach S2 from S−− it is then first necessary to
reach a state S∗2 where I(S∗2) ⊆ I(S−) (since I(S−) ⊆ I(S1). Therefore, (S−, S∗2) is
a pair where S− is earlier than S∗2 and the first backtrack to a decision level smaller
than dLevelS− is to a decision level smaller than dl−. Furthermore, I(S∗2) ⊆
I(S−).

This contradicts our induction hypothesis, therefore I(S1) 6⊆ I(S1), since we know
that such a state S∗2 cannot be found after a backtrack to a decision level smaller
than dl−.

Therefore I(S1) 6= I(S2).

The introduction of conflict-driven assignments changes the structure of the search
process subtly. While in traditional DLL, both values of a variable have to be systemat-
ically tried out, in DLL with learning and non-chronological backtracking, we only try
out one phase of a variable. If this assignments runs into a conflict, a clause is learned
that takes the solver to a new part of the search space automatically after backtrack-
ing by virtue of a conflict-driven assignment. All this is conveniently handled by the
standard BCP mechanism and needs no special implementation.

31

3.2.5 Clause-Database Management

A short overview of different clause-database implementations is given in Zhang and
Malik [54]. In most cases, a sparse matrix representation is used to represent clauses,
i.e., each clause is represented as an array of literals occurring in the clause. Literals
themselves are usually represented as integers, an integer i representing the literal vi
and −i representing ¬vi. A common trick that is used in SAT solvers (e.g., MiniSAT) is
to use the least significant bit to store the sign, since the variable can then be retrieved
simply by a right-shift instead of an “if” operation.

The early SAT solvers Grasp [33] and rel sat [2] used pointer heavy datastructures to
store clauses. This has disadvantages in cache-efficiency since the pointer dereferences
lead bad cache efficiency in BCP. Modern solvers usually store the clauses in a large
linear array, which necessitates dedicated garbage collection code, but is more efficient
overall. Zhang and Malik [54] report some techniques that use zero-suppressed binary
decision diagrams [9] or tries [52] to store clauses, but find that the additional overhead
is not worth the performance increase. A possible advantage of more structured clause
database formats is an easy identification of duplicate and subsumed clauses (clauses
whose literals are a subset of another clause’s literals) for on-the-fly clause-database
simplification.

Besides questions of implementation, systematic issues arise pertaining to the ques-
tion of how to deal with the growth of the clause database which is exponential in the
number of variables in the worst-case. In Grasp [33], a space-bounded diagnosis engine
is proposed which makes this worst-case growth polynomial. First an integer k is cho-
sen. Newly learned clauses that have more than k literals are marked for early deletion.
They must be kept as long as they define conflict-driven assertions (in order to keep the
solver complete), but are deleted immediately afterwards. Since learned clauses encode
redundant information encoded in the original CNF instance, deleting clauses does not
compromise correctness.

The solver rel sat [2] proposes to delete clause of low relevance. A clause is considered
relevant if few of its variables have changed assignment since the clause was derived. The
intuition is to find a way to identify clauses that have a low chance of being used to derive
conflicts or unit-assignments in the current part of the search space. BerkMin [19] uses a
combined strategy of deleting old clauses with many literals that have not been involved
in conflicts recently. The age of a clause is implied by its position on the clause stack.
For the clause activity, counters are associated with each clause which count the number
of conflicts the clause has helped derive. Counters are periodically divided by a constant,
so that more recent activity has relatively higher impact than less recent activity.

3.3 Strategies for Clause Learning

Given a single conflict, there is a number of possible responsible assignments that can
be chosen to induce a conflict clause. A very simple strategy would be to choose as
a responsible assignment all decisions that have been made so far. Obviously, this

32

assignment is sufficient to produce the conflict. The conflict clause induced by this
assignment is on the other hand not very useful. Exactly the same arrangement is
unlikely to occur again very often during the search, therefore the clause will be unlikely
to be useful in pruning the search space.

There are some properties which seem useful when choosing a conflict clause, some
of which are discussed in Zhang et al. [55]. First, the conflict clause should be small
since small clauses are considered more powerful in pruning the search space on aver-
age. Second, there may be advantages in choosing a responsible assignment as close
to the conflict as possible in the implication graph. Finally, the literals in the conflict
clause should also have low decision levels, since this increases the gains from potential
backjumps.

3.3.1 Unique Implication Points (UIP)

The idea of choosing strong implicants for learned clauses goes back to the seminal paper
of Marques-Silva and Sakallah [33], the initial idea being to produce shorter clauses.
The idea is illustrated in Figure 3.4. Instead of choosing both v2 := 1 and v1 := 0 for
a responsible assignment, we could choose to include v0 := 0 since it is in some sense
“stronger” as it implies both of the former assignments. We can formalize this notion
by introducing the concept of domination. In an implication graph, a node x at level
d is dominated by a node y at the same level iff every path from the decision variable
of level d to x goes through y. Therefore, in the above example, v3 := 1 dominates the
conflict node, but v1 := 0 does not, since a path (v0 := 0, v2 := 0, v3 := 1,�) is possible
which does not include v1 := 0. Using the concept of domination, we can now give a
definition of unique implication points (UIPs).

Definition 15. A unique implication point is a node in the conflict graph that dominates
the conflict node.

In this definition, only nodes that are on the most recent decision level can be UIPs.
As an example, consider the implication graph in Figure 3.4 with two UIPs.

v0 := 0@2

v1 := 0@2

v2 := 1@2

v3 := 1@2

v5 := 1@1

� v4 := 0@0

UIPs

Figure 3.4: A simple implication graph with two unique implication points (UIP).

33

The idea of choosing a UIP as part of the responsible assignment is important since
only learned clauses that contain a UIP variable can be asserting clauses. The most
recent decision is always a UIP, which raises the question why we would want to invest
the effort into finding other UIPs at all. A possible answer to this question is that UIPs
which are closer to the conflict are, in some sense, more general since they encode the
more immediate reasons for a conflict. Also, keeping UIPs close to the conflict reduces the
number of assignments from earlier decision levels in the responsible assignment hence
keeping the overall clause size smaller. Biere [3] makes a very interesting observation
on this: Beside the general heuristic gain by smaller clauses, the chances also rise that
the second-highest decision level of the clause is earlier compared with a longer clause.
This allows for longer backjumps after each conflict which may account for much of the
performance gain obtained by using UIPs close to the conflict node.

The concept of UIPs has been extended in Zhang et al. [55] to include nodes on earlier
decision levels in a way which depends on the chosen responsible assignment. For the
definition, we will borrow the concept of a separating cut from Kröning and Strichman
[27].

Definition 16. A separating cut in a conflict graph is a subset-minimal set of edges
whose removal breaks all paths from the root nodes to the conflict node.

In Figure 3.4, examples for separating cuts are {v3 := 1, v4 := 0}, {v1 := 0, v2 :=
1, v4 := 0}, or {v0 := 0, v5 := 1, v4 := 0}.

The assignments that make up a cut always constitute a responsible assignment for
the conflict. Given a cut, we can partition the conflict graph into a conflict side and a
reason side. The conflict side contains all nodes that are on a path from a node in the
separating cut to the conflict node. The reason side contains all other nodes. We can
now generalize the concept of unique implication points to multiple decision levels.

Definition 17. Given a separating cut T , a node x is a unique implication point at
decision level d iff any path from a root node either goes through x or through a node y
on a decision level d′ > d, where y is on the reason side of the partition given by T .

Note that in the case of the most recent decision level, the two definitions are identi-
cal, i.e., a UIP is always a UIP at the most recent decision level. We call a UIP u1 earlier
than another UIP u2 on the same decision level if u2 dominates u1. The first UIP is
the earliest UIP on the most recent decision level. The last UIP is the first assignment
(usually the decision assignment) on the most recent decision level.

The concepts of last cut and first cut are defined in the following way.

Definition 18. Given an implication graph with a conflict, the first cut is the separating
cut that includes exactly the first UIP and those nodes on earlier decision levels that have
an edge to the conflict side of the most recent decision level.

Definition 19. Given an implication graph with a conflict, the last cut is the separating
cut that includes exactly the last UIP and those nodes on earlier decision levels that have
an edge to the conflict side of the most recent decision level.

34

3.3.2 Choosing a Cut for a Learned Clause

At each conflict, it is possible to learn a number of clauses that encode reasons for the
conflict. Each separating cut on the implication graph yields a distinct learned clause.
In Zhang et al. [55], detailed descriptions and comparisons of different learning strategies
are given. The following information about Grasp’s and rel sat’s learning strategies will
be taken from there, since a more in-depth description is given than in the original
papers.

The two first solvers that included learning and backtracking, rel sat [2] and Grasp
[33], have very different clause learning strategies. The solver rel sat simply adds the
conflict clause that is induced by the last cut. The responsible assignment thus includes
the decision variable of the most recent decision level and all assignments from earlier
levels that have an outgoing edge to a node on the conflict side. Grasp’s [33] strategy
is described in detail in Zhang et al. [55]. It is unique for two reasons. First, different
clause learning strategies are used in the solver depending on the current status of the
search where in each multiple clauses are learned for one conflict. Second, some clauses
that are learned do not result from conflicts, but constitute general deduction shortcuts.
Grasp uses two solver modes that determine how learning is done.

The first, referred to from now on as “decision mode”, is active whenever a conflict is
encountered as a direct result of a decision. The second, “backtracking mode”, is active
whenever the solver encounters a conflict when the first assignment on the conflicting
decision level was made due to a result of an earlier conflict. Some of this complexity
may arise from the fact that Grasp chooses the highest decision level encountered in
a conflict clause as a backtracking level instead of the second-highest. Therefore the
first assignment made on a decision level may itself be implied by assignments made on
earlier decision levels, i.e., the first assignment on a decision level may have antecedents
in the implication graph.

Grasp follows the strategy of learning more than one clause from each conflict. In de-
cision mode, the first-cut scheme is used to induce a conflict clause. Additionally, clauses
are learned which encode deduction shortcuts for UIPs. In backtracking mode, the same
clauses are learned as in decision mode with the addition of a so-called back-clause. The
back-clause contains only assignments made on earlier decision levels. It can be found
by tracing back the implication graph from the conflict node until assignments on earlier
decision levels are encountered. This corresponds to the cut where all assignments on
the most recent decision level which are on a path to the conflict are on the conflict side
and all other assignments on the reason side. After learning the back-clause, the solver
backtracks to the highest decision level of any assignment in this cut.

The first-cut scheme that is used in Grasp can also be extended to multiple decision
levels using our generalized definition of a UIP. For this, we first determine the parti-
tioning of assignments on the most recent decision level according to the first cut. Then
we can step up one decision level and identify a UIP at this earlier level using the partial
partitioning on the more recent level below. This can be repeated for an arbitrary num-
ber of decision levels. While this seems intuitively useful since it reduces the size of the
learned clause, Zhang et al. [55] conclude in an in-depth analysis of learning strategies

35

that the most efficient overall strategy seems to be to just learn one clause corresponding
to the first cut, and not try to find UIPs at earlier levels. This strategy also performed
better than the Grasp and rel sat learning schemes. Biere [3] suggests that this increase
may result from the increased locality of the search. The first-cut scheme is also the
most commonly used learning scheme in newer solvers (e.g, MiniSAT, RSAT).

3.4 Efficient Datastructures for BCP

In DLL algorithms, Boolean Constraint Propagation (BCP),i.e., the exhaustive applica-
tion of the unit rule, is usually by far the most time consuming subtask. It is estimated
that BCP takes up about 90% of the runtime in a typical solver [34]. Therefore, im-
proving the efficiency of this step is one of the most crucial aspects in engineering a fast
implementation.

One of the main determining factors for the efficiency of any implementation is the
choice of datastructures. In BCP, the areas of special interest are those which are
involved in determining the state of a clause at any point in the search process, that
is, to determine when a clause becomes unit, conflicting, or satisfied under the current
partial assignment. Newer SAT solvers do usually not distinguish between clauses that
are satisfied and unresolved clauses. The additional overhead of managing such a clause
list is not worth the benefits.

We can broadly distinguish between busy and lazy datastructures for determining
the state of a clause. Busy datastructures update the state of a clause immediately after
one of its literals has been assigned. Early SAT solvers such as GRASP [33] used this
approach. A major performance improvement was obtained by using lazy datastructures.
They perform more work at each state update, but such updates are not performed every
time a clause literal is assigned. Compressing more related work into steps that happen
less often increases space locality. Clause literals are usually stored in contiguous blocks
of memory. Accessing more than one literal at each state update therefore accesses the
cache instead of the main memory, which leads to an overall performance improvement.

The average numbers of accesses per variable assignment that are presented in the
following discussion are taken from [53].

3.4.1 Counter-Based Approaches

Most prominent in the category of busy datastructures is the counter-based approach,
in which literal assignments are represented by counters associated with each clause.
In Zhang and Malik [53], the first use of this approach is traced back to Crawford and
Auton [11]. Clause counters are updated when a variable is assigned, and have to be
undone during backtracking.

Grasp [33] uses a simple version of the counter-based approach, counting the number
of satisfied (cs) and unsatisfied (cu) literals for each clause, and checking these values
against the total number of literals nl in the clause. Unit clauses and conflict clauses
can then be efficiently determined.

36

If cs = 0 and cu = nl − 1, then the clause is unit, if cu = nl, it is a conflict clause.
For a random SAT instance with n variables, m clauses, and an average of l literals per
clause, this necessitates an average of l∗m

n counter updates per variable assignment.
Another variant of this scheme is proposed in Zhang and Malik [53] which is slightly

more efficient. In this version, each clause is associated with only one counter that
corresponds to the number of literals that are not unsatisfied. Then, the average number
of accesses is decreased to l∗m

2n . Additionally, since less space is needed to represent the
counters, this approach is slightly more cache efficient.

3.4.2 Head/Tail Lists and Literal Watching

Lazy datastructures use the following basic idea to effectively decide the state of a clause.
As long as there are at least two distinct literals that do not evaluate to false in a clause,
then this clause is either satisfied or unresolved. This can be monitored by keeping two
references to distinct satisfied or unassigned literals, the so-called watched literals. When
one of them gets assigned to a value that dissatisfies the literal, the reference is moved to
another satisfied or unassigned literal which becomes the new watched literal. If no such
literal can be found, then the clause is either unit or conflicting, depending on whether
the other watched literal points to an unassigned or unsatisfied literal.

Literal references can be implemented by managing occurrence lists. An occurrence
list of a literal stores references to each clause in which that literal is watched. If an
assignment is performed, the occurrence lists of the newly dissatisfied literal is visited.
Moving a watched literal inside a clause can be done by removing a clause from its old
occurrence list and appending it to the list of the newly watched literal.

The idea of referencing two literals to determine the status of a clause was first
presented in the form of head/tail (H/T) lists in the SAT solver SATO [52]. As the
name implies, two lists with references to literals are kept here, the head lists and the
tail lists. The head list is initialized with pointers to the first literal of each clause, the
tail list with the last literal. When a literal that is referenced in one of those two lists
is assigned a value, the reference is removed from the list, and a new unassigned literal
is searched for. In the head list, this search is performed in the direction of the last
literal, in the tail list, the direction is reversed. If a satisfied literal is encountered, the
clause is declared satisfied. If a new unassigned literal is encountered, it is added as
a new reference to the appropriate list, if none can be found, the status of the clause
is updated according to the value of the clause’s second watched literal. If the other
watched literal is satisfied, the clause is declared satisfied, if it is unsatisfied, the clause
is conflicting, and if the other literal is unassigned, the clause has become unit and the
other watched literal is the new implied assignment.

Backtracking for the H/T datastructure requires moving literal references back against
their normal directions in the head and tail lists as far as possible. Caching can be used
to associate backtracking levels with certain pointer configurations so that backtracking
of a clause’s state takes constant time, but this also increases memory consumption.

Another scheme was proposed in the SAT solver Chaff, the watched-literal (WL)
scheme [34]. As in H/T, two references to literals are kept for each clause. The difference

37

Watched literals:

¬v1 v2 v3 ¬v4

Head/tail literals:

¬v1 v2 v3 ¬v4

v4 := 1

¬v1 v2 v3 ¬v4 ¬v1 v2 v3 ¬v4

v1 := 1

¬v1 v2 v3 ¬v4 ¬v1 v2 v3 ¬v4

v3 := 0

¬v1 v2 v3 ¬v4 ¬v1 v2 v3 ¬v4

no free literal ⇒ UNIT

backtrack v1, v2, v3, v4

¬v1 v2 v3 ¬v4 ¬v1 v2 v3 ¬v4

Consider the example clause
¬v1 ∨ v2 ∨ v3 ∨ ¬v4

above and its state changes during BCP. In the watched-literal (WL) scheme (left), the
watch pointer movement direction can be arbitrary. In the head/tail-list (H/T)
scheme, the head literal always moves left-to-right, and the tail literal right-to-left.

During backtracking, no work needs to be done for WL. For H/T, the head and tail
pointer have to be moved to the leftmost and rightmost non-conflicting literal
respectively.

Figure 3.5: Chaff’s watched literals and SATO’s head/tail lists.

38

between the two schemes is that in WL, no special order or search direction is imposed
on the literals. The only requirement when searching for a new position is that the new
literal is unassigned or satisfied.

This may lead to more time being spent in search for a new unassigned literal when-
ever a clause’s status is updated, but this is a operation that is highly local in memory
and therefore very cache efficient. Another advantage of WL is that it removes the need
for changing any clause’s references during backtracking.

To summarize, the watched-literal scheme as implemented in Chaff [34] performs the
following steps when processing an assignment to an opposite-phase watched literal:

Step 1 Search for a new unassigned or satisfied literal.

Step 2 If such a literal exists and it is not the second watched literal of the clause, move
the watched literal to the new position by removing the clause reference from the
old watch list and appending it to the watch list of the new watched literal.

Step 3 If no such literal exists, check the status of the other watched literal:

3.1 If the other watched literal is unassigned, the clause is unit.

3.2 If the other watched literal is unsatisfied, the clause is conflicting.

In a SAT solver that uses the WL scheme, performing the above steps usually takes
up most of the runtime. It is therefore worthwhile to investigate highly efficient im-
plementations as is done in Biere [5]. A popular approach used in many solvers is to
associate each literal with a list (or stack) of so-called watcher datastructures. These
watchers keep a reference to a clause and its watched literals. Biere [5] proposes instead
to reference the clause as a whole and keep the watched literals at the first and second
position of the clause respectively. This avoids the overhead of separate watcher data-
structures and yields an improved cache efficiency. Figure 3.6 illustrates this technique.

3.4.3 Special Handling of Small Clauses

In many practical problem instances, binary and ternary clauses, i.e., clauses with two
or three literals take up a considerable percentage of the input instance. Given a random
variable assignment, the chance of such a clause becoming unit is relatively high. Unit-
rule applications over binary clauses therefore may make up a considerable percentage
of BCP.

For binary clauses, determining their status with the standard WL technique entails
considerable overhead compared with a more direct implementation. One possibility
would be to add vectors of direct implications, which—similar to the implication graph
in 2-CNF—store for every literal l all other literals l′ where l∨ l′ is a binary clause in the
clause database. Whenever a variable is assigned a value, all resulting assignments due
to binary clauses can then be processed immediately. If one of the resulting assignments
is impossible since the opposite value is already assigned to the destination variable, a
conflict can be concluded.

39

Dedicated watcher:

Occurrence lists

¬v1

¬v2

¬v3

...

· · ·

· · · ¬v7 v3 v10 ¬v1 ¬v15

Watcher

v1

v2

v3

...

...

...

...

Watched literals at constant position:

Occurrence lists

¬v1

¬v2

¬v3

...

· · ·

· · ·

v10v3 ¬v1 ¬v7 ¬v15v1

v2

v3

...

...

...

...

Figure 3.6: Different implementations of the watched-literal scheme.

40

In the SAT solver FUNEX, clauses are divided into three classes (binary, small, and
large), and only large clauses use the watched literal scheme (for a detailed discussion see
Biere [3]). MiniSat [39] uses mixed watch lists for literals, that contain both references
to clauses and directly implicated literals from binary clauses. The reason given for this
implementation choice is that, if stored separately, all direct implications are performed
together either before or after the watched-literal BCP step, which is reported to lead
to slightly less useful conflict clauses. On the other hand, the SAT solvers FUNEX and
NanoSAT make use of implication lists exactly for this reason, i.e., to be able to process
binary clause implications before the actual BCP step. The reason given here is that
the binary BCP step is less expensive and should therefore be used exhaustively before
going on to the more expensive watched-literal BCP step.

3.5 Variable Selection Heuristics

The DLL procedure is highly sensitive to the choice of decision variables. For satisfiable
instances, an optimal decision heuristic would be able to produce a result in a linear
number of DLL steps by incrementally choosing decision variables from a satisfying
assignment. Of course, since SAT is NP complete, the problem to find any such perfect
heuristic for an input formula must be NP complete itself, thereby moving the complexity
of SAT into the decision heuristic. While such a perfect heuristic is not practically
interesting, it is still possible to find heuristics that work well in the average case for
certain classes of problems.

For unsatisfiable instances, a good decision heuristic would choose variables that
are expected to lead to conflicts as early as possible. This keeps the search tree from
expanding unnecessarily by closing down unfruitful parts of the search space early in
the search process. Additionally, causing conflicts early produces short conflict clauses.
Short conflict clauses are more powerful than long conflict clauses since they prune
larger parts of the search space. In many SAT implementations, long learned clauses
are removed from the clause database after a while or not even stored for exactly this
reason.

Another important consideration when choosing a decision heuristic is its efficiency.
Often a trade-off has to be considered between the predictive power of a heuristic and
the runtime that is consumed by its computation.

3.5.1 Early Heuristics

Early decision heuristics were usually greedy in the sense that they tried to maximize
the number of implications that a given variable assignment would produce. In order
to estimate the consequences of a variable assignment, some heuristic function over the
input CNF-formula and the current partial assignment is used. Examples are Böhm’s
heuristic and the Maximum Occurrences on clauses of Minimum size heuristic (MOM),
both of which are briefly described in Marques-Silva [32]. Both of these choose literals
which satisfy the highest number of possible clauses considering only unsatisfied clauses

41

of minimum length. Moreover, both try to choose a balanced variable, for which both
literals fulfill this criterion to some extent. They differ in the exact balancing method
that is used. Böhm’s heuristic just calculates a linear weighting of both literals’ scores
for a variable, whereas MOM uses a non-linear function.

Dynamic largest independent sum (DLIS), originally presented in Marques-Silva [32],
is a conceptually simpler, but nevertheless effective heuristic based on counting liter-
als. Here, the decision assignment is chosen that makes the literal with the highest
independent occurrence count among unsatisfied clauses evaluate to true. The term
“independent”, here, refers to the fact that the score of the opposite-phase literal does
not influence the decision, i.e., for choosing a phase, DLIS is a greedy heuristic, not a
balanced one.

3.5.2 Second-Order Heuristics

While earlier decision heuristics were functions of the current state of the solver, the
SAT solver Chaff [34] introduced second-order heuristics that are functions not only of
the current, but also of the preceding states of the solver.

Specifically, a second-order heuristic called Variable State Independent Decaying Sum
(VSIDS) was introduced, which depends closely on the conflict analysis step that Chaff
uses for clause learning and non-chronological backtracking.

VSIDS essentially estimates a literal’s likelihood to produce conflicts by pushing a
sliding window over all literals involved in recent conflicts. Each literal on the variables in
the input formula is associated with two counters that are initialized to zero. Whenever
a conflict is encountered, the counters for the literals occurring in the conflict clause are
increased. In the decision step, a branching literal with maximum score is chosen for
assignment. Periodically, all counters are divided by a constant. This leads to older
conflicts becoming less relevant for a literal’s score, which, in turn, increases the locality
of the search.

In the SAT solver BerkMin [19], a number of changes are made to the VSIDS pro-
cedure. The most important change is that the choice of a decision literal, while still in
general guided by the maximum score, is confined to the so-called top clause. The top
clause is the most recently learned clause that is not satisfied.

The idea behind this procedure is to increase the mobility of the search, that is, to
increase the speed at which the search refocuses on a new part of the search space. If
the search enters a new region, e.g., by backtracking non-chronologically, VSIDS may
make bad decisions for a number of iterations due to the fact that its literal scores
change only slowly to reflect the circumstances of the new part of the search space.
BerkMin’s strategy of choosing a literal of the top-clause as decision variable reduces
this lag considerably by further promoting variables involved in recent conflicts. A naive
implementation can lead to a large percentage of the runtime being spent searching for
the top clause. Caching of the location of the top clause in the clause stack eliminates
this problem.

Another change to VSIDS is that, in BerkMin, instead of just incrementing the scores
of the conflict clause’s literals, the solver steps backwards through the implication graph

42

and increases literal scores of clauses that were involved in producing the conflict. If a
certain literal occurs multiple times in the clauses, its score is also increased more than
once. This entails a slightly higher overhead for the decision heuristic, but allows for
more finely-grained estimation of a literal’s tendency to lead to conflicts.

3.6 Restarting and Randomizing the Search

As has been mentioned before, DLL-based SAT procedures are highly sensitive to the
choice of decision variables. Good variable orderings may yield exponential speed-ups
in overall solving time compared to bad ones, but the computation of such orderings is
a hard problem in itself. Usually, some kind of heuristic is used to prevent the solver
from entering fruitless regions of the search space, but these are far from infallible. The
problem is mitigated somewhat by non-chronological backtracking and learning, which
prune large parts of the search space, but the problem still remains. Biere [5] notes that
this is especially a problem in industrial instances, since they are mostly either easy to
refute or easy to prove, given the right variable ordering.

In Gomes et al. [20], this behaviour is referred to as a “heavy-tailed cost distribution”
since there is a non-negligible chance that a variable ordering will lead to very long run-
times. They argue for introducing random restarts into combinatorial search algorithms
in order to increase overall robustness by increasing the chances that a “good” search
path will be chosen. In this technique, some transient randomness is introduced into the
search process and the search procedure is reset at some points. Random restarts were
implemented in Chaff [34] and are a feature of most competitive DLL SAT solvers since
then. They form an especially effective combination with SAT solvers since information
can be retained in between runs through learned clauses which implicitly encode parts
of the visited search space in the clause database. In order to retain completeness, a
solver must perform successively longer runs since, in the worst-case, the search space
will have to be fully explored.

Introducing randomness into the decision heuristic can prevent the DLL procedure
from being trapped in fruitless regions of the search space, and it allows for a broader
exploration of the same. This, in turn, allows decision heuristics to work more effectively.
A similar argument was presented as to why “throwing away” parts of the search space
in backtracking seems to improve solving efficiency.

In Goldberg and Novikov [19], the authors of the solver BerkMin raise the issue of
clause-database symmetrization. They argue that restarts introduce asymmetry into the
clause database since many variables may not be tried out in both phases, but just in
one before a restart is triggered. If the decision heuristic does not account for restarts, it
is possible for the solver to enter the same phase for these decision variables again. This
leads to a situation where some variables mostly occur in one phase in learned clauses.
For phase selection, Goldberg and Novikov [19] propose a modified strategy, where the
decision variable is chosen according to the VSIDS scheme among the top-clause literals,
but not its phase. Counters are associated with each literal which count its occurrence
in conflict clauses, and the phase is chosen that occurs more frequently in the clause

43

database. If this assignment leads to a conflict the opposite phase literal may be learned
in a clause thereby symmetrizing the database.

Another important question when using restarts is the restart schedule that is used.
Usually, a restart is triggered after a fixed number of conflicts. This limit increases
with every restart in order to guarantee the SAT solver’s completeness. Some work has
been done on trying to determine good restart policies. Earlier restart-limit sequences
were usually strictly monotonically rising. MiniSAT [39], for example, uses a geometric
progression that starts with a clause limit of 100 and increases by a factor of 1.5 after
each restart.

More recent solvers such as RSAT 2.0 [36] or PicoSAT [5] use restart-limit sequences
that do not continually grow, but return to smaller restart-limits at times. In RSAT, the
restarting limit sequence is based on the Luby sequence, which gives an optimal speed-up
for Las Vegas algorithms [31]. PicoSAT uses a similar scheme which uses two limits, an
inner limit and an outer limit. The solver triggers restarts upon reaching the inner limit
which is increased geometrically. When the inner limit reaches the outer limit, the inner
limit is reset to an initial value and the outer limit is increased. As can be seen in Figure
3.7, PicoSAT’s strategy concentrates on very short restart intervals that only rise slowly
globally, while RSAT’s strategy intersperses very long runs with very short ones.

Another interesting technique that works in combination with restarts is phase saving
[35]. Phase saving means that upon backtracking or restarts, the phase of each assigned
variable that is undone is saved in an array. The next time a decision is made on of
these variables, the phase indicated by the array is used first. If no array entry exists
for a variable, the default phase-selection heuristic is chosen. The motivation is that
the solver may discard regions of the search space in non-chronological backtracking and
during restart which already encode satisfiable assignments for subproblems.

After backtracking or restarting, when the solver decides upon variables of the dis-
carded search space, it automatically reenters parts of the search space similar to the
one that was discarded. Biere [5] argues that phase saving “turbo charges” restarts. The
solver immediately reenters regions of the search space that it left due to the restart and
thus continues the search from where it left off.

3.7 Simplifying CNF formulas

Smaller CNF input formulas tend to produce shorter run-times for most SAT solvers.
This relationship is, of course, not true in general. The idea of clause learning, for
example, is based on enriching the input formula with redundant clauses to speed up
the solving process. There are very small problems that are hard for SAT solvers as well
as large problems that are very easy. Still, it is useful to concentrate on the size of a
formula since it is easy to determine and gives some estimation of SAT solver running
time. Simplification can be used to replace the original formula with an equisatisfiable
formula that is smaller in the number of clauses or variables in order to keep the runtime
of a SAT solver heuristically low.

44

 0

 100000

 200000

 300000

 400000

 500000

 600000

 0 2e+06 4e+06 6e+06 8e+06 1e+07 1.2e+07

RSAT 2.0
PicoSAT

Figure 3.7: Comparing PicoSAT’s and RSAT’s restarting schemes. The x-axis shows
the number of conflicts, the y-axis shows the restart-limit.

45

3.7.1 Preprocessing SAT Instances

Many efficient preprocessing steps may be performed before the problem is actually
translated into a SAT instance given in CNF. These may include domain-specific simpli-
fication techniques, efficient translation techniques into propositional form, and reduc-
tion techniques that work on structured formulas, such as the identification of equivalent
sub-formulas. Other techniques directly work on the resulting CNF and may be used in
addition with other prior reduction techniques. We will concentrate only on the latter
in this section.

Some CNF preprocessing steps trace back to deduction rules in the original DP [12]
procedure. One is the application of the pure literal rule, i.e., the removal of all clauses
that contain a literal occurring only in one phase in the CNF, which can be applied as a
light-weight preprocessing step. The other is the application of the elimination rule for
atomic formulas, reintroduced as a preprocessing step in the ZBDD-based SAT solver
ZRes [9], the quantified Boolean formula procedure (QBF) Quantor [6], and the dedicated
CNF preprocessor Niver [42]. Here, a variable is chosen, and the clauses containing that
variable are replaced by their resolvents in the original instance. In general, this step
does not reduce size of the formula, it may, on the contrary, increase it exponentially.
But if care is taken in the selection of variables resolved upon, the size of the formula
can be decreased and variables removed in the same step. Used as a preprocessing step,
the elimination rule is referred to as clause distribution.

For both of these techniques, the integration into the main solving step has proved
to be too expensive in modern implementations, but as preprocessing steps, they are
efficient and light-weight ways of eliminating variables and clauses from formulas. Pre-
processing is always a trade-off between the time spent in preprocessing and the expected
benefits of running a SAT solver on the simplified formula. In Eén and Biere [15], three
less trivial preprocessing techniques and efficient implementations are described, all of
which are included in the dedicated SAT preprocessor SatELite: Removal of subsumed
clauses, strengthening clauses by self-subsuming resolution, and variable eliminations by
substitution.

The authors note that clause distribution produces many subsumed clauses. Let
lit(c) be the set of literals of a clause c, then a clause c1 subsumes another clause
c2 if lit(c1) ⊂ lit(c2). Of course, subsumed clauses are not only an artifact of clause
distribution, but can occur naturally as part of the encoding of a problem. Since c1 will
be in conflict whenever c2 is in conflict, and c1 will be unit whenever c2 is unit otherwise,
the addition of c2 in a SAT instance containing c1 does neither change the satisfiability
of the the original formula nor add useful deduction shortcuts. The only significant way
in which c2 could influence the solving process is by influencing the decision heuristics in
some way. Clauses that are subsumed can thus be removed from the instance, producing
an equivalent instance with less clauses that is easier to solve.

In self-subsuming resolution, pairs of clauses are identified where one is almost sub-
sumed by the other, except for a literal that occurs in opposite phases in both clauses.

Definition 20. Let c and c′ be clauses and x a propositional variable. Remember, that

46

⊗ is the binary resolution operator for clauses. The clause c is self-subsumed by c′ w.
r. t. x iff lit(c⊗x c′) ⊂ lit(c).

Clauses that are self-subsumed by another clause w. r. t. to a variable x, can be
replaced in the instance with their resolvents over x. As an example, consider c1 =
¬a∨b∨x and c2 = ¬a∨¬x. The resolvent of both clauses would be cr = c1⊗xc2 = ¬a∨b,
which subsumes c1. Therefore, c1 can be replaced by cr in the SAT instance, effectively
removing a literal from the original clause.

The last technique presented in Eén and Biere [15], the variable eliminations by
substitution rule is motivated by the fact that many SAT instances are encoded via
the structure-preserving Tseitin transformation [47], which will be discussed in detail
in Chapter 4. The Tseitin transformation is used to transform arbitrary propositional
formulas or circuits into equisatisfiable CNF-formulas by introducing new variables for
subformulas or gates. As an example, consider the simple formula

(x ∨ ¬y ∨ (u ∧ ¬v)).

A possible application of the Tseitin transformation would introduce a new variable
z for the subformula (u ∧ ¬v) and produce the equisatisfiable formula

(x ∨ ¬y ∨ z) ∧ (z ⇔ (u ∧ ¬v))

which is subsequently transformed into the CNF

(x ∨ ¬y ∨ z) ∧ (¬z ∨ u) ∧ (¬z ∨ ¬v) ∧ (z ∨ ¬u ∨ v)

The newly introduced variables are functionally fully dependent on the variables oc-
curring in the subformulas they name. If a naming variable such as x is removed in a
clause distribution step, the effects of this renaming process are partially undone. This
introduction and subsequent removal of variables introduces some redundant clauses.
The variable elimination by substitution rule directly tries to reconstruct gate definitions
used by the Tseitin transformation. If the preprocessor decides to remove a naming vari-
able v of such a definition, instead of using clause distribution, the Tseitin transformation
is locally undone by replacing all clauses containing v with the resolvents between the
gate definitions and all other clauses where the naming variable occurs. Note that this
is just a subset of all possible resolutions on that variable. Eén and Biere [15] prove that
restricting the resolutions in this way yields a formula that is equivalent to the result of
performing clause distribution on v and thus equisatisfiable to the original instance.

In the above example, the clauses that define the subformula {(¬z∨u), (¬z∨¬v), (z∨
¬u∨ v)} would be resolved with the remaining clause {(x∨¬y∨ z)} in order to produce
the formula

(x ∨ ¬y ∨ u) ∧ (x ∨ ¬y ∨ ¬v),

which would have been the result of directly translating the original formula into CNF.
Directly using clause distribution, would have produced the CNF

(x ∨ ¬y ∨ u) ∧ (x ∨ ¬y ∨ ¬v) ∧ (u ∨ ¬u ∨ ¬v) ∧ (v ∨ ¬u ∨ ¬v).

47

In this case, it is easy to just check the newly produced distributed clauses for validity
and thus remove the redundant clauses (u ∨ ¬u ∨ ¬v) and (v ∨ ¬u ∨ ¬v). In more
complex examples, clause distribution can produce clauses which are not valid, but are
still redundant.

Note that the combination of the Tseitin transformation and subsequent variable
elimination by substitution is functionally similar to approaches such as Boy de la Tour
[8], where a translation procedure is presented that only introduces naming variables
if the introduction reduces the overall number of clauses. The variable elimination by
substitution rule is more general in the sense that it can work on any given instance in
CNF, no matter how it was translated.

Preprocessing as a means of speeding up the search process has proven to be a highly
effective technique. The combination of the dedicated preprocessor SatELite with an
efficient SAT solver has won the SAT 2005 competition on industrial benchmarks [43],
and preprocessing has since been integrated into some of the fastest state-of-the-art
solvers, such as new versions of MiniSAT [16] and PicoSAT [5].

3.7.2 On-the-fly Clause-Database Simplifications

The techniques presented here are not only useful before the search process is started, but
can be applied during the search. Most prominently, if a solver uses a restarting scheme,
a simplification step can be performed at each restart. This has been implemented with
good results in MiniSat 2.0 [16]. Moreover, earlier versions of the same solver already
introduced another form of on-the-fly simplification: conflict-clause minimization.

In conflict-clause minimization, the self-subsuming resolution rule is invoked when-
ever a conflict clause c is learned. Recall that each of the literals l in c corresponds to
an opposite-phase assignment of the same variable in the conflicting implication graph.
Each of these assignments, in turn, is associated with a clause c′ containing l that in-
duced the assignment via the unit rule. Since c and c′ contain an opposite-phase literal,
c is a candidate for being self-subsumed under c′.

Self-subsumption can be checked easily with the algorithm shown in Figure 3.3. In
essence, each literal in a newly learned clause is checked for possible removal under the
self-subsumption rule. Intuitively, a clause that encodes the reasons for an assignment
does not need to encode that assignment itself.

Algorithm 3.3: MiniSAT’s on-the-fly clause minimization.
input : A clause c
output: A possibly reduced clause c′

for each literal p ∈ c do
if lits(reason(p)) \{p} ⊆ lits(c) then

mark(p);

c′ ← removeMarked(c);
return c′;

48

Another application area for clause-database simplification is in incremental SAT
problems. In incremental SAT, a series of closely-related SAT instances are solved one
after another. An example of this are BMC runs with an increasing depth-bound k.
Before each run, a formula is created that represents the formula of the last run, expanded
by a new instance of the sequential circuit. A short study of applying simplifications
between runs of an incremental SAT solver can be found in Eén and Biere [15].

49

Chapter 4

Solving SAT in Circuits

Many applications of SAT solving feature problems formulated as constrained Boolean
circuits, i.e., circuits with some signals set to a fixed value. In order to solve these
problems with traditional SAT solvers, they must first be translated into propositional
form, and then flattened into CNF, which yields an exponential increase in formula size
in the worst case. This problem of exponential growth can be sidestepped by solving the
satisfiability instance not on the original propositional formula, but on a satisfiability-
equivalent formula with additional variables introduced for gates. Although some struc-
tural information is still encoded in the resulting CNF, CNF-based solvers usually do
not make use of this information.

This is a problem since the structural information could be used to speed up the
solving process. One possible approach is to use circuit information in order to change
the circuit-to-CNF translation, either by producing a smaller translation or by encoding
additional knowledge about the circuit structure into the CNF. Another possibility is
to forego the use of a purely CNF-based solver altogether and explicitly work with
structural information in the solving process. Intuitively, we expect that the added
structural information should lead to better heuristics, simplification techniques, and
search strategies. On the other hand, the structurally simple format of CNF allows for
highly efficient implementation techniques and low-level optimizations, and given the
more complex format of a Boolean circuit, it may be harder to achieve the same level of
efficiency.

This chapter aims to describe methods which try to speed up CNF-based solvers
by using sophisticated translation techniques as well as methods which directly use
circuit information in the solving process. Section 4.1 describes approaches which aim
to improve the efficiency of circuit-to-CNF translations for use with traditional CNF-
based SAT solvers. Section 4.2 deals with hybrid approaches, which combine CNF and
circuit representations, typically by enhancing a traditional SAT-Solver with circuit-
specific structural information, and the last section, Section 4.3, presents solvers that
exclusively work on a circuit and do not include CNF-based components.

50

4.1 Efficient Circuit-to-CNF Translations

One possibility of performing satisfiability checks on Boolean circuits is to transform
them into conjunctive normal form (CNF) and applying a CNF-based SAT solver. This
procedure is especially interesting since most current SAT solvers are CNF-based, and
their performance has improved drastically over the last few years [44]. Furthermore,
CNF-based solvers are an active research topic, and since they can usually be used as
black-box components in larger systems, such systems can easily benefit from possible
future improvements.

In the 2007 SAT Competition [44] and the SAT Race 2007 [45], solvers that work
on a simple circuit format were evaluated. In both instances, solvers that preprocess
and translate the circuit into CNF outperform dedicated circuit solvers. While this
may be an indication that CNF-based solvers coupled with efficient preprocessing and
translation techniques may be a more efficient choice for industrial instances in general,
it is very likely that some of the success can be attributed to the high amount of low-level
tuning that is employed in state-of-the-art CNF-based SAT solvers.

It is interesting to note, that the preprocessing techniques pioneered in the tool
SatELite [15] and later integrated into MiniSAT [16], one of the most efficient CNF-
based solvers, tries to reconstruct some of the circuit structure. This can be considered
as an indicator of the importance of finding efficient translations from circuit instances
to CNF.

4.1.1 The Tseitin Transformation

The translation from a constrained Boolean circuit into a propositional formula is straight-
forward. In Chapter 2, a very simple procedure was already presented. The constrained
circuit shown in Figure 4.1, for example, could be directly translated into the formula

φ = (c1 ∧ c2 ∧ c3) ∨ (c4 ∧ c5 ∧ c6) ∨ (c7 ∧ c8 ∧ c9)

The procedure presented earlier would actually translate the circuit into the formula
o ⇔ φ, but since we only have one output, and since this only output is constrained to
true, we can choose the above formula as a translation.

When performing a straightforward translation from a circuit structure’s proposi-
tional logic formula into CNF, the CNF can, in the worst case, grow exponentially in
size compared to the original formula. The above formula, as an example, is in disjunc-
tive normal form (DNF), i.e., it is a disjunction of conjunctions. Naively transforming
such a formula into CNF necessitates the repeated application of the law of distributivity,
which yields an exponential increase in formula size.

The conventional way of dealing with this problem is by using renamings. Intuitively,
the process of renaming replaces some subformulas of the original formula with newly
introduced literals, and conjuncts the result with a definition for each of the introduced
symbols. A formula ψ = (a ∨ (a ∧ (b ⇒ c))) may thus become ψ′ = (a ∨ g1) ∧ (g1 ⇔
(a∧ (b⇒ c))) if we chose to rename the subformula φ1 = (a∧ (b⇒ c)). Additionally, we

51

≥ 1

6

g4 := T

& g1 & g2 & g3

6

666
c1 c2 c3

666
c4 c5 c6

66 6
c7 c8 c9

Figure 4.1: A small example circuit.

could include the formula φ2 = (b⇒ c) in our set of renamed subformulas, which would
yield the result ψ′′ = (a ∨ g1) ∧ (g1 ⇔ (a ∧ g2)) ∧ (g2 ⇔ (b⇒ c)).

It must be noted that, as the signature of the formulas changes in the renaming
process, logical equivalence between the original formula and the renamed result is lost.
Still, satisfiability equivalence is maintained, i.e., the original formula is satisfiable iff the
renamed formula is satisfiable. The same procedure can be easily extended to constrained
Boolean circuits. For a constrained Boolean circuit (C, τ) with C = (G, E) being a
Boolean circuit, we can build a propositional formula

ΦC := Φconstr ∧ Φdef

where the constraints are encoded as

Φconst :=
∧
{ v | (v := T) ∈ τ } ∧

∧
{ ¬v | (v := F) ∈ τ },

and the gate definitions are encoded as

Φdef :=
∧
{ v ⇔ fv(c1, . . . cn) | v := fv(c1, . . . cn) ∈ E}.

We call the variables on the left-hand side of the equivalences in Φdef naming variables
and the equivalences themselves definitions. In Φdef above, definitions are given for every
single gate in the circuit. Alternatively, we can choose to collapse an arrangement of
gates into one single definition, e.g., for the example presented in Figure 4.1, we could
combine gates g4 and g1 into a single definition by introducing an equivalence

g4 ⇔ ((c1 ∧ c2 ∧ c3) ∨ g2 ∨ g3).

It is then easy to see that there are a number of possible renamings for each formula.
With such different renamings, the size of the resulting CNF formula as well as the length
of the shortest proof in a given calculus can change drastically. Producing small formulas
may not lead to smaller run-times, but it is still interesting to focus on that criterion
since the length of a given propositional formula after translation into CNF can be easily
computed [8]. The idea of producing short CNF formulas from circuits is similar in spirit

52

to very recent preprocessing approaches [15]. There, a plain CNF formula is analyzed
for possible occurrences of renamings, and those renamings are undone if undoing them
decreases formula size.

It is interesting to note that the introduction of definitions for subformulas can
drastically affect proof length since it essentially allows to simulate analytic cuts over
the defined formulas, i.e., cuts that obey the subformula property, even in calculi that
are cut-free or only allow for atomic cuts. Consider, as an example of the latter, the
DLL procedure. We can choose to view DLL as a tableau procedure consisting of the
unit rule and an atomic cut rule which branches on the value of a variable (a proof in
such a tableau is then similar to the notion of the search tree in DLL).

If a subformula φ has a definition with a naming variable vφ, we can simulate an
analytic cut over φ by performing an atomic cut on vφ, although such non-atomic cuts
are not possible in the tableau procedure. Even in cut-free proof procedures, such a
cut can be simulated by introducing definitions. As an example for the simulation of a
cut in a cut-free proof procedure, consider the following rule in the semantic tableau for
propositional logic:

(∨)
A ∨B
A B

A definition vφ ⇔ φ translates into (¬vφ ∨ φ) and (vφ ∨ ¬φ) if we rewrite the equiv-
alence. It is then possible to use the above rule on those clauses to simulate a cut over
φ.

Tseitin, who introduced the idea of renamings in [47], opted for a renaming of all
subformulas. This in itself is enough to bring down the growth in formula size during
clause form translation to a linear factor. This strategy may in exceptional cases even
increase the size of the formula, but can be beneficial if one is interested in short proofs
(for the reasons outlined above).

Plaisted and Greenbaum introduced in [37] a translation procedure called structure
preserving, where all subformulas are renamed except for literals and negations. They
show that the definitions in Φdef do not need to be translated fully into clause form in
order to maintain satisfiability equivalence. Instead, a definition I ⇔ φ can be replaced
by the clause forms of I ⇐ φ or I ⇒ φ, depending on the structure of the original
formula.

In order to give an insight into why not all of the clauses are needed to maintain equi-
satisfiability, we will look at an example in circuit translation. Consider the constrained
circuit shown in Figure 4.2. There, the primary output of the gate g4 with children g1, g2

and g3 is constrained to the value true. The clauses that define the functional behaviour
of g4 are

(i) (g4 ∨ ¬g1), (ii) (g4 ∨ ¬g2), (iii) (g4 ∨ ¬g3), and (iv) (¬g4 ∨ g1 ∨ g2 ∨ g3)

which is the clausal form of g4 ⇔ (g1 ∨ g2 ∨ g3).
We can partition (i)-(iv) into the clauses (i)-(iii) that encode the situation when g4

evaluates to true and the clause (iv) that encodes the situation when g4 evaluates to false.

53

ψ ω+(ψ) ω−(ψ)

ψ1 ∨ . . . ∨ ψn ¬R(ψ) ∨
∨

1≤i≤n

R(ψi)
∧

1≤i≤n

(R(ψ) ∨ ¬R(ψi))

ψ1 ∧ . . . ∧ ψn

∧
1≤i≤n

(¬R(ψ) ∨R(ψi)) R(ψ) ∨
∨

1≤i≤n

¬R(ψi)

Table 4.1: Translation table for a polarity-based translation.

From a satisfiability point of view, we gain no information by adding constraints that
force g4 to true, since it would not conflict with our constraint. On the other hand, those
clauses that encode the reasons for g4 := F are more interesting since they can be used
to derive such a conflict. In other words, to preserve satisfiability equivalence, we need
not encode information about assignments that cannot conflict with our constraints.

Depending on the polarity of a subformula in the instance, it may be sufficient to
encode only the conditions for the subformula evaluating to either true or false. If we
only need to encode the conditions for a subformula φ of ψ to evaluate to false (or if
φ = ψ), we refer to φ as being in positive polarity w. r. t. ψ, if we only need to encode
the conditions for φ to evaluate to true, we say φ has negative polarity w. r. t. ψ. If both
are needed, φ has positive and negative polarity.

We will now give a formal characterization of such a polarity-based translation pro-
cess. In order to keep the description simple, we will restrict our definition to Boolean
functions using the logical operators to {∨,∧,¬}. Of course, this is not really a restric-
tion in expressiveness, since we can define φ ⇒ ψ and φ ⇔ ψ operators as shorthand
notations for (¬φ ∨ ψ) and (¬φ ∨ ψ) ∧ (φ ∨ ¬ψ) respectively (although there may be
exponential differences in conciseness to the original representation).

Given a formula φ, let S′φ be the set of all subformulas of φ, and let Sφ = S′φ ∪ {φ}.
We now build a directed graph, G = (Sφ, E), where (ψ,ψ′) ∈ E iff ψ′ is an immediate
subformula of ψ. G is a directed acyclic graph with a single root node φ. For a path
P in G, we define the negation count negC(P) as the the number of nodes ¬ψ that are
contained in the path, where ψ is an arbitrary propositional formula.

Now, let lφ : Sφ 7→ {+,−,±} be a labeling function on nodes, so that lφ(ψ) indicates
the polarity of ψ w. r. t. φ:

lφ(ψ) =

+ iff for all paths P from φ to ψ, negC(P) is even;
− iff for all paths P from φ to ψ, negC(P) is odd;
± otherwise.

Furthermore we define an injective renaming-function R in the following way.

R(ψ) =

¬R(ψ′) iff ψ = ¬ψ′;
ψ iff ψ is a propositional atom;
v otherwise, where v is a variable that does not occur in φ.

54

Constrained circuit C:

≥ 1

6

g4 := T

& g1 & g2 & g3

6

666
c1 c2 c3

666
c4 c5 c6

66 6
c7 c8 c9

Propositional formula φ of g4:

(c1 ∧ c2 ∧ c3) ∨ (c4 ∧ c5 ∧ c6) ∨ (c7 ∧ c8 ∧ c9)

Formula φ translated into CNF:

(c1 ∨ c4 ∨ c7) ∧ (c1 ∨ c4 ∨ c8) ∧ (c1 ∨ c4 ∨ c9) ∧
(c1 ∨ c5 ∨ c7) ∧ (c1 ∨ c5 ∨ c8) ∧ (c1 ∨ c5 ∨ c9) ∧
(c1 ∨ c6 ∨ c7) ∧ (c1 ∨ c6 ∨ c8) ∧ (c1 ∨ c6 ∨ c9) ∧
(c2 ∨ c4 ∨ c7) ∧ (c2 ∨ c4 ∨ c8) ∧ (c2 ∨ c4 ∨ c9) ∧
(c2 ∨ c5 ∨ c7) ∧ (c2 ∨ c5 ∨ c8) ∧ (c2 ∨ c5 ∨ c9) ∧
(c2 ∨ c6 ∨ c7) ∧ (c2 ∨ c6 ∨ c8) ∧ (c2 ∨ c6 ∨ c9) ∧
(c3 ∨ c4 ∨ c7) ∧ (c3 ∨ c4 ∨ c8) ∧ (c3 ∨ c4 ∨ c9) ∧
(c3 ∨ c5 ∨ c7) ∧ (c3 ∨ c5 ∨ c8) ∧ (c3 ∨ c5 ∨ c9) ∧
(c3 ∨ c6 ∨ c7) ∧ (c3 ∨ c6 ∨ c8) ∧ (c3 ∨ c6 ∨ c9)

Tseitin-transformed satisfiability-equivalent formula φaux using auxiliary variables:

g4 ∧ (g1 ⇔ (c1 ∧ c2 ∧ c3)) ∧ (g2 ⇔ (c4 ∧ c5 ∧ c6))
∧ (g3 ⇔ (c7 ∧ c8 ∧ c9)) ∧ (g4 ⇔ (g1 ∨ g2 ∨ g3))

Formula φaux translated into CNF:

g4 ∧ (¬g1 ∨ c1) ∧ (¬g1 ∨ c2) ∧ (¬g1 ∨ c3) ∧ (g1 ∨ ¬c1 ∨ ¬c2 ∨ ¬c3) ∧
(¬g2 ∨ c4) ∧ (¬g2 ∨ c5) ∧ (¬g1 ∨ c6) ∧ (g2 ∨ ¬c4 ∨ ¬c5 ∨ ¬c6) ∧
(¬g3 ∨ c7) ∧ (¬g3 ∨ c8) ∧ (¬g3 ∨ c9) ∧ (g3 ∨ ¬c7 ∨ ¬c8 ∨ ¬c9) ∧

(g4 ∨ ¬g1) ∧ (g4 ∨ ¬g2) ∧ (g4 ∨ ¬g3) ∧ (¬g4 ∨ g1 ∨ g2 ∨ g3)

Figure 4.2: Example for a circuit-to-CNF translation.

55

Using the Table 4.1, we can now build the final formula φtrans,

φtrans = R(φ) ∧∧
{ ω+(ψ) | ψ ∈ Sφ : lφ(ψ) = +} ∧∧
{ ω−(ψ) | ψ ∈ Sφ : lφ(ψ) = −} ∧∧
{ ω+(ψ) ∧ ω−(ψ) | ψ ∈ Sφ : lφ(ψ) = ±}.

4.1.2 Producing Short Clause-Forms

As has been stated before, the correspondence between short CNF formulas and shorter
running times on SAT solvers is not a clear one. Many small problems are very hard,
while many large problems are easy to solve. In DLL, a longer CNF may allow shorter
proofs, and, indeed, the whole idea of clause learning is to enrich the formula with
redundant information in order to navigate the search space more efficiently. Still, CNF
length is trivial to compute and it can be a useful heuristic. This is indicated by the high
success of preprocessing techniques that reduce the size of the CNF in state-of-the-art
SAT solvers [15].

As we have seen, renamings can be used to keep the size of the translated CNF
formula linear in the size of the old formula. In some cases, renamings may actually
increase clause size compared with a direct translation. Consider, as a trivial example, a
circuit consisting of a single gate g = or(c1, . . . , cn), with its output constrained to true.
Tseitin’s translation would produce the following clauses

(¬g ∨ c1 ∨ . . . ∨ cn) ∧ (g ∨ ¬c1) ∧ . . . ∧ (g ∨ ¬cn),

while a direct translation could be formulated simply as

(c1 ∨ . . . ∨ cn).

In Boy de la Tour [8], an algorithm is introduced which chooses a renaming that
is optimal in the sense that no other renaming produces fewer clauses. Starting from
the original formula, the algorithm considers all subformulas in a descending order and
introduces definitions and naming variables for them only if it does not increase the
number of clauses in the translation.

In addition to reducing the number of clauses by choosing a proper renaming, we can
try to reduce the number of clauses by incorporating circuit-specific information. In the
technique presented in Velev [48], which is built upon a renaming-based approach, trees
of If-Then-Else (ITE) operators are identified in the circuit and translated into clause
form without the use of renamings.

An ITE operator selects between two signals based on the value of a third control
input. We can therefore consider it to implement a two-to-one multiplexer or a controlled
switch. If we now consider a binary tree of ITE operators which are connected through
their non-control inputs, we have an n-to-one multiplexer, where n is the number of

56

leaves on the binary tree. Instead of translating this arrangement by choosing a proper
set of renamings and then flattening it into CNF, we can simply introduce two clauses for
each leaf of the tree, which encode the configuration of the control inputs which would
propagate a given signal to the output o of the topologically highest ITE operator. In
a further refinement, non-ITE gates which feed directly into the ITE tree can also be
factored into the produced clauses.

More formally, for each non-control input variable s to the ITE tree, we add the
implications (s ∧ selected(s)) ⇒ o and (¬s ∧ selected(s)) ⇒ ¬o, where selected(s) is
the conjunction of control input literals that cause s to be selected. ITE trees are only
translated using this technique if no intermediate outputs are used elsewhere in the
circuit.

4.1.3 Enriching CNF with Deduction Shortcuts

So far, the motivation behind the discussed translation strategies has been to minimize
the number of clauses and variables, ultimately, to increase the efficiency of a SAT solver
working on the resulting CNF. Another possible approach is to speed up the search
process by introducing new clauses and variables which encode additional information
about the circuit. These clauses may act as implication shortcuts, allowing the solver to
effectively prune parts of the search space during the solving process.

The method described in Velev [49] aims to speed up the solving process by introduc-
ing new variables and clauses which describe the observability of subcircuits that have
one primary output. Given a circuit B, a subcircuit C of B with one primary output,
and a partial assignment τ on the gates in GB\GC , we will call C unobservable at the
primary outputs of B under τ if the value of the primary output of C cannot influence
the value of any primary output of B. As it is of no concern which value the primary
output of C takes, the whole subcircuit can be safely ignored in the search process.

Signal unobservability has already been exploited in hybrid solvers such as the one
described in Gupta et al. [21], which incorporate circuit-specific optimizations into stan-
dard CNF solvers. The method discussed here differs insofar as it does not propose
a SAT algorithm which explicitly takes into account circuit observability information,
but encodes the information instead into CNF clauses and unobservability variables.
Consequently, standard CNF-based SAT procedure automatically makes use of this in-
formation.

Some chosen subcircuits are associated with unobservability variables. If an unob-
servability variable is set to true, the corresponding subcircuit’s output is not observable,
if the variable is set to false, it may be observable, but not necessarily so. The conditions
for unobservability are encoded in clause form and all clauses that partially describe a
subcircuit are extended with the unobservability variable of that subcircuit. When the
conditions for unobservability are met, the corresponding unobservability variable is set
to true, and all clauses that describe the unobservable part of the circuit are automati-
cally satisfied. This makes decisions on variables which only occur in the unobservable
part unnecessary. Furthermore, it is possible to explicitly consider the cases where a

57

given subcircuit is unobservable or observable by making a decision on an unobservabil-
ity variable.

To determine the unobservability of a subcircuit, new clauses have to be introduced,
which drive the unobservability variable to true or false. Given a subcircuit with output
signal oC and associated unobservability variable uC , three types of clauses, which cap-
ture different conditions for observability and unobservability, are therefore introduced.

Firstly, if, starting from oC , there exists a sequence P of forward-connected gates
whose outputs do not branch, then for each gate on P , unobservability conditions are
added. Such a path P is also called a fanout-free partial path. As the signal oC can only
reach the primary output via P , it becomes unobservable if it becomes unobservable on
a gate on P . Each of the added clauses encodes an implication describing a condition
for unobservability at one of the gates on P , e.g., for an and gate with inputs a1, . . . , an
and one additional input aP ∈ P , we add the clause form of each implication ai ⇒ uC
for i = 1, . . . , n. For an or gate with inputs b1, . . . , bn and bP ∈ P we add the clause
form of ¬bi ⇒ uC for i = 1, . . . , n. This encodes our knowledge that one false input in
an and gate and one true input in an or gate fully determine the gate output and thus
make all other inputs unobservable.

Secondly, if subcircuits on all paths from oC to the primary output have been de-
termined to be unobservable, then C is also unobservable. More prosaically, we can say
that if all possible paths from C to the primary output are blocked by unobservable
parts of the circuit, the output value of C is also blocked. For instance, if there exist n
paths from oC to the primary output, where on each path Pi (1 ≤ i ≤ n) a subcircuit
with an associated unobservability variable ui exists, then the following clause is added:

¬u1 ∨ ¬u2 ∨ · · · ∨ ¬un ∨ uC

Thus, when all paths towards the output become unobservable, uC is set to 1. If multiple
subcircuits with associated unobservability variables exists on a path Pi, the one that is
nearest to oC is used in the clause.

Thirdly and lastly, another type of clause is necessary which forces all unobservability
variables to zero if unobservability could not explicitly be proven. This is necessary
in order to maintain equisatisfiability to the original CNF formula. If we would not
add this last type of clause, the unobservability variables would only occur as positive
literals in the whole CNF formula, which would in turn lead all clauses that contain an
unobservability variable to be trivially satisfied by setting that variable to true.

Overall, the number of added clauses for a circuit substructure C is equal to

p+
g∑
i=0

(inpi − 1)

where g is the number of gates on the fanout-free partial path P which may cause C to
be unobservable, inpi is the number of inputs of the i-th gate on P , and p is the number
of possible paths from C to the primary circuit output. The question of how much
additional effort is necessitated by the identification of suitable circuit substructures
needs further consideration. An illustration of this techniques is given in Figure 4.3.

58

The method is compared with a set of other non-trivial translation techniques [50]
which also account for observability information. This set also includes the translation
techniques from Velev [48], which were described above. In the evaluated test cases, the
method yields a small speedup of up to two compared to the previous best.

4.2 Combining Circuit-SAT and CNF-SAT

CNF-based solvers have some advantages which make them well-suited as a basis for
circuit-based SAT solvers: They are very common and have seen a tremendous increase
in efficiency over the last few years for practical problems [44]. Furthermore, algorithms
for CNF-SAT are a well-established research area, and new improvements can easily be
applied to target applications.

On the other hand, topological and structural circuit information is lost during the
circuit-to-CNF translation, which may be of crucial importance in the solving process.
Also, as some applications make repeated runs on the same circuit structures necessary,
the translation process can take up a significant amount of runtime [48].

In the previous section, approaches were discussed which aim to encode circuit infor-
mation directly into the CNF formula. Here, dedicated SAT solvers will be presented,
which explicitly consider this information in the solving process by combining CNF-based
solving procedures with circuit representations.

4.2.1 Introducing Circuit Information into CNF-SAT

In Silva et al. [38], a generic SAT solving algorithm is supplemented with a layer that
handles circuit specific information such as information about children and parent gates
and justification information. Remember that a gate is justified in a partial assignment
if its assigned output value can be deduced from its current input assignments alone,
e.g., a F(T) at the output of an and (or) gate can be justified by a value of F(T) at
any one of the inputs.

For each gate, the number of assigned true and false inputs as well as the number of
necessary true and false inputs for justifications are stored. An or gate, for instance, is
justified with one true input or with all inputs set to false, while an xor gate needs all
inputs set in both cases. A justification frontier is maintained, which stores those gates
still in need of justification, i.e., whose output variable is set to a value which does not
necessarily result from its input values. The justification process works backwards from
the primary output (or other constrained variables) by iteratively trying to find values
for gate inputs which are sufficient to explain the output. The circuit SAT instance is
satisfied, if, at a point during search, no further gates need to be justified, and unsatis-
fiable if justification of the constrained gates is unsuccessful, i.e., if the algorithm finds
no assignments that could produce the chosen output.

This process produces a partial assignment in the case of a satisfiable instance. This
assignment can easily be extended to a total assignment by setting the unassigned input
gates to arbitrary values and propagating them upwards.

59

&

G

a1 -

a2

-

C

-
-

-

-

. . . u1 . . .

. . . u2 . . .

. . . u3 . . .

- o

For the subcircuit C, an unobservability variable uC and a number of clauses are added
which encode the conditions for unobservability. In this case, the only gate for which
clauses are added is G as there is no longer fanout-free path from C to the primary
output.

C becomes unobservable at gate G if a1 or a2 is false

a1 ∨ uC a2 ∨ uC

C becomes unobservable if all paths towards the primary output lead
through unobservable subcircuits

¬u1 ∨ ¬u2 ∨ ¬u3 ∨ uC

C may be observable if there is at least one observable path to the output
and gate G does not cause C to become unobservable

¬a1 ∨ ¬a2 ∨ u1 ∨ ¬uC

¬a1 ∨ ¬a2 ∨ u2 ∨ ¬uC
¬a1 ∨ ¬a2 ∨ u3 ∨ ¬uC

Figure 4.3: Example for the introduction of unobservability variables and clauses as
presented in Velev [49].

60

In order to make use of the structural information in the SAT procedure, node
justification information is updated during BCP. The check for satisfiability, which is
usually done by asserting that all clauses are satisfied, simply tests if the justification
frontier is empty. Furthermore, the information about children gates can be used to
implement efficient structure-based heuristics for decision variable selection.

Experiments were performed by adding the proposed circuit layer on top of the Grasp
SAT solver [33] in a solver named CGrasp and comparing the two algorithms for the
tasks of test pattern generation and circuit delay computation, both of which seem to
indicate good overall speedups.

4.2.2 Circuit-SAT with Clause Learning

The SAT solver proposed in Ganai et al. [18], on the other hand, does not translate the
input circuit into CNF, but directly uses an AND-Inverter Graph (AIG) as a circuit-
based representation. An AIG is a directed acyclic graph representing a propositional
formula which only uses 2-input and primitives and inverter attributes on edges. CNF-
based representation is still employed for learned clauses.

The circuit-based representation of the input enables efficient Boolean constraint
propagation (BCP). While translating a gate into CNF usually produces multiple clauses
and therefore takes multiple BCP steps, the circuit-based BCP can be done efficiently in
one step by using a lookup table [29]. In the solving process, each gate’s status is given
by three values, two inputs and one output, where each value can either be true, false or
unassigned. When considering the implications of a gate assignment, the lookup table
is queried for the current configuration, which either returns the implied assignments,
or the occurrence of a conflict. In Figure 4.4, an illustration is shown.

Learned clauses obtained by conflict analysis are typically very large. Including them
as 2-input gate trees can increase the size of the circuit significantly, which leads to a
high number of required implications during BCP, and therefore voids all benefits of the
circuit-based representation. For this reason, learned clauses are represented as CNF
formulas.

The hybrid approach that was just described is also the basis for the solver pre-
sented in Lu et al. [30]. Just as in Ganai et al. [18], the input circuit is represented
as an AIG, while learned clauses are included as CNF formulas. On top of this idea,
a simulation-based technique is developed which efficiently identifies signal correlation,
and two different heuristics are presented which make use of the correlation information
to speed up the solving process.

Three types of correlation between two signals si and sj are identified: si = sj ,
si 6= sj , and constant correlation where either si = 0 or si = 1. The identification
of these relationships is performed using simulations with randomly assigned inputs.
Signals are assumed to be correlated if they consistently show the same values or if they
consistently show different values during a number of these simulation runs.

The following hashing method is proposed in order to identify groups of correlated
signals in constant time after simulation. A random assignment is chosen for the input
variables of the circuit, the values of the other gates are then determined via BCP. This

61

&-i2

-i1 - o

gate assignments implied assignments
i1 i2 o i1 i2 o

1 1 ? 1 1 1
0 x ? 0 x 0
1 ? 0 1 0 0
? ? 1 1 1 1
0 x 1 CONFLICT
1 1 0 CONFLICT

.

Figure 4.4: Examples for BCP based on table look-up in an AND gate. The left sub-
table lists possible gate configurations, the right subtable lists all implied assignments.
Question marks represent unassigned inputs. Variables represent don’t-care inputs or
arbitrary values.

step is repeated 32 times and each gate is associated with a word (32 bits) which stores
the results for the runs, so that the first bit represents the gate value in the first run,
the second bit for the second run, and so on. Two signals are assumed to be correlated
if their 32 bit result values are identical or bit-wise inversions of each other. Hashing is
used to determine these associations efficiently.

After groups of correlated signals have been found, another 32 simulation runs are
performed, and the correlated-signal groups are updated. This process is continued until
enough correlations have been found.

Two heuristics are proposed which make use of correlation between signals: Implicit
learning and explicit learning. Implicit learning is a variable selection heuristic, in which
correlated signals are grouped together during the variable selection process, so that the
chance of immediately generating a conflict is increased. If, for example, two signals si
and sj show an equivalence correlation, so that si = sj is most likely true, and si = 1
has been the most recent decision, then sj = 0 will be the next decision. As si = 1 and
sj = 0 are unlikely to occur together this selection will probably lead to a conflict soon.

In explicit learning, several smaller SAT instances are generated from subcircuits of
the actual circuit before the full SAT problem is tackled. While solving the subproblems,
smaller learned clauses are generated, which can be used to prune the search space of
the larger problems more effectively. As mainly the learned clauses are of interest, and
not whether the subproblem is actually satisfiable, runs may be stopped early.

Similar to implicit learning, the subproblems are generated in a way that maximizes
the chance for conflicts. For instance, for a signal sj that has a constant correlation

62

sj = 0, a subproblem sj = 1 could be generated. Furthermore, if a signal sk has
a correlation with a topologically lower signal sl so that sk 6= sl is likely, then two
subproblems are generated: sk = 1, sl = 1 and sk = 0, sj = 0. All generated subproblems
are solved in topological order, from lowest to highest, so that the learned clauses from a
topologically lower subproblem can be used during the solving process of a topologically
higher subproblem. Another advantage of solving the topologically lower subproblems
first is that fewer variables are involved and therefore the learned clauses tend to be
smaller.

In Lu et al. [30], implicit learning is shown to speed up the solving process by an
order of magnitude on some instances. Explicit learning speeds up the solver by another
order of magnitude compared to implicit learning, but combining implicit and explicit
learning does not lead to further speedups.

4.3 Circuit-based Approaches

As circuit-based approaches we classify those SAT-techniques which mainly rely on direct
circuit representations such as AIGs and do not include a CNF-based representation.

The solver in Kuehlmann et al. [29] combines an AIG-based SAT procedure with two
techniques which iteratively simplify the circuit: BDD sweeping [28] and local structural
transformations. Advanced search techniques which are common in modern CNF-based
solvers, such as non-chronological backtracking and conflict-driven learning, are adapted
to the AIG-representation and implemented in the solving procedure. In addition, a
static learning scheme is introduced, which adds implication shortcuts to the graph
during graph construction or modification.

The local structural transformations are automatically applied during graph build-up
or modification. During the construction of a new vertex, a functional hashing algorithm
is used in order to find isomorphic vertices and thus reduces circuit redundancy. If the
table lookup does not find an isomorphic existing vertex, the current vertex and its two
children are converted into a canonical format and the functional hashing scheme is ap-
plied again to the resulting 4-input substructure. The conversion to the canonical format
ensures that logically equivalent arrangements of a gate and its input gates are repre-
sented identically in the circuit, while the hashing algorithm eliminates the structural
redundancy that results.

The hash-table that is created in this step is also used for a static learning technique.
The idea is similar to conflict-driven learning, where implication shortcuts are added
dynamically to avoid reentering certain parts of the search-space that invariably lead to
conflicts. Here, implication shortcuts are integrated into the graph according to static
rules to avoid some of those parts of the search-space altogether. The hash-table is used
to identify certain pairs of gates that typically occur very often and whose evaluation
can be sped up in some cases by adding implication shortcuts.

The SAT solver implements a basic DLL-algorithm that operates directly on the
AIG. The procedure is started with an initial assignment and exhaustively tries to find
consistent assignments for all other vertices by propagating Boolean constraints and

63

justifying AIG vertices by case splits. As atomic building blocs of an AIG are 2-input
structures, Boolean constraint propagation can be handled efficiently by a table lookup.
Given the current assigned values of an AIG vertex and its inputs, the lookup table
determines whether a new assignment is implied, a conflict has occurred, or a case split
is necessary for node justification. If, after applying BCP, the justification queue becomes
empty, the circuit-SAT instance is satisfiable.

As already mentioned, the solver also implements non-chronological backtracking
and conflict-driven learning. In order to use these techniques, it is necessary to monitor
the causes of variable assignments, which is typically handled by an implication graph
in CNF-based solvers. The AIG SAT solver substitutes the implication graph with bit-
vectors, where each bit represents a case-split assignment. This bit-vector is propagated
along the implication path during BCP using bit-wise or operations, e.g., if two assigned
inputs cause the output to be assigned, the bit-vectors of the inputs are propagated to the
output by combining the input bit-vectors via bit-wise or operations. When a conflict
is derived in a vertex of the AIG, the conflicting value carries the case assignments
that are responsible in its bit-vector. After all assignments on a decision level have
been proven to lead to conflicts, the backtracking level can be determined by choosing
the lowest decision level that was involved in the conflict. Information learned from
these conflicts are added as additional gate structures to the AIG, which essentially act
as implication short-cuts. Local structural transformations are automatically applied
during the creation of these vertices, which can lead to further simplifications of the
graph.

After local structural transformation and the AIG SAT algorithm, the last solving
strategy used in Kuehlmann et al. [29] is BDD sweeping [28], which searches for func-
tionally identical or complementary vertices in the AIG graph by building and hashing
their BDDs. Since BDDs are a canonical format (if a variable ordering is imposed and
reduction rules are applied), they allow for structural equivalency checking. Equivalent
or complementary vertices are then merged, which again triggers the application of local
structural transformation.

The BDD sweeping and AIG SAT algorithm are applied iteratively with limits on
the maximum number of backtracks and maximum BDD size. Between iterations, these
resource limits are increased. Intermediate SAT results and BDDs are stored, so that the
algorithms can pick up from where they hit their resource limit in the previous iteration.

All approaches that have been presented up to this point are based on derivatives
of the basic DLL procedure in one way or another. The method described in Junttila
and Niemelä [26], which will be the focus of Chapter 5, employs a different strategy
and uses a tableau calculus for Boolean circuits. With six different basic gate types,
the representation of the input is rather complex compared to AIG-based solvers and
therefore allows to express circuit structures more compactly.

Traditionally, tableau-calculi that are used in automatic deduction are cut-free, i.e.,
they do not contain applications of a cut rule. This keeps the calculus analytic and
therefore avoids having to draw intermediate formulas “out of thin air”. The tableau
calculus presented in Junttila and Niemelä [26] follows another approach and contains

64

v ∈ V
Tv Fv

Figure 4.5: The explicit cut rule in Junttila and Niemelä [26].

an atomic cut rule (shown in Figure 4.5), which is its only branching rule.
The reason for this approach is that cut-free tableau calculi suffer from some anoma-

lies, including computational ones (e.g., [1; 17]). For some special classes of formulas,
cut-free tableaus perform worse than simple enumeration of all cases, for example. The
use of a cut rule similar to the one in Figure 4.5 can solve these problems. The calculus
is still analytic, as the application of the atomic cut rule obeys the subformula principle
if the application of the cut rule is restricted to variables that occur in the formula to
be proved. In a practical implementation, the atomic cut rule is only applied if no other
rule is applicable and only invoked on variables which have not yet been assigned a value.
This is similar to a decision in a DLL-based solver, which is made only after no new
assignments can be deduced via BCP.

In addition to the core tableau calculus, which is complete and therefore sufficient
for determining satisfiability in a circuit, three distinct strategies are used to speed up
the solving process. An additional set of tableau rules is added, which are not necessary
for completeness, but represent deduction shortcuts that improve solving efficiency. A
one-step lookahead search heuristic is employed: If on a branch the introduction of an
expression Tv (Fv) allows to deduce a clash on the branch (a pair of expressions Tw
and Fw) without using the cut rule, then Fv (Tv) is deduced.

Finally, rewriting rules are applied to the constrained circuit before the solving pro-
cess starts. These include the sharing of common subexpressions, a cone of influence
reduction, which removes those parts of the circuit that cannot influence constrained
gates, and the removal of some gate inputs whose value has been determined through
the propagation of initial constraints. For example, true inputs to and gates are removed.

BCSat, an experimental implementation of the tableau-based procedure presented in
Junttila and Niemelä [26], is compared with circuit-based as well as CNF-based solvers
on examples from bounded model-checking. No clear conclusions can be drawn from the
results. In most cases the solver is faster than CGrasp [38] by between one and two orders
of magnitude, but in some unsatisfiable instances BCSat is significantly slower. Com-
parison between BCSat and CNF-based solvers is even less conclusive. Overall, BCSat’s
tableau technique seems to be systematically on-par with traditional SAT solvers and
could therefore be an interesting basis for future research in circuit satisfiability. Chap-
ter 5 will explore how the BC-Tableau can be combined with many of the techniques in
CNF-SAT.

65

Chapter 5

Implementing an Extended
Tableau-Based SAT Solver

In this chapter, we will build upon the work presented in Junttila and Niemelä [26]
and present a tableau-based SAT solver which we extend with many of the techniques
found in CNF-SAT. We will present the idea that BC-tableau-based SAT solving is a
generalized form of DLL, and can therefore be extended easily with many of the advances
made in CNF-based SAT solving. As a proof-of-concept, we have implemented BattleAx3

(“BattleAx Cube” being an anagram of “BC Tableau Ext.”), a BC-based SAT solver
that performs learning and non-chronological backtracking, and we give an evaluation
of some popular techniques in CNF-based SAT solving as applied to a tableau-based
solver.

In the course of writing this thesis, the author was made aware of the then unfin-
ished work of Drechsler et al. [14], which presents some similar ideas of viewing the
BC tableau as generalized DLL and gives a framework for including backjumping and
clause-learning, but does not give a prototypical implementation. At this point, the work
on BattleAx3 was already finished. For completeness, we reference the work of Junttila
and Niemelä [26] in the following chapter, but the ideas that pertain to BC-as-DLL and
the introduction of advances from CNF-based SAT were still independently explored by
the author.

5.1 Tableau-Based SAT Solving

The BC tableau is a tableau calculus for determining the satisfiability of a formula. It
was introduced in Junttila and Niemelä [26] and presented in more detail in Drechsler
et al. [14] and consists of a number of straightforward deduction rules for gates, together
with an atomic cut rule that is similar to decisions in the DLL procedure. In Junttila
and Niemelä [26], an experimental implementation of the BC tableau is presented. In
this section, we will expand upon the work presented there by showing how the basic
BC tableau can be combined with non-chronological backtracking and learning in our
prototypical implementation BattleAx3, and by giving a thorough evaluation of many of

66

the techniques found in CNF-based SAT solving as applied to circuit structures.

5.1.1 The BC Tableau

A BC tableau is a directed tree where the vertices are occurrences of statements, and
each statement is either a gate equation of the form g = fg(c1, . . . , cn), or an occurrence
of an assignment of form g := T or g := F. We refer to the vertices in a BC tableau as
tableau nodes. We call a node of form g := T or g := F an assignment node. All edges
in a tableau are oriented away from a single root node. A leaf is a node which has no
outgoing edge. A path from the root node to a leaf is called a branch. Before we give
a full formal characterization of the BC tableau, we present a first characterization of
tableau rules.

We will use the notation n1 → . . . → nk to denote a branch (V,E), where V =
{n1, . . . , nk} and E = {(n1, n2), (n2, n3), . . . (nk−1, nk)}.

First, let R be the set of BC tableau rules. Each tableau rule in R is a pair of the
form (P,Q) where P = {p1, . . . , pn} is a set of tableau nodes and Q = {Q1, . . . , Qj}
where Q1 = {q1,1, . . . , q1,l1}, . . . , Qj = {qj,1, . . . , qj,lj} are sets of tableau nodes. We use
the alternative notation

p1
...
pn

q1,1 . . . qj,1
...

...
...

q1,l1 . . . qj,lj

to denote the pair (P,Q). The set of tableau rules will be characterized in detail later,
the basic rules can be seen in Figure 5.1.

A rule is applicable on a branch B = (b1, . . . , bk) iff P ⊆ {b1, . . . , bk}. We say a
tableau T is a result of applying (P,Q) on a second tableau T ′ iff (P,Q) is applicable
on a branch B = (b1, . . . , bk) in T ′, and T can be constructed from T ′ by appending
the subtableaus q1,1 → . . . → q1,l1 to qj,1 → . . . → qj,lj to the leaf node bk with edges
(bk, q1,1) to (bk, qj,1). The BC tableau rules will be presented in detail later.

We call a BC tableau regular iff no branch exists which contains two distinct occur-
rences of the same statement. We call a tableau T the result of partially regularizing T ′

iff T is the result of replacing a subgraph x → y → z in T ′ with x → z where there is
a node y′ on the path from the root node to y in T ′ with y and y′ being two distinct
occurrences of the same statement.

We can now give a formal characterization of well-formed BC tableaus.

Definition 21. Let (C, τ) be a constrained circuit with C = (G, E) and

E = {g1 := fg1(c1,1, . . . c1,k1), . . . , gn := fgn(cn,1, . . . cn,kn)}

and let
τ = {v1 := X1, . . . , vr := Xr} with Xi ∈ {T,F} for 1 ≤ i ≤ r.

67

Then the set T(C,τ) of well-formed BC tableaus of (C, τ) is inductively defined as follows:

[B] Let T be the tableau

(g1 := fg1(c1,1, . . . c1,k1)) → . . .→ (gn := fgn(cn,1, . . . cn,kn))
→ v1 := X1 → . . .→ vr := Xr

We refer to this tableau as the root tableau of (C, τ). Then T ∈ T(C,τ).

[S1] Let T ′, T be BC tableaus so that T ′ ∈ T(C,τ) and T is the result of applying a
tableau rule on T ′, then T ∈ T(C,τ).

[S2] Let T ′, T be BC tableaus so that T ′ ∈ T(C,τ) and T is the result of partially
regularizing T ′, then T ∈ T(C,τ).

We can make the notion of a BC tableau of a constrained circuit (C, τ) more intuitive
by giving a characterization of a tableau procedure which iteratively builds up a BC
tableau. The tableau procedure is initialized with a single branch, containing all the
equations of C and all assignments in τ . For easier readability, we will use Tv to denote
that v := T and Fv to denote that v := F. Then the tableau rules are applied to deduce
new tableau nodes, either in the form of a straightforward deduction, or by application
of the cut rule, which splits the current branch into two new branches.

We call a branch that contains a pair Tv,Fv contradictory, otherwise we call it open.
A branch B is complete iff either B is contradictory or, for every variable v, either Tv
or Fv is in B. A tableau is finished iff all branches are contradictory or at least one
branch is complete and open. A tableau is closed iff all branches are contradictory.

A constrained circuit instance (C, τ) is unsatisfiable iff there exists a closed BC
tableau for (C, τ). Such an instance is satisfiable, on the other hand, iff there exists a
finished BC tableau for (C, τ) that is not closed. In this case, each completed and open
branch in such a tableau yields a satisfying assignment.

The basic tableau rules are shown in Figure 5.1. In order to stay consistent with
our formal definition, these have to be thought of as schemata for tableau rules, with a
concrete tableau rule being an instance of that schema. The set R is then the set of all
instances of the presented rule schemata. To simplify this discussion, we will still refer
to these schemata as rules when, in fact, we refer to their instances.

The size of a tableau depends essentially on the number of cuts (and therefore
branches) that are necessary. In order to reduce the number of necessary branches,
the basic tableau rules are supplemented with additional deduction rules, shown in Fig-
ure 5.2. All rules except the cut rule will be referred to as deterministic deduction rules.
A variable assignment Tv or Fv can be deduced on a branch, if it can be added to the
branch by application of the deterministic deduction rules only. For an example of a
tableau using basic and additional tableau rules see Figure 5.4.

Additionally, the BC1.0 input format [24] that is accepted by the experimental imple-
mentation in Junttila and Niemelä [26] includes ite (if-then-else) gates and card gates.
An ite gate acts as a two-to-one multiplexer, a card gate has associated values x and y,

68

v ∈ B
Tv Fv

v = true()

Tv

v = false()

Fv

v = not(v1)
Fv1

Tv

v = not(v1)
Tv1

Fv

(1) Atomic cut rule (2-3) Constant rules (4-5) Negation rules

v = or(v1, . . . , vk)
Fv1, . . . ,Fvk

Fv

v = and(v1, . . . , vk)
Tv1, . . . ,Tvk

Tv

v = or(v1, . . . , vk)
Tvi, i ∈ {1, . . . , k}

Tv

v = and(v1, . . . , vk)
Fvi, i ∈ {1, . . . , k}

Fv

(6-9) “Up” rules for or gates and and gates

v = equiv(v1, . . . , vk)
Tv1, . . . ,Tvk

Tv

v = equiv(v1, . . . , vk)
Fv1, . . . ,Fvk

Tv

v = equiv(v1, . . . , vk)
Tvi, 1 ≤ i ≤ k
Fvj , 1 ≤ j ≤ k

Fv

(10-12) “Up” rules for equiv gates

v = even(v1, . . . , vk)
Tv1, . . . ,Tvj , j is even

Fvj+1, . . . ,Fvk

Tv

v = even(v1, . . . , vk)
Tv1, . . . ,Tvj , j is odd

Fvj+1, . . . ,Fvk

Fv

v = odd(v1, . . . , vk)
Tv1, . . . ,Tvj , j is odd

Fvj+1, . . . ,Fvk

Tv

v = odd(v1, . . . , vk)
Tv1, . . . ,Tvj , j is even

Fvj+1, . . . ,Fvk

Fv

(13-16) “Up” rules for even gates and odd gates

Figure 5.1: BC tableau basic rules. The numbering is left-to-right. Note that for easier
readability, the ordering of children given in the rules does not correspond to the ordering
in the original equations, i.e., a rule is applicable iff the children in the original equation
can be reordered as above.

69

v = not(v1)
Tv

Fv1

v = not(v1)
Fv

Tv1

(17-18) “Down” rules for not gate

v = or(v1, . . . , vk)
Fv

Fv1, . . . ,Fvk

v = and(v1, . . . , vk)
Tv

Tv1, . . . ,Tvk

v = equiv(v1, . . . , vk)
Tvi, i ∈ {1, . . . , k}

Tv

Tv1, . . . ,Tvk

v = equiv(v1, . . . , vk)
Fvi, i ∈ {1, . . . , k}

Tv

Fv1, . . . ,Fvk

(19-22) “Down” rules for or gates, and gates and equiv gates

v = or(v1, . . . , vk)
Fv1, . . . ,Fvk−1,Tv

Tvk

v = equiv(v1, . . . , vk)
Tv1, . . . ,Tvk−1,Tv

Tvk

v = equiv(v1, . . . , vk)
Tv1, . . . ,Tvk−1,Fv

Fvk

v = and(v1, . . . , vk)
Tv1, . . . ,Tvk−1,Fv

Fvk

v = equiv(v1, . . . , vk)
Fv1, . . . ,Fvk−1,Tv

Fvk

v = equiv(v1, . . . , vk)
Fv1, . . . ,Fvk−1,Fv

Tvk

(23-28) “Last undetermined child” rules for or gates, and gates and equiv gates.

v = even(v1, . . . , vk)
Tv1, . . . ,Tvj , j is even

Fvj+1, . . . ,Fvk−1

Tv

Fvk

v = even(v1, . . . , vk)
Tv1, . . . ,Tvj , j is even

Fvj+1, . . . ,Fvk−1

Fv

Tvk

v = odd(v1, . . . , vk)
Tv1, . . . ,Tvj , j is odd

Fvj+1, . . . ,Fvk−1

Tv

Fvk

v = even(v1, . . . , vk)
Tv1, . . . ,Tvj , j is odd

Fvj+1, . . . ,Fvk−1

Tv

Tvk

v = even(v1, . . . , vk)
Tv1, . . . ,Tvj , j is odd

Fvj+1, . . . ,Fvk−1

Fv

Fvk

v = odd(v1, . . . , vk)
Tv1, . . . ,Tvj , j is odd

Fvj+1, . . . ,Fvk−1

Fv

Tvk

v = odd(v1, . . . , vk)
Tv1, . . . ,Tvj , j is even

Fvj+1, . . . ,Fvk−1

Tv

Tvk

v = odd(v1, . . . , vk)
Tv1, . . . ,Tvj , j is even

Fvj+1, . . . ,Fvk−1

Fv

Fvk

(29-36) “Last undetermined child” rules for even gates and odd gates

Figure 5.2: Additional deduction rules for the BC tableau. The ordering of children is
as discussed in Figure 5.1.

70

v = ite(vc, v1, v2)
Tvc

Tv1

Tv

v = ite(vc, v1, v2)
Tvc

Fv1

Fv

v = ite(vc, v1, v2)
Fvc

Tv2

Tv

v = ite(vc, v1, v2)
Fvc

Fv2

Fv

v = cardy
x(v1, . . . , vk)

Tv1, . . . ,Tvj , j ≥ x
Fvj+1, . . . ,Fvl, k − l ≤ y − j

Tv

v = cardy
x(v1, . . . , vk)

Tv1, . . . ,Tvj , j < x
Fvj+1, . . . ,Fvl, k − l < x− j

Fv

v = cardy
x(v1, . . . , vk)

Tv1, . . . ,Tvj , j > y

Fv

(37-43) “Up”-rules for ite and card gates.

v = ite(vc, v1, v2)
Tv
Fv1

Tv2

Fvc

v = ite(vc, v1, v2)
Fv

Tv1

Fv2

Fvc

v = ite(vc, v1, v2)
Tv
Fv2

Tv1

Tvc

v = ite(vc, v1, v2)
Fv

Tv2

Fv1

Tvc

v = ite(vc, v1, v2)
Fv1

Fv2

Fv

v = ite(vc, v1, v2)
Tv1

Tv2

Tv

(44-49) Additional “Up”-rules and “Down”-rules for ite gates

v = cardy
x(v1, . . . , vk)

Tv1, . . . ,Tvj , j < x
Fvj+1, . . . ,Fvl, k − l = x− j

Tv

Tvl+1, . . . ,Tvk

v = cardy
x(v1, . . . , vk)

Tv1, . . . ,Tvj , j = y
Tv

Fvj+1, . . . ,Fvk

v = cardy
x(v1, . . . , vk)

Tv1, . . . ,Tvj , j + 1 = x
Fvj+1, . . . ,Fvl, j + k − l ≤ y

Fv

Fvl+1, . . . ,Fvk

v = cardy
x(v1, . . . , vk)

Tv1, . . . ,Tvj , j ≥ x
Fvj+1, . . . ,Fvl, j + k − l = y + 1

Fv

Fvl+1, . . . ,Fvk

(50-53) “Last unassigned children”-rules for cardy
x gates

Figure 5.3: Additional deduction rules for ite gates and card gates. Note that for ite
gates, the ordering of children is not arbitrary, but must be identical to that in the
defining equation of the gate. For all other gates, the ordering is as discussed in Figure
5.1.

71

v1 := or(v2, v4)

v4 := even(v2, v3, v5)

v5 := or(v2, v3)

Fv1

(19) Fv2

(19) Fv4

(1) Tv5

(23) Tv3

(13) Tv4

(1) Fv5

(19) Fv3

(13) Tv4

or

v1

F

v2 even v4

orv5 v3

Figure 5.4: An unsatisfiable constrained circuit instance and a corresponding closed BC
tableau. Numbers indicate applied tableau rules.

and is true iff at least x, but no more than y inputs are true. In Figure 5.3, we introduce
the basic and additional rules used in BattleAx3 for those gate types.

The BC-tableau proof system is refutationally sound and complete, i.e., a constrained
circuit is unsatisfiable iff there exists a closed BC tableau for it. For satisfiable instances,
the system is also sound and complete, in the sense that if there is an open complete
branch, then that branch provides a satisfying truth assignment (soundness) and if the
circuit is satisfiable, then any finished tableau contains an open branch (completeness).

5.1.2 Circuit Reduction

In Junttila and Niemelä [26], three strategies are proposed in order to reduce the size of
the input circuit in a preprocessing step:

• A cone-of-influence reduction is applied. There, instead of solving the original
constrained circuit instance (C, τ), an instance (C ′, τ) is solved, where C ′ is the
subcircuit of C that contains exactly the gates assigned in τ together with all of
their descendant gates. Since a consistent assignment for the eliminated gates can
be found from a consistent assignment of C ′ by propagating all assignments for
gates in C ′ to their ancestors via the “Up”-rules presented in Figure 5.1, they can
be disregarded in the solving process.

While we expect this strategy to reduce runtimes on average, they may increase
the size of the smallest closed tableau, since an atomic cut on a removed gate (C, τ)
essentially simulates a non-analytic cut on (C ′, τ). Indeed, informal experiments
with BattleAx3 seem to suggest that some instances may be solved faster without
this kind of reduction.

72

v = and()

v = true()

v = or()

v = false()

v = equiv()

v = true()

v = even()

v = true()

v = odd()

v = false()

v = and(v′)

v = v′
v = or(v′)

v = v′
v = equiv(v′)

v = true()

v = even(v′)

v = not(v′)

v = odd(v′)

v = v′

(i) Simplification rule for 0-ary and 1-ary gates

v = or(v1, . . . , vi−1, vi, vi+1, . . . vk)
Fvi

v = or(v1, . . . , vi−1, vi+1, . . . vk)
Fvi

v = or(v1, . . . , vi−1, vi, vi+1, . . . vk)
Tvi

v = true()
Tvi

v = and(v1, . . . , vi−1, vi, vi+1, . . . vk)
Tvi

v = and(v1, . . . , vi−1, vi+1, . . . vk)
Tvi

v = and(v1, . . . , vi−1, vi, vi+1, . . . vk)
Fvi

v = false()
Fvi

v = even(v1, . . . , vi−1, vi, vi+1, . . . vk)
Tvi

v = odd(v1, . . . , vi−1, vi+1, . . . vk)
Tvi

v = even(v1, . . . , vi−1, vi, vi+1, . . . vk)
Fvi

v = even(v1, . . . , vi−1, vi+1, . . . vk)
Fvi

v = odd(v1, . . . , vi−1, vi, vi+1, . . . vk)
Tvi

v = even(v1, . . . , vi−1, vi+1, . . . vk)
Tvi

v = odd(v1, . . . , vi−1, vi, vi+1, . . . vk)
Fvi

v = odd(v1, . . . , vi−1, vi+1, . . . vk)
Fvi

(ii) “Determined child”-simplification rules for or gates, and gates, even gates, and odd gates

v = equiv(v1, . . . , vi−1, vi, vi+1, . . . , vk)
Tvi

v = and(v1, . . . , vi−1, vi+1, . . . , vk)
Tvi

v = equiv(v1, . . . , vn)
Tv

v1 is an input gate
v2 is an input or a constant gate

v = equiv(v2, . . . , vn)
Tv

v1 = v2

(iii) A “determined child”-simplification (iv) “Input gate under true equivalence”-
rule for equiv gates simplification

v = not(v′)
v′ = not(v′′)

v = v′′

v′ = not(v′′)

v = and(. . . , v′, . . . , v1, . . .)
v1 = not(v′)

v = false()
v1 = not(v′)

v = or(. . . , v′, . . . , v1, . . .)
v1 = not(v′)

v = true()
v1 = not(v′)

(v) Double negation and “v/¬v” simplifications

Figure 5.5: Satisfiability-preserving rewriting rules for BC. A statement v = v′ indicates
that all occurrences of v are substituted with v′ in the circuit.

73

v := ite(vc, v1, v2)
Tv

v := v1

v := ite(vc, v1, v2)
Fv

v := v2

v := ite(vc, v1, v2)
Tv1

Tv2

v := true()

v := ite(vc, v1, v2)
Fv1

Fv2

v := false()

v := cardy
x(v1, . . . , vi−1, vi, vi+1, vn)

Fvi

v := cardy
x(v1, . . . , vi−1, vi, vi+1, vn)

v := cardy
x(v1, . . . , vi−1, vi, vi+1, vn)

Tvi

v := cardy−1
x−1(v1, . . . , vi−1, vi, vi+1, vn)

v := cardy
x(v1, . . . , vk)

x ≤ 0 ∧ y ≥ k

v := true()

v := cardy
x(v1, . . . , vk)

x > y ∨ y < 0 ∨ x > k

v := false()

Figure 5.6: Additional rewriting rules for “ite” gates and cardyx gates.

• A structural hashing scheme is employed in order to remove redundant gates.
Remember that expand(f) refers to the exhaustive replacement of gate-function
arguments by their respective associated gate formulas. Given two gates g1 and
g2 in a constrained circuit (C, τ), if expand(fg1) = expand(fg2), i.e., if they are
functionally identical, we can remove g2 and replace all occurrences of g2 in the
other gate equations with g1. In structural hashing, some functional equalities are
efficiently found by merging structurally identical gates in a bottom-up fashion.

Such a substitution will yield an equisatisfiable constrained circuit instance as long
as neither of the gates involved in merging is assigned a value in τ . Otherwise, it
is necessary to propagate the gate assignments in τ in the constrained circuit over
the two gates. If, for a merged pair of gates (g1, g2), it holds that τ(g1) 6= τ(g2),
then the original constrained circuit is unsatisfiable. If τ(g2) is defined, but not
τ(g1), or vice versa, then we must propagate this assignment to the unassigned
gate for the new instance to be equisatisfiable.

• Finally, a number of rewriting rules for creating an equisatisfiable instance are
introduced in [26]. These are shown in Figure 5.5. A statement g1 = g2 in a
rewriting rule, where both g1 and g2 are gates, indicates that all occurrences of
g1 are replaced by g2 in all gate equations. Similar to structural hashing, gate
assignments must be propagated over gates that are substituted.

Similar to the case of the tableau rules, we present additional rewriting rules for ite
gates and card gates in Figure 5.6. Although such rules were not presented in the
original paper by Junttila and Niemelä [26] where the BC tableau was introduced,
we suspect that the same or similar rewriting rules are implemented in BCSat.

74

The same three strategies were implemented for our solver BattleAx3. We will give a
more detailed description of the reduction process in Section 5.2 and describe a scheme
for iterative circuit reduction during the solving process.

5.1.3 Tableau-Based SAT as Generalized DLL

For implementing the BC procedure, Junttila and Niemelä [26] propose to apply the
deterministic deduction rules exhaustively before branching with the explicit cut rule.
Since the BC-tableau rules extend a branch only with assignments nodes and not with
gate equations, we can view a depth-first expansion of the tableau of an instance (C, τ) as
a process of iteratively enlarging the partial assignment τ and subsequent backtracking
when a branch is closed.

In this way, the BC procedure can be implemented as a generalized DLL-procedure
[14] for circuit instances. The application of the deterministic deduction rules is a gen-
eralization of BCP, and the atomic cut rule corresponds to a decision. Algorithm 5.1
is such a generalized DLL framework which can be used to structure a tableau-based
solver. Our program, BattleAx3, is a prototypical implementation of this framework,
and extends it by many techniques occurring in CNF-based SAT solving.

Algorithm 5.1: Tableau-based SAT procedure in a generalized DLL framework.
input : (C, τ) - a constrained Boolean circuit
output: Satisfiability of (C, τ)

if applyDeterministicRules(C, τ) = Conflict then
return false;

while true do
if branchComplete(C, τ) then

return true;
applyAtomicCut(C, τ);
while applyDeterministicRules(C, τ) = Conflict do

bLevel← analyze(C, τ);
if bLevel < 0 then

return false;
else

backtrack(bLevel);

As Drechsler et al. [14] point out, the link between deduction in the BC tableau and
deduction in DLL-based SAT on a Tseitin-transformed circuit instance is very strong.
Consider as an example a gate v = or(v1, . . . , vn) and its translation to CNF via Tseitin,
i.e.,

(v ∨ ¬v1) ∧ . . . ∧ (v ∨ ¬vn) ∧ (¬v ∨ v1 ∨ . . . ∨ vn).

Each clause can be considered to encode a number of implications. The BC rules can
then be viewed as explicitly representing those implications. The first n binary clauses

75

of form (v ∨ ¬vi), for example, encode both the “Up”-rule stating that v must be true
(vi ⇒ v), whenever any input is true, as well as the “Down”-rule that sets all inputs to
false if the output v is false (¬v ⇒ vi). For more complex gate types such as card gates,
“odd” gates or “even” gates, the CNF translation becomes increasingly cumbersome,
since the rules are much more concisely expressible in arithmetic than by enumerating
all implications.

At this point, it is interesting to make the following observation regarding the
structure-preserving translation procedure presented in [37]. Remember that there, some
clauses are possibly omitted from a gate’s translation depending on its polarity. Since
the clauses correspond to certain rules in the BC tableau, we may build a new tableau
system that is still refutationally complete and sound by restricting the rules that are
applied to each gate to those that would be encoded in the polarity-based translation.

Consider as an example again the or gate shown above. If this gate has positive
polarity w. r. t. the formula to be checked, we can restrict the rules that are applied to
it to the rules that are encoded in the clause

(¬v ∨ v1 ∨ . . . ∨ vn).

To be exact, it is sufficient in this case to restrict rule applications on this gate to the
application of the “Last unassigned child” rule, and the F-“Up” rule. Such restrictions
may be useful in implementation for two reasons. Such a restriction may allow for more
efficient implementation of the rules. There may be, on the other hand, drawbacks
concerning the increased length of minimal proofs, since we are essentially removing
deduction shortcuts from the circuit.

5.1.4 BC with Learning and Non-Chronological Backtracking

A straightforward implementation of the BC procedure would expand branches in a
depth-first manner. Upon determining that a branch is closed, such an implementation
would continue to expand the most recent branch that is still incomplete. From the
framework of Algorithm 5.1, it is easy to see that the BC tableau can be implemented
in a way that is very similar to modern implementations of the DLL procedure. It is
then also possible to expand a BC-based solver with techniques that are popular in
CNF-based SAT such as non-chronological backtracking and learning.

This requires a concept similar to that of the implication graph in CNF-based SAT,
only for tableau rules. On a branch B = (b1, . . . , bi−1, bi, bi+1, . . . bk), we call a set of
tableau nodes R = {r1, . . . , rj} ⊆ {b1, . . . , bi−1} a reason for bi iff we can extend a tableau
consisting only of the branch r1 → . . .→ rj to a tableau r1 → . . .→ rj → h1 → . . .→ hl
by applying a tableau rule, where bi ∈ {h1, . . . , hl}. More informally, a set of tableau
nodes R is a reason for another tableau node b iff we can deduce b using only the nodes
in R. A reason R = {r1, . . . , rj} for a tableau node b is minimal iff, for any i with
1 ≤ i ≤ j, it holds that R\{ri} is not a reason for b.

Remember that an assignment node is a tableau node of the form Tv or Fv. A
reason assignment A for a node b is the subset of all assignment nodes in a reason R for
b. The reason assignment A is minimal iff the underlying reason R is minimal.

76

Note, that there may be multiple minimal reason assignments for a single tableau
node. First, a node may be deduced on a branch using different tableau rules or different
gates. This is similar to the case of CNF-based SAT, where a single assignment might
be derived using multiple clauses. Second, even with a single tableau rule application on
a single gate, there may be multiple minimal reasons. When applying the F “Up”-rule
for an equiv gate g, for example, each pair of assignments (Tv1,Fv2) where v1 and v2

are children of g is a minimal reason assignment for Fg.
Remember that a root tableau of a constrained circuit instance is its initial tableau

before any rule is applied. We can now define the concept of a generalized implication
graph in the following way:

Definition 22. Let T be a BC tableau for a constrained circuit (C, τ). For a branch
B = (b1, . . . , bk) in T , let Assign(B) denote the set of all assignment nodes in B. We
call the the assignment nodes immediately after a cut-rule applications cut nodes. Then,
a generalized implication graph of B is a graph (V,E) where

• V = Assign(B) ∪�, where the box node � is a special conflict node,

• for every node n in V that is not in the root tableau of (C, τ) and that is not a cut
node, the set of antecedents { n′ | (n′, n) ∈ E} is a minimal reason assignment for
n,

• for every node n in B that is in the root tableau and for every cut node, the set of
antecedents is empty, and

• the antecedents of the conflict node � are the set of tableau nodes { n, n′ | n =
Tv, n′ = Fv } ⊂ B.

We can manage a generalized implication graph in an implementation of a tableau
procedure by associating every deduced assignment node n with the assignment nodes
that caused n to be deduced. Since there may be multiple minimal reason assignments
for a tableau node, multiple implication graphs are possible.

We can use this generalized implication graph analogously to the CNF case in order
to perform learning and non-chronological backtracking. Notions such as responsible
assignments, separating cuts, and the different strategies for choosing a cut can be
extended to this generalized implication graph in a straightforward way. The decision
level of a branch is the number of cut rule applications on that branch. A learned
clause can be viewed as a fresh or gate with its output constrained to true. For the
input literals, new not gates may have to be added. The resulting structure can then be
simply added to the circuit to gain an equisatisfiable instance.

In order to leave the basic BC tableau unchanged, we choose to view learning and non-
chronological backtracking as a procedure that transforms a BC tableau for a constrained
circuit to a BC tableau for another constrained circuit. The latter constrained circuit is
the result of extending the former constrained circuit with the added learned gate and the
conflict-driven assertion. This is illustrated in Figure 5.7. We refer to this transformation
as folding the original tableau with respect to a responsible conflict assignment. The

77

v1 := or(v2, v4)

v4 := even(v2, v3, v5)

v5 := or(v2, v3)

Fv1

(19) Fv2

(19) Fv4

(1) Tv5

(23) Tv3

(13) Tv4

(1) Fv5

responsible
assignment

v6 := or(v7, v1)

v7 := not(v5)

v1 := or(v2, v4)

v4 := even(v2, v3, v5)

v5 := or(v2, v3)

Fv1

Tv6

(19) Fv2

(19) Fv4

(23) Fv5

learned nodes

conflict-driven
assignment

fold

unfold

Figure 5.7: An illustration of learning and non-chronological backtracking in the BC
tableau.

reverse process, where all unit-rule applications on learned gates are substituted by
subtableaus, we refer to as unfolding.

After arriving at a finished folded BC tableau with the generalized DLL procedure, we
can exhaustively unfold it in order to obtain a finished tableau of the original constrained
circuit instance.

5.1.5 Datastructures for Deduction

Since, similar to CNF-based solvers, the application of deduction rules takes up most
of the runtime in a BC-based tableau solver, efficient implementations are of high im-
portance. We have already presented some of these options in Chapter 4. Here, we
will give a more compact overview of different implementation techniques for deduction
in circuit structures before we explain our implementation choices for BattleAx3 in the
next section. The overview will be based in part on the work in Drechsler et al. [14].

78

Counter-Based Deduction

A simple possibility for determining the applicability of tableau-rules is to keep counters
for each gate that describe the number of positive and negative inputs. Each gate keeps
references to its parent gates, and when a formerly unassigned gate is assigned a value,
the appropriate counter of the parent is incremented by one. In BCSat, such a counter-
based approach was used [25].

Rule applicability conditions can then be easily formulated as algebraic checks on
the counters, e.g., if, for an and gate g, it holds that the number of children equals the
number of true inputs, the and “Up”-rule is applicable, and we can deduce Tg.

One disadvantage of this approach is that in backtracking, all the counters need to be
reset. Compared with stateless or lazy datastructures, this is a significant disadvantage.

Implication Lists

For all those tableau rules in which a single assignment Tv or Fv is a sufficient condition
for a rule’s applicability, performing algebraic checks on counters is a significant overhead
compared with a naive, straightforward implementation. This is similar to the case of
binary clauses in CNF, where highly-tuned solvers use direct implication lists. This
approach finds applications, for example, in the circuit-solvers presented in Thiffault
et al. [46] and Wu et al. [51].

In the BC tableau, we can use implication lists for both the “Up” rule and the
“Down” rule for not gates, for the F-“Up” rule and the T-“Down” rule for and gates,
and for the F-“Down” rule and the T-“Up” rule for or gates.

The use of implication lists changes the structure of the search, since all direct im-
plications are assigned in one step, either before or after tableau rule application. There
is disagreement in the literature as to whether this yields performance increases or de-
creases in the case of CNF-based solvers. In Biere [3], the author argues that the cheaper
direct-implications should be used exhaustively before using the more expensive unit-
rule. In MiniSAT [39], on the other hand, the direct implication list is directly integrated
into the literal watch lists in order to avoid this separation of direct implications and
unit-rule applications. The authors argue that the separation of rule applications yields
slightly less useful conflict clauses.

Lookup Tables

If a circuit representation is chosen which is restricted to a certain arity for gates, lookup
tables can be used in the deduction step. Such an approach is presented in Kuehlmann
et al. [29] for an and-inverter-graph (AIG) circuit representation. In an AIG, each gate
is either an and gate with a fixed arity of two, or a not gate.

For a constant-arity gate, each possible combination of true, false and unassigned
input and output values can be represented as an entry in a table. These table entries
encode the assignments that can be deduced given the current partial assignment. In
addition, the table encodes whether a partial input assignment is conflicting. Given a
partial assignment to a gate, the table can then be queried in constant time.

79

Since no state information is saved for gates in this scheme, no action needs to be
performed in backtracking to keep rule status consistent.

Generalized Watching Schemes

Some attempts have been made to extend the watching schemes used in CNF-based SAT
solvers to gate structures. In Thiffault et al. [46], a watching scheme is proposed for and
gates and or gates.

For or gates, such a scheme is virtually identical to the watched-literal scheme in
CNF-based SAT. The main difference between clauses and or gates concerning deduction
is that a clause’s output is implicitly constrained to true, while an or gate’s output may
also become false without necessarily causing a conflict.

It is then easy to see how the watched-literal scheme can be translated to circuit
structures. For each or gate g, two inputs are watched. The invariant over these two
watched inputs is that neither of them may become false. If this invariant cannot be
made true by moving the watched input after an assignment, then one of two cases holds:
If the other watched input is already false, conclude Tg. Otherwise, if the other watched
input is unassigned, check whether Tg holds. If it does, assign the other watched input
to be true. This procedure basically encodes the F-“Up” rule and the “Last unassigned
child” rule for or gates. The other rules are implemented in a straightforward manner.

For and gates, the idea is analogous, only with the roles of T and F values reversed.
Two input gates are watched, the invariant being that neither of them may become true.
If this invariant cannot be made true by moving watched inputs, the T-“Up” rule or the
“Last unassigned child rule” may be applicable.

Recently, the solver QuteSAT was presented in Wu et al. [51] in which the watch-
ing scheme is extended to arbitrary gate types. The authors distinguish two types of
inference over gates, called direct implications and indirect implications. Direct impli-
cations are those inference rules that are applicable due to a single assignment. These
correspond to binary clauses in the CNF translation of the circuit. Deduction for direct
implications is handled via a form of implications lists. Indirect implications are those
inference rules whose applicability depends on more than one assignment. For indirect
implication, the generalized watching scheme is used.

For the simple gate types and and or, the watching scheme is similar to the watched-
literal scheme on the Tseitin transformed CNF. So, for a gate v := or(v1, . . . , vn), two
of the pairs in {(v,F), (v1,T), . . . , (vn,T)} would be watched, the invariant being that
the variable in a watched pair (v,X) may not be assigned the opposite value to X (this
characterization of the scheme is taken from Drechsler et al. [14]). This is similar to
simply watching the clause ¬v ∨ v1 ∨ . . . ∨ vn in the watched-literal scheme. For and
gates, deduction is handled analogously, but with the roles of T and F reversed.

For more complex gate types, another watching scheme is used. In a gate v =
f(v1, . . . , vn), we call a variable in {v, v1, . . . , vn} a watch candidate iff its assignment
can lead to an indirect implication. In such a gate, we watch a number of l watch
candidates, the invariant being that the watched variables are unassigned.

80

If the invariant cannot be made true by moving the watch pointer to an as-of-yet
unwatched watch candidate, the gate function is used to determine values for the unas-
signed gates. The number of necessary watched inputs l can be determined by finding
the smallest number of assignments k on a gate’s inputs and output that trigger an indi-
rect implication. For a gate with m watch candidates, the number of necessary watched
inputs is then l = m− k + 1.

As an example, consider a gate v := odd(v1, . . . , vn). The set of watch candidates
is {v, v1, . . . , vn}, therefore m = n + 1. Since we can only make an implied assignment
once all but one watch candidates are assigned, it holds that k = n and l = m− k+ 1 =
(n+ 1)− n+ 1 = 2. We therefore need to watch two candidates. Once it is impossible
to uphold the invariant, i.e., when all but one watch candidates are assigned, we use the
odd gate-function in order to determine the remaining assignment.

Note that, for some gates, the value of l may be rather high. For an equiv gate of
arity n, for example, l = n. In such cases, the use of watch pointers may become more
inefficient than using counters.

5.2 Implementing an Enhanced Tableau-Based Solver

While the basic DLL algorithm is conceptually rather simple, modern SAT solvers are
highly complex pieces of software whose components interact non-trivially. Implement-
ing a SAT solver calls for many small implementation choices which are rarely described
in detail in the literature. Seemingly small changes in the implementation can cause big
effects. Biere [3] describes, for example, how an undocumented detail of the implemen-
tation of the learning strategy in Chaff [34] improved performance considerably.

Some of these omissions may be rooted in an underestimation of the importance of
a given implementation choice. More often though, these omissions can be attributed to
a lack of space. An exhaustive description of a solver implementation is simply beyond
the scope of most papers.

In this section, we will describe a prototypical implementation of the framework
presented in Section 5.1. We have developed BattleAx3, a BC-based SAT solver with
non-chronological backtracking and learning. Furthermore, the basic BattleAx3 imple-
mentation was extended with a number of techniques from CNF-based SAT in order to
evaluate their efficiency in circuit instances.

Since we do not suffer from the space constraints of a paper, we have chosen to give
a fairly detailed description of BattleAx3, although not an exhaustive one. We give
some information about implementation basics, which are otherwise rather sparse in the
literature. Besides studying existing implementations of CNF-based SAT solvers whose
source code is openly available (e.g., MiniSAT [39]), the descriptions in Biere [4] proved
very helpful for solving many technical details.

81

−3 6 −4 7 −5 10

0 1 2

2 3 5

decision level

trail

control

Figure 5.8: Trail stack and control stack.

5.2.1 Basic Datastructures

In BattleAx3, the circuit is represented as an array of gates. Each gate structure contains
a field indicating the type of the gate, a reference to an array containing the array indices
of children, and a reference to a second array indicating the array indices of parents.

The current partial assignment is also stored in an array, which indicates for each
gate index whether the gate is unassigned, true, or false. In order to keep track of the
order of assignments and of the assignments made on each decision level, we use two
stacks.

One stack, referred to as the trail stack, contains all assignments that were made on
the current branch of the tableau in the order in which they were made. Essentially, it
is a direct representation of the assignment nodes on the current tableau branch. An
assignment node is represented as an integer indicating the index of the assigned array.
A positive integer denotes an assignment node of the form Tv, a negative integer denotes
an assignment node of form Fv. Whenever a variable is assigned a value, either due to
a decision or a deduction, it is put on top of this stack.

The second stack, called the control stack, contains values indicating the size of the
trail stack at the end of each decision level. Initially, the control stack is empty. Each
time before a decision is made, i.e., before the decision level is increased, the current size
of the trail stack is put on the control stack. In backtracking, the information on the
control stack is used to identify the decisions that have to be undone. An illustration of
both stacks is given in Figure 5.8.

5.2.2 Deduction

The main datastructure involved in the deduction process is the assignment queue.
Whenever a variable is assigned, it is appended to the assignment queue. In the de-
duction step, each assignment in turn is taken off the queue and the necessary deduction
rules are applied. These may generate new assignments, which are again appended to
the queue. The whole process is repeated until either a conflicting assignment is pro-
duced or until the assignment queue is empty. The procedure is sketched in Algorithm

82

5.2.

Algorithm 5.2: The applyDeterministicRules step in Algorithm 5.1.
while ¬isEmpty(assignmentQueue) do

assignment ← removeFirst(assignmentQueue);
deducedAssignments← fireApplicableRules(assignment);
τ ← τ ∪ deducedAssignments;
appendAll(assignmentQueue, deducedAssignments);

The fireApplicableRules step in Algorithm 5.2, can be implemented for an assign-
ment v as follows.

(i) Check for all parents of var(v) whether any “Up” rules or “Last unassigned child”
rules are applicable.

(ii) Check for gate v itself whether any “Down” rules or “Last unassigned child” rules
are applicable

Instead of a queue, a stack could also be used to store assignments. This would
lead to a depth-first exploration of deduced assignments, in contrast to the breadth-first
exploration effected by the queue implementation we use. Biere [3] remarks that the
use of a queue heuristically minimizes the implication graph, which keeps the length of
learned clauses low.

Biere [3] also explores the use of lazy assignments. This means that whenever a
variable assignment is deduced or decided, it is only put on the assignment queue. The
actual variable assignment is delayed until the variable is dequeued during the deduce
step. This contrasts with the more common technique of busy assignments, i.e., setting
its value and putting it on the trail stack as soon as its value is deduced or decided.
The advantage in lazy assignments is that, since a variable assignment is not made
immediately after it is deduced, it may be deduced a second time by another clause. In
this way, multiple reasons can be recorded for each variable assignment.

Biere [3] suggests that such a strategy is not ideal. While lazy assignments allow
for the identification of multiple reasons for a single conflict which can be heuristically
used to produce small conflict clauses, it leads to complications in the overall design of a
solver which are not worth the possible speedups. In our implementation, we therefore
use busy assignments, which is the implementation choice in most solvers.

We have chosen to implement deduction using three distinct implementation strate-
gies. For normal gates, counters are used. While this may not be the most efficient
choice on average, it is easy to implement and allows for equally efficient encoding of
all gate rules in the BC tableau. The BC tableau includes not only simple gate types,
but complex ones such as equiv and card gates. A generalized watched-input scheme
as in Wu et al. [51] would likely be inefficient on instances that rely heavily on those
gate types since the rules would need to be checked nearly as often as in a counter-based
approach, but each check requires effort linear in the size of the gate. It is still likely

83

that the average runtime of the solver could be decreased for many classes of instances
if a watched pointer scheme was implemented for some gate types.

As a second type of deduction, we have implemented the option to use implication
lists for simple rules whose firing condition depends on a single variable assignment.
If this option is activated, all implication-list deductions are made before the ordinary
tableau rules are fired. This changes the structure of the search since deductions are
made in a different order which leads to a different implication graph. Furthermore,
there is an option to apply implication-list deduction exhaustively before going on to the
application of the remaining rules, as it is suggested in Biere [3].

The third kind of deduction is used for learned clauses. While it would be possible
to represent learned clauses as or gates with outputs that are constrained to true, a
direct representation seems more natural and is likely to be more efficient. We use the
watched-literal scheme for deduction [34]. The watched literals are kept at the first and
second position of a clause as it is outlined in Biere [5], which avoids the use of a separate
watcher datastructure.

5.2.3 Conflict Analysis, Learning and Backjumping

We have already introduced the notion of a generalized implication graph for the BC
tableau procedure. Our solver successively builds up such a graph for the current branch
by storing a minimal reason assignment for each derived tableau node. In CNF-based
SAT, the implication graph is usually represented implicitly by storing only a pointer to
a clause for each assignment. The full graph can be retrieved by analyzing the literals in
these clauses. Since the tableau format is more heterogeneous than CNF, we explicitly
associate a stack of integers with each gate which record its reason assignments.

In some cases, multiple reason assignments may be found for a single tableau rule
application. While it would be interesting to evaluate different strategies for choosing
among those reasons, we use no such heuristic, but simply use the first applicable reason
assignment that is identified in the analysis step.

In Kuehlmann et al. [29], an alternative way of implementing an implication graph
is presented. There, each circuit gate g is associated with a bit vector representing the
decisions that are ultimately responsible for the current value of g. If two gate values are
used to deduce a third, the third value is associated with the result of applying a bit-wise
or operation to the bit vectors of the first two gates. When a conflict is derived, a bit-wise
or operation on the conflicting gate assignments’ bit vectors instantly yields a responsible
assignment. This strategy can be seen as a busy variant of the analysis procedure in
modern CNF-based SAT solvers. When a conflict is derived, we immediately gain a
responsible assignment, but more work needs to be done during deduction. Such an
approach is not ideal for our purposes since it would entail a large amount of overhead
during deduction in large circuits. Furthermore, it is not clear how one can implement
efficient learning approaches such as the first-cut scheme using this technique.

We use the first-cut scheme for clause learning that was already presented in Chapter
3. In the first-cut scheme, the conflict clause contains the UIP closest to the conflict

84

node (the first UIP) together with all assignment nodes from earlier decision levels that
have an edge to an assignment on the conflict side of the partition induced by the UIP.

The identification of the first UIP can be performed in a single traversal of the
implication graph by going backwards from the conflict node and counting “open paths”.
Algorithm 5.3 (taken from [4]) sketches an efficient procedure for identifying the conflict
clause induced by the first cut. The number of open paths is initialized to the antecedents
of the conflict node in the generalized implication graph. Then the implication graph is
traversed backwards from the conflict node in the order indicated by the trail stack (i.e.,
the most recent assignment node is visited first), ignoring all assignments nodes that do
not have a path to the conflict node. When a node is visited, the number of open paths
is decremented by one, and incremented by the number of unvisited children that are on
the most-recent decision level. When the number of open paths reaches one, the next
assignment node that is visited is the UIP.

Algorithm 5.3: Identifying the first cut.
conflictClause← ∅;
openPaths← 0;
for each assignment ∈ conflictReason do

if getDLevel(assignment) = conflictDLevel then
mark(assignment);
openPaths← openPaths + 1;

else
conflictClause← conflictClause ∪ { litMadeFalseBy(assignment)};

while true do
assignment← pop(trailStack);
if isMarked(assignment) then

if openPaths = 1 then
return conflictClause ∪ { litMadeFalseBy(assignment)};

for each r ∈ reason(assignment) do
if getDLevel(r) = conflictDLevel then

mark(r);
openPaths← openPaths + 1;

else
conflictClause← conflictClause ∪ { litMadeFalseBy(r)};

openPaths← openPaths− 1;

Learned clauses are stored in a monolithic memory array. This necessitates additional
garbage collection code, but is slightly more cache efficient than using normal memory
allocation. Clauses are deleted based on their recent activity in a VSIDS-like scheme.
Each clause is associated with a counter. This counter is increased twice each time a
clause is conflicting, and once for each clause that was used to derive the conflict on the
most recent decision level.

85

5.2.4 Circuit Reduction

As was explained earlier, three techniques for reducing the size of a circuit are imple-
mented,

• a cone-of-influence reduction,

• a structural hashing scheme, and

• the rewriting rules in Figure 5.5 and Figure 5.6.

These rules are applied at preprocessing and whenever a one-literal clause is learned.
A one-literal clause triggers a backtrack to decision level 0 and effectively restarts the
solver with an added constraint on the circuit instance. This added constraint allows a
reapplication of the rewriting rules, which in turn opens up new possibilities for reduction
with the other two approaches. In some instances, one-literal clauses are learned very
frequently. There, the resulting frequent circuit reductions can take up a significant
amount of the runtime. In order not to impede overall efficiency in such cases, we do
not apply circuit reduction after every learned one-literal clause, but count the number
of learned one-literal clauses since the last reduction step. When this number reaches a
fixed threshold, circuit reduction is applied.

After reducing the circuit, the following rules are applied to each clause c in the
clause database:

• If a literal in c corresponds to a gate that was removed in the cone-of-influence
reduction, remove c from the clause database.

• If a literal l in c corresponds to gate that was substituted by another gate using
the rewriting rules or the structural hashing scheme, replace l by the same-phase
literal on the substitute gate.

• If a literal l in c is false at decision level 0, remove l from c.

• If a literal l in c is true at decision level 0, remove c from the clause database.

5.2.5 One-Step Lookahead

We have implemented the option of using a one-step lookahead rule, which was proposed
in Junttila and Niemelä [26]. This rule states that, if we can deduce a conflict using the
deterministic deduction rules after “trying out” a lookahead assignment Tv (Fv) on a
branch, we can immediately deduce Fv (resp. Tv).

In a solver with non-chronological backtracking and learning, we can implement
lookahead as a straightforward decision. The difference is that if no conflict occurs as
an immediate result of the decision, we backtrack chronologically and possibly try out a
number of other lookahead assignments in the same way. If, on the other hand, a conflict
occurs as a result of the lookahead assignment, we can learn a conflict clause using the
first-cut scheme and backtrack non-chronologically. Considering the lookahead rule from

86

the perspective of the generalized DLL procedure, this is essentially an introduction of
local breadth-first search at each node in the depth-first search tree. This idea is sketched
in Figure 5.9.

...

S

S1 · · · Sk �︸ ︷︷ ︸
Non-conflicting

lookahead assignments

Conflict in lookahead:
learn clause, backtrack

Figure 5.9: A partial search tree of the generalized DLL procedure using the lookahead
rule.

In Junttila and Niemelä [26], the authors seem to propose an unrestricted application
of the lookahead heuristic where, in each step of the search, all unassigned variables are
used as lookahead assignments. Such an implementation was evaluated in BattleAx3, but
was found to be highly inefficient on some benchmarks. We have implemented a number
of different restrictions in order to try increasing the robustness of the strategy. One
possible restriction is to apply lookahead only to children of unjustified gates. Another
one is to combine the lookahead scheme with the VSIDS heuristic for variable selection.

In our implementation, VSIDS literals are stored in a heap so that the literal with
the highest score can be retrieved efficiently during the decision step. The heap itself is
implemented as an array. We can restrict our lookahead to the first n variables found in
the heap’s literal array. While these may not be the n highest-scoring VSIDS literals, it
still yields an efficiently computable heuristic for applying lookahead only for variables
that are somewhat likely to lead to conflicts.

The implementation of the lookahead rule can be sped up significantly by marking
assignments that are derived during a lookahead. Such assignments cannot lead to
conflicts and therefore do not need to be tried out as lookahead assignments on the same
decision level. As an example, consider a lookahead assignment Tvl from which Fv can
be derived inside the lookahead. Assume that the lookahead assignment does not lead
to a conflict. Now it is clear that in subsequent lookaheads on the same decision level,
we can skip the lookahead assignment Fv, since this assignment was already made as a
consequence of Tvl.

5.2.6 Decision Variable Selection

We have implemented three different strategies for choosing decision variables: the pop-
ular VSIDS and BerkMin heuristics, both of which were described in Chapter 3, and

87

the lookahead decision heuristic that builds upon the lookahead rule described in the
previous section and was the decision heuristic used in BattleAx3.

The VSIDS scheme is implemented using a priority queue with an underlying heap.
During decision variable selection, elements are repeatedly removed from the front of
the queue until a literal is found whose variable is unassigned. In BerkMin, the decision
heuristic chooses a literal from the the top clause, which is the most-recently learned
clause that is not satisfied. A naive implementation can lead to a majority of the runtime
being spent in the decision heuristic in search of the top clause. This can be solved by
caching its position between conflicts.

In the lookahead heuristic, we count the number of rule applications that can be
performed as a consequence of the lookahead assignments. Let vF and vT be the number
of new assignment nodes that can be deduces from an assignment Fv respectively Tv.
The lookahead heuristic then chooses a decision variable v for which min(vF, vT) is
maximal.

In addition to the heuristics outlined above, each heuristic can be combined with
justification filtering and phase saving. In justification filtering, only those variables
are considered for decisions which have unjustified parents. Justification filtering entails
significant overhead since a justification frontier has to be maintained.

Phase saving was already described in Chapter 3. Here, the phase of a decision
variable v is set to be the last phase that variable was assigned to. In this way, some of
the progress that was lost due to non-chronological backtracks and restarts can quickly
be regained.

5.2.7 Restarts

For our solver BattleAx3, we also adopt the use of random restarts. Here, the solver is
reset at certain points during the search to decision level 0, but with the database of
learned clause intact. We introduce some transient randomness to allow the solver to
enter new regions of the search space.

Restarts are usually triggered after a certain number of conflicts or decisions. This
number should be successively increased in order for the solver to stay complete. Choos-
ing such a sequence of restart limits is a main consideration in implementing restarts.

We have implemented three different strategies for this purpose:

• A simple strategy where the restarting and clause limit are increased geometrically,
starting with an initial value of 100 for the restarting limit, and the number of gates
divided by two for the clause limit. At each restart, the restarting limit is increased
by 50% and the clause limit by 10% (parameters taken from [39]).

• The nested restarting strategy used in PicoSAT [5], where two limits are used, the
actual restart limit and an outer limit (both with an initial value of 100). The
restart limit is increased by 10% at each restart. Upon reaching the outer limit,
the restart limit is reset to an initial value, and the outer limit is increased by 10%.
The clause limit is increased by 5% each time the outer limit is increased.

88

• The RSAT2.0 strategy [36] (originally motivated by the work in Huang [22]), where
the Luby sequence [31] is used as a basis for the restart limit sequence. The Luby
sequence is the sequence t1, t2, t3, . . . such that

ti =
{

2k−1, if i = 2k − 1
ti−2k−1+1, if 2k−1 ≤ i < 2k − 1

and has the prefix

1, 1, 2, 1, 1, 2, 4, 1, 1, 2, 1, 1, 2, 4, 8, 1, 1, 2, 1, 1, 2, 4, 1, 1, 2, 1, 1, . . .

We follow the suggestion in Pipatsrisawat and Darwiche [36] and set the unit for
the Luby sequence to 512 conflicts, i.e., the actual sequence of restart limits is
512, 512, 1024, 512, Furthermore, we increase the clause limit by 15% every 2k

restarts.

At each restart, we perform circuit reduction if any one-literal clauses were learned
during the last restart interval.

89

Chapter 6

Results

In this chapter, we will evaluate some of the techniques implemented in BattleAx3 using a
benchmark set of 38 instances introduced in Järvisalo and Niemelä [23]. The benchmarks
are given in the BC1.0 format [24] which allows to express circuit structures by defining
their gate equations. The problems are taken from the domains of

• verification of superscalar processors,

• integer factorization based on hardware multiplier designs,

• equivalence checking of hardware multipliers,

• bounded model checking for deadlocks in LTSs, and

• linear temporal logic BMC of finite state systems.

Some simple statistics over the instances in the benchmark set, including the num-
ber of gates, the average number of children in non-input gates, and the average and
maximum path lengths between primary inputs and outputs, are shown in Table 6.1.
The numbers are derived from BattleAx3’s parsing engine. Note that, due to some im-
plementation choices, the number of gates shown here may be slightly higher than the
actual number of gates defined in the instances.

All benchmarks presented in this chapter were performed on a Linux workstation
with 2 GB of RAM and an Intel Core 2 Quad Q6600 processor overclocked to 3.0 GHz.
In each case, two benchmark instances were run concurrently, as this did not seem to
affect overall runtime. The timeout was set at 1800 seconds.

6.1 Comparing Decision Heuristics

In Table 6.2, a comparison between the VSIDS and BerkMin heuristic is given. In
VSIDS, the literal with maximum associated score is chosen for assignment, while in
BerkMin, the maximum-score literal of the top clause, i.e., the most recently learned
clause that is not satisfied, is chosen. According to Goldberg and Novikov [19], the

90

instance name no. avg. no. avg. path max. path
gates children (in→out) (in→out)

1 1394-4-3.p1neg.k10.unsat 67904 2.02 9.86 212
2 1394-4-3.p1neg.k11.sat 74357 2.02 9.86 213
3 1394-5-2.p0neg.k13.unsat 88882 1.87 9.46 194
4 atree.sat.34.0 12965 2.48 4.90 63
5 atree.sat.36.50 14333 2.49 4.98 66
6 atree.sat.38.100 15469 2.49 5.11 66
7 atree.unsat.32.0 11461 2.48 5.07 50
8 atree.unsat.34.50 12965 2.48 4.90 63
9 atree.unsat.36.100 14333 2.49 4.98 66
10 braun.sat.32.0 6176 1.99 7.89 127
11 braun.sat.34.50 6970 1.99 7.90 135
12 braun.sat.36.100 7812 1.99 7.94 143
13 braun.unsat.32.0 6176 1.99 7.89 127
14 braun.unsat.34.50 6970 1.99 7.90 135
15 braun.unsat.36.100 7812 1.99 7.94 143
16 brp.ptimonegnv.k23.unsat 18087 1.82 8.11 214
17 brp.ptimonegnv.k24.sat 18869 1.82 8.11 223
18 csmacd.p0.k16.unsat 105550 2.23 8.43 147
19 dme3.ptimo.k61.unsat 57973 1.92 7.60 1052
20 dme3.ptimo.k62.sat 58921 1.92 7.60 1069
21 dme3.ptimonegnv.k58.unsat 55020 1.93 7.80 1002
22 dme3.ptimonegnv.k59.sat 55966 1.93 7.80 1019
23 dme5.ptimo.k65.unsat 100221 1.94 7.62 1120
24 dp 12.i.k10.unsat 5907 1.82 3.23 61
25 eq-test.atree.braun.10.unsat 1978 2.27 3.51 41
26 eq-test.atree.braun.8.unsat 1320 2.26 3.45 33
27 eq-test.atree.braun.9.unsat 1745 2.28 3.58 37
28 fvp-unsat.2.0.3pipe.1 2879 10.15 6.98 42
29 fvp-unsat.2.0.3pipe 2 ooo.1 8299 5.68 6.83 51
30 fvp-unsat.2.0.4pipe 1 ooo.1 19640 6.14 6.29 77
31 fvp-unsat.2.0.4pipe 2 ooo.1 19966 6.44 6.91 77
32 fvp-unsat.2.0.5pipe 1 ooo.1 37648 7.45 6.33 123
33 key 4.p.k28.unsat 21765 1.89 3.41 198
34 key 4.p.k37.sat 32727 1.96 3.70 261
35 key 5.p.k29.unsat 27354 1.90 3.37 205
36 key 5.p.k37.sat 39210 1.96 3.63 261
37 mmgt 4.i.k15.unsat 10575 2.10 3.22 107
38 q 1.i.k18.unsat 11064 1.76 2.66 123

Table 6.1: The BC benchmark set from Järvisalo and Niemelä [23].

91

BerkMin strategy makes the decision heuristic more robust by increasing the speed with
which the solver adjust to new regions of the search space.

Overall, both heuristics seem to work nearly equally well in BattleAx3. The BerkMin
heuristic proves fast for small instances, and manages to solve one more instance than
VSIDS in the 30-minute time limit. Still, VSIDS seems to be the better overall choice
with a lower combined runtime and a smaller number of average decisions.

An interesting observation can be made when studying the average clause lengths
and average decision levels of both strategies. Here, values differ drastically and in a
rather counter-intuitive way. VSIDS produces very long conflict clauses, but does not,
on average, spend much of the search deep down in the search tree. BerkMin’s average
decision level is three times deeper than that of VSIDS and the conflict clauses are only
half as long on average, but it is slower overall.

First of all, this is an indication that the length of short conflict clauses is not a very
good indicator of the efficiency of a decision heuristic. Second, it may be an indication
that increasing the locality of the search, as is done in BerkMin, may delay conflicts that
would otherwise occur earlier, and therefore increase the average decision level.

The vast differences in average clause length and average decision level are rather
unexpected considering that both the BerkMin decision heuristic and VSIDS are based
on similar ideas. It might be worthwhile to analyze the interplay between decision
heuristics, average decision level, and average conflict complexity more closely. A better
understanding of these effects may yield, for example, more efficient decision heuristics or
meta-heuristics which dynamically alter decision heuristic parameters during the search.

6.2 Evaluating Lookahead

We have implemented the lookahead rule and the lookahead decision heuristic from
Junttila and Niemelä [26], both of which are described in detail in Chapter 5. We have
tried to answer the question of whether the application of this rule, which seems to have
worked well in BCSat [26], still manages to improve solving efficiency on the extended
tableau procedure.

In Table 6.3, a basic comparison between a straightforward application of the looka-
head rule and lookahead decision heuristic, a restricted application of the same two
techniques, and the normal VSIDS-based approach are presented. It is obvious that the
unrestricted application of the lookahead rule decreases solving efficiency considerably.
At the same time, the number of actual decisions on the solved instances is decreased by
two orders of magnitude using this strategy. Restricting the lookahead to the children
of unjustified gates seems to increase efficiency somewhat compared to an unrestricted
lookahead, but there is still a significant performance drop compared to the VSIDS
baseline.

In Table 6.4, we have tried to explore restrictions of the basic lookahead rule further.
Again, the left column shows the baseline results for the VSIDS decision heuristic without
lookahead. We compare this with a restriction of the lookahead rule to the first 4 and 32
literals in the VSIDS heap array (4VSIDSLH and 32VSIDSLH). We also evaluate using

92

VSIDS BerkMin
sat time dec- clause avg. time dec- clause avg.

(s) isions length dLevel (s) isions length dLevel
1 no 139.99 280253 75.76 74.06 289.63 730389 65.96 86.10
2 yes 104.00 397522 47.55 115.40 292.34 917344 28.66 86.94
3 no 483.01 522928 157.54 86.07 448.20 759067 66.08 74.20
4 yes 132.80 189790 284.93 19.59 259.91 398720 255.78 15.86
5 yes 250.61 318747 239.52 28.12 339.70 561101 193.93 19.63
6 yes 83.23 137902 139.57 25.67 595.02 711945 285.35 20.38
7 no 381.01 484422 577.70 20.49 343.83 430269 234.84 13.13
8 no 403.24 425575 552.88 16.69 911.96 962775 596.54 13.89
9 no > 1800 1583.92 1402523 441.29 14.36
10 yes 46.08 132492 156.57 17.63 132.54 345499 149.20 11.73
11 yes 460.68 721780 354.73 22.61 354.18 711594 185.29 13.49
12 yes 336.37 722126 376.44 25.37 8.93 55827 119.14 18.01
13 no 165.92 323037 381.88 20.57 110.45 309481 125.01 11.78
14 no 246.14 632974 298.01 20.02 290.53 708569 169.11 11.54
15 no 809.52 1215931 323.65 27.50 788.31 1629242 219.75 12.53
16 no 121.60 224553 111.83 25.65 124.11 262040 75.40 18.09
17 yes 57.86 130666 77.60 34.39 102.66 226141 81.61 20.06
18 no 1024.70 639245 163.00 52.18 > 1800
19 no 211.44 506279 322.71 78.02 262.61 705258 219.81 498.50
20 yes 410.38 707957 389.89 157.39 30.01 660122 63.97 1634.63
21 no 69.14 242506 207.22 79.72 59.16 512893 111.23 677.01
22 yes 44.11 222240 178.68 411.80 12.99 295024 33.34 1108.36
23 no 47.40 238891 146.98 103.62 1657.66 1454497 266.10 604.01
24 no > 1800 > 1800
25 no 820.30 4827722 103.20 13.65 1251.49 6559621 82.39 12.42
26 no 14.30 164324 67.04 11.66 21.08 256897 57.64 9.98
27 no 122.89 993259 80.38 12.16 118.34 1063909 62.08 11.07
28 no 1.72 59901 83.08 47.45 1.71 55296 93.12 35.19
29 no 2.56 48552 106.52 34.68 1.26 23051 82.22 18.54
30 no 11.02 129459 186.85 43.78 7.76 67413 181.59 21.33
31 no 21.12 187714 237.68 47.77 10.81 80290 187.46 21.29
32 no 41.78 296308 310.34 77.55 30.66 140095 323.45 24.85
33 no 139.09 198997 692.28 62.02 138.22 287455 315.04 17.03
34 yes 37.69 95608 399.16 66.64 22.55 140564 123.67 32.89
35 no 363.86 354655 993.65 68.84 194.68 287101 420.37 21.26
36 yes 464.60 531818 854.91 96.58 2.90 37924 29.39 39.93
37 no 1051.50 1703756 410.92 45.21 638.07 1155698 242.71 15.70
38 no > 1800 460.53 895742 274.21 14.52

lower avg. lower avg.
bound over solved bound over solved

> 14521.66 543139.69 288.31 59.73 > 15498.71 737182.17 184.65 150.87
inst.solved by both: inst.solved by both:

sum avg. sum avg.
8096.96 540313.05 291.99 59.96 9854.26 691267 169.04 154.46

solved 35 36

Table 6.2: Comparing VSIDS and BerkMin decision heuristics.

93

sat VSIDS LH dec. heur. LH dec. heur.
(no lookahead) (unrestricted) (just. restr.)

1 no 139.99 280253 > 1800 > 1800
2 yes 104.00 397522 > 1800 > 1800
3 no 483.01 522928 > 1800 > 1800
4 yes 132.80 189790 > 1800 > 1800
5 yes 250.61 318747 > 1800 1135.73 32677
6 yes 83.23 137902 > 1800 > 1800
7 no 381.01 484422 > 1800 1637.16 27571
8 no 403.24 425575 > 1800 > 1800
9 no > 1800 > 1800 > 1800
10 yes 46.08 132492 809.23 6977 796.52 38687
11 yes 460.68 721780 1343.05 9156 675.37 40267
12 yes 336.37 722126 > 1800 563.59 30065
13 no 165.92 323037 736.22 4907 645.30 57473
14 no 246.14 632974 > 1800 1677.35 62624
15 no 809.52 1215931 > 1800 > 1800
16 no 121.60 224553 > 1800 > 1800
17 yes 57.86 130666 > 1800 > 1800
18 no 1024.70 639245 > 1800 > 1800
19 no 211.44 506279 > 1800 > 1800
20 yes 410.38 707957 > 1800 > 1800
21 no 69.14 242506 > 1800 > 1800
22 yes 44.11 222240 > 1800 > 1800
23 no 47.40 238891 > 1800 > 1800
24 no > 1800 > 1800 > 1800
25 no 820.30 4827722 > 1800 1277.79 459253
26 no 14.30 164324 119.67 7899 30.71 33837
27 no 122.89 993259 1738.33 50102 190.82 105418
28 no 1.72 59901 > 1800 > 1800
29 no 2.56 48552 > 1800 > 1800
30 no 11.02 129459 > 1800 > 1800
31 no 21.12 187714 > 1800 > 1800
32 no 41.78 296308 > 1800 > 1800
33 no 139.09 198997 > 1800 456.16 2442
34 yes 37.69 95608 > 1800 7.01 22
35 no 363.86 354655 > 1800 > 1800
36 yes 464.60 531818 > 1800 7.40 24
37 no 1051.50 1703756 1524.01 6031 168.72 2250
38 no > 1800 117.09 878 32.36 314

Table 6.3: Evaluating the lookahead rule without restriction, and restricted to justified
gates.

94

VSIDS LH dec. heur. LH dec. heur. VSIDS
(no lookahead) (4VSIDSLH) (32VSIDSLH) (4VSIDSLH)

time(s) # dec. time(s) # dec. time(s) # dec. time(s) # dec.
1 139.99 280253 621.79 112713 1165.04 49668 216.90 84566
2 104.00 397522 498.96 118357 > 1800 346.24 179467
3 483.01 522928 > 1800 > 1800 1320.33 207529
4 132.80 189790 478.67 145720 1342.77 111748 67.07 37813
5 250.61 318747 753.58 148603 633.57 52924 714.93 165743
6 83.23 137902 > 1800 > 1800 > 1800
7 381.01 484422 155.71 65248 395.16 42614 321.56 119266
8 403.24 425575 683.92 195653 574.21 68332 1239.33 322726
9 > 1800 1771.75 367783 > 1800 > 1800
10 46.08 132492 71.12 47009 23.04 12476 14.83 24084
11 460.68 721780 200.15 139239 113.53 41715 14.75 19407
12 336.37 722126 274.34 188754 115.02 27689 1075.83 458660
13 165.92 323037 72.95 63261 101.52 33169 80.82 80738
14 246.14 632974 171.31 123191 506.02 74109 492.31 223768
15 809.52 1215931 1137.67 401268 1141.74 152110 810.77 368161
16 121.60 224553 374.15 100657 1292.91 75315 168.13 64655
17 57.86 130666 258.98 80200 406.73 41080 86.31 47720
18 1024.70 639245 1151.19 139266 1309.08 57538 1197.46 195685
19 211.44 506279 1795.42 376864 > 1800 864.54 413699
20 410.38 707957 508.12 170258 291.25 127520 463.99 320680
21 69.14 242506 833.78 228820 991.72 121655 156.15 148617
22 44.11 222240 474.18 160989 699.13 124846 38.84 124514
23 47.40 238891 1360.20 221885 > 1800 67.53 135381
24 > 1800 > 1800 > 1800 > 1800
25 820.30 4827722 1013.14 1389252 > 1800 1764.40 2225911
26 14.30 164324 19.12 48710 43.14 35372 21.48 62045
27 122.89 993259 134.03 252281 382.86 213533 217.64 458298
28 1.72 59901 25.57 97238 86.16 111783 6.47 52488
29 2.56 48552 16.79 31455 44.01 25921 5.18 19841
30 11.02 129459 124.22 100586 592.63 169881 25.57 68366
31 21.12 187714 160.42 128993 1020.15 229483 31.41 80824
32 41.78 296308 435.30 176575 > 1800 94.95 180931
33 139.09 198997 76.53 22086 139.72 8085 159.37 54250
34 37.69 95608 163.29 47591 1517.17 43069 55.14 36981
35 363.86 354655 139.46 35990 332.53 14963 401.78 82560
36 464.60 531818 79.38 31174 > 1800 51.27 32471
37 1051.50 1703756 1003.61 218510 > 1800 > 1800
38 > 1800 1584.44 304148 > 1800 > 1800

sums over solved instances
9121.66 19009889 18623.24 6480327 15260.81 2066598 12593.28 7097845

runtime lower bound all instances
> 14521.66 >24023.24 > 36860.81 > 21593.81

instances solved
35 35 26 33

Table 6.4: Evaluating lookahead rule combined with VSIDS scheme.

95

4VSIDSLH together with the normal VSIDS decision heuristic instead of the lookahead
decision heuristic.

Again, all variations of the lookahead rule lead to worse overall performance, while
the number of decisions is reduced at the same time. It is interesting to note that in
another experimental run (not shown in the table), where we combined a 2VSIDSLH
scheme with the VSIDS decision heuristic, the overall number of decisions was nearly
halved compared to the VSIDS baseline. This might indicate that the second-highest
scoring VSIDS literal quite often leads to conflicts.

While the implementation of the lookahead rule in BattleAx3 is rather inefficient
for small lookaheads, it still seems unlikely that the lookahead heuristic can be used
successfully to make a solver faster or more robust, even if highly efficient implementation
techniques are employed. Lookahead seems to be a heuristic that is mainly useful if the
nature of the search is static, i.e., if a solver is not able to leave fruitless regions of the
search space dynamically. It is likely that the benefits of the lookahead rule are negated
by non-chronological backtracking and restarts.

6.3 Restarting Schemes

Restarts are among the most important extensions to the basic DLL framework and
speed up the solving process significantly on average. Usually, restarts are triggered after
a certain amount of conflicts or decisions. One of the considerations when implementing
restarts is deciding on the sequence of such restart limits. In earlier implementations
restart limit sequences are used which are monotonically rising. More recent implemen-
tations use very aggressive restarting schemes, which alternate long and very short runs.
In addition, phase saving has been introduced as a means of recovering some of the
progress that is lost during restarts.

In Table 6.5, a comparison of different restarting schemes is given, together with an
evaluation of phase saving. We compare a geometric restarting scheme similar to the
MiniSAT scheme [39], the nested scheme used in PicoSAT [5], and the scheme used in
RSat 2.0 [36] that is based on the Luby sequence [31]. In each case, we have evaluated
the impact of phase saving.

Surprisingly, the newer restarting schemes yield worse results than a simple geometric
scheme on our benchmark set. Furthermore, we note a slight decrease in efficiency
when combining phase saving with the geometric scheme. On both of the new non-
monotonic restarting schemes, phase saving yields an efficiency increase. The results
seem to indicate that phase saving does not in general increase the efficiency of restarts
as was suggested by Biere [5], but instead reduces some of the negative side effects of
very aggressive restarting schemes.

6.4 Comparing BattleAx3 with other SAT Solvers

We have compared our implementation BattleAx3 with both BCSat [26], the original
implementation of the BC tableau procedure, and a modern CNF-based solver, MiniSAT

96

sat geom. geom. nested nested Luby Luby
ph.sav. ph.sav. ph.sav.

1 no 139.99 236.26 190.76 224.93 181.00 181.51
2 yes 104.00 100.53 85.76 63.52 69.30 107.28
3 no 483.01 567.63 438.60 349.04 528.79 401.91
4 yes 132.80 420.45 28.97 52.16 244.51 538.25
5 yes 250.61 1189.97 1571.93 231.07 37.73 19.97
6 yes 83.23 965.30 > 1800 > 1800 1752.13 122.04
7 no 381.01 237.65 660.81 455.05 337.86 325.33
8 no 403.24 721.46 1580.75 1148.58 1122.67 828.72
9 no > 1800 1772.77 > 1800 > 1800 > 1800 > 1800
10 yes 46.08 5.67 57.55 20.41 15.81 40.59
11 yes 460.68 67.42 114.28 140.36 81.40 31.14
12 yes 336.37 915.26 1553.89 371.12 1237.94 202.50
13 no 165.92 97.69 316.29 177.13 200.94 183.97
14 no 246.14 383.93 672.08 444.04 341.58 401.79
15 no 809.52 732.03 > 1800 1552.16 1503.90 1321.14
16 no 121.60 219.63 144.31 182.07 85.60 162.21
17 yes 57.86 159.02 25.65 20.42 91.66 44.65
18 no 1024.70 > 1800 379.15 298.94 471.60 509.32
19 no 211.44 313.58 147.15 158.90 192.59 97.86
20 yes 410.38 604.93 177.03 159.31 58.33 148.37
21 no 69.14 86.74 54.86 69.44 48.96 43.08
22 yes 44.11 42.89 73.81 83.92 79.79 21.03
23 no 47.40 73.61 52.92 46.43 40.36 51.20
24 no > 1800 > 1800 > 1800 > 1800 > 1800 > 1800
25 no 820.30 800.58 > 1800 > 1800 > 1800 > 1800
26 no 14.30 18.26 140.57 141.65 56.95 48.99
27 no 122.89 122.26 1519.39 1788.02 302.05 481.56
28 no 1.72 1.97 2.53 2.96 3.38 4.28
29 no 2.56 2.97 3.42 3.60 3.54 4.10
30 no 11.02 14.56 20.28 18.16 15.05 15.35
31 no 21.12 28.04 24.21 22.42 17.97 16.01
32 no 41.78 42.99 84.30 74.98 47.08 48.08
33 no 139.09 110.19 116.88 108.63 128.57 66.15
34 yes 37.69 4.98 48.23 243.48 77.90 80.56
35 no 363.86 280.94 240.56 207.85 249.65 146.34
36 yes 464.60 162.06 17.26 207.38 28.03 291.41
37 no 1051.50 1232.13 1499.22 1139.09 > 1800 1532.31
38 no > 1800 > 1800 > 1800 > 1800 > 1800 > 1800

sums over solved instances
9121.66 12736.35 12043.4 10207.22 9654.62 8519.00

instances solved
35 35 32 33 33 34

lower bound all instances
14521.66 18136.35 22843.4 19207.22 18654.62 15719.00

Table 6.5: Evaluating runtimes of restarting schemes and phase saving.

97

1.14 [39]. For the circuit-to-CNF translation we have used the tool bc2cnf by Tommi
Juntilla, with the option “–nosimplify”. For BattleAx3, we have used the VSIDS decision
heuristic and a geometric restarting scheme without phase saving.

A comparison of runtimes is presented in Table 6.6. It can easily be seen that
BattleAx3 significantly outperforms the original BC tableau procedure. While we are
not able to surpass the performance of MiniSAT, the results indicate that our framework
is competitive with the standard DLL procedure. It must be noted that BattleAx3 is
a prototype that lacks the extensive fine-tuning of CNF-based solvers. We believe that
with efficient implementation techniques and through the introduction of structure-based
extensions to the search, a circuit-based solver could eventually outperform a standard
DLL solver such as MiniSAT.

98

Instance name BattleAx3 BCSat MiniSAT
1394-4-3.p1neg.k10.unsat 139.99 >1800 78.62
1394-4-3.p1neg.k11.sat 104.00 170.58 41.93
1394-5-2.p0neg.k13.unsat 483.01 >1800 72.60
atree.sat.34.0 132.80 580.47 49.20
atree.sat.36.50 250.61 1135.88 274.05
atree.sat.38.100 83.23 >1800 225.83
atree.unsat.32.0 381.01 237.29 72.38
atree.unsat.34.50 403.24 769.67 188.13
atree.unsat.36.100 >1800 >1800 450.62
braun.sat.32.0 46.08 15.53 9.53
braun.sat.34.50 460.68 145.35 48.43
braun.sat.36.100 336.37 36.96 256.97
braun.unsat.32.0 165.92 38.23 34.17
braun.unsat.34.50 246.14 61.67 108.74
braun.unsat.36.100 809.52 135.17 266.38
brp.ptimonegnv.k23.unsat 121.60 >1800 20.01
brp.ptimonegnv.k24.sat 57.86 >1800 6.77
csmacd.p0.k16.unsat 1024.70 >1800 106.71
dme3.ptimo.k61.unsat 211.44 >1800 254.57
dme3.ptimo.k62.sat 410.38 >1800 127.14
dme3.ptimonegnv.k58.unsat 69.14 >1800 123.27
dme3.ptimonegnv.k59.sat 44.11 >1800 426.18
dme5.ptimo.k65.unsat 47.40 >1800 902.16
dp 12.i.k10.unsat >1800 >1800 90.46
eq-test.atree.braun.10.unsat 820.30 301.66 290.85
eq-test.atree.braun.8.unsat 14.30 10.05 8.76
eq-test.atree.braun.9.unsat 122.89 59.48 36.91
fvp-unsat.2.0.3pipe.1 1.72 >1800 0.37
fvp-unsat.2.0.3pipe 2 ooo.1 2.56 >1800 1.24
fvp-unsat.2.0.4pipe 1 ooo.1 11.02 >1800 2.22
fvp-unsat.2.0.4pipe 2 ooo.1 21.12 >1800 9.80
fvp-unsat.2.0.5pipe 1 ooo.1 41.78 >1800 43.33
key 4.p.k28.unsat 139.09 56.95 14.83
key 4.p.k37.sat 37.69 >1800 159.82
key 5.p.k29.unsat 363.86 278.40 44.68
key 5.p.k37.sat 464.60 >1800 39.24
mmgt 4.i.k15.unsat 1051.50 >1800 44.69
q 1.i.k18.unsat >1800 >1800 36.87

instances solved 35 16 38
runtime sum solved instances 9021.66 4033.34 4968.46
full runtime sum > 14521.66 > 25633.34 4968.46

Table 6.6: Comparing BattleAx3 runtimes with BCSat and MiniSAT.

99

Chapter 7

Conclusion

In this thesis, we have presented an overview of the propositional satisfiability problem,
describing techniques from CNF-SAT and approaches for solving the satisfiability prob-
lem in non-clausal instances and circuits. We have presented the BC tableau procedure
for solving constrained circuit instances, and we have shown how a BC-based procedure
can be implemented using a generalized DLL framework and extended with many of the
techniques found in CNF-based SAT.

7.1 Evaluating Results

We have described BattleAx3, a prototypical implementation of a BC-based procedure,
and we have given an evaluation of a number of techniques on a set of benchmark circuits.
Our extended solver performs significantly better than the original implementation of
the tableau procedure described in Junttila and Niemelä [26], but is still slightly less
efficient overall than a state-of-the-art CNF-based solver.

We were not able to achieve any speedups by introducing the lookahead rule used in
the original implementation BCSat [26]. We have evaluated restricting the application
of the lookahead rule according to a number of heuristics, and managed to increase its
robustness, but the baseline implementation was still found to significantly outperform
any application of lookahead. It seems that the increased mobility that is a result of non-
chronological backtracking and restarts makes such an expensive heuristic unnecessary.
Still, it is interesting to note that the lookahead heuristic leads to a significant decrease
in decisions. On some instances, the lookahead heuristic manages to save two orders of
magnitude on the numbers of decisions.

Comparing the two second-order decision heuristics VSIDS and BerkMin shows that
the former slightly outperforms the latter on our benchmark set. We have encountered
an interesting effect concerning average search depth and clause length that suggests
that the two seemingly closely related decision heuristics actually differ considerably in
the way in which they explore the search space. Analyzing this effect in more detail
may yield important insights into the way the decision heuristic interacts with clause
learning and the overall exploration of the search space.

100

7.2 Open Questions and Research Opportunities

In this thesis, a number of questions remain unexplored. The benchmark set which
we have used to evaluate BattleAx3 makes sparse use of the complex gate types that
are supported by our solver, such as card gates and even/odd gates, but instead relies
heavily on simple and and or gates, for which our counter-based deduction is admittedly
suboptimal. It would be interesting to see how BattleAx3 would perform on a benchmark
set that made more extensive use of complex gate types.

On the other hand, speedups could be gained by extending our solver with a mix
of different deduction techniques for different gate types. For some gates, such as card
gates, our counter-based implementation is likely to be efficient, but other gate types
could profit significantly from watched-input schemes akin to those presented in Wu
et al. [51].

An area we have not explored at all is the choice between multiple implication graphs
during the search. Contrary to CNF-based SAT (except for the lazy-assignment imple-
mentations discussed in Biere [3]), a number of reasons may be identified when applying
a tableau rule. If, for example, we propagate a false input assignment in an and gate,
we may choose as a reason any of the inputs that are assigned to false at this point. It
is possible that the search process could be sped up by heuristically choosing between
such reasons. With such a heuristic it may be possible, for example, to set up a conflict
graph that allows for wide backjumps on average.

Another area where we suspect possible improvements is in the way learning is per-
formed. In our implementation, we essentially perform CNF-based learning, which can
be viewed as the addition of constrained or gates to the circuit. Such added gates are
essentially flat, i.e., all of their outputs are primary outputs. It is possible that the
learned information could be more concisely represented by extending the original cir-
cuit with more complex gate structures. In such a way, learned information may need to
be purged less often than in the case CNF-based solvers in order for the solver to stay
efficient.

While evaluating the VSIDS and BerkMin strategies, we have encountered an inter-
esting effect concerning average search depth and the average length of conflict clauses.
It may be interesting to analyze this effect more closely.

As a last point, it is interesting to note that it is easy to extend the BC-based im-
plementation with new gate types. One the one hand, such gate types could encode any
complex Boolean function where deduction might be handled more efficiently directly
than by using an encoding with logical primitives (e.g., gates that perform binary arith-
metic operations). On the other hand, it might prove interesting to use such general
gate types as interfaces to external solvers for domains that are not easily expressible in
propositional logic. As an example consider an instance of SAT-based planning. Here,
a gate could represent an interface to an external domain-specific planner. In this way,
problems could be solved that require a combination of abstract logical planning and
domain specific planning.

101

7.3 Concluding Remarks

In this thesis, we have presented a framework for an efficient tableau-based solver. Our
prototype does not surpass the efficiency of state-of-the-art CNF-based solvers, which
is not surprising when considering the amount of effort that has gone into the area of
CNF-based SAT. Nevertheless, our benchmarks indicate that the general framework of
the extended tableau procedure is competitive with the standard DLL procedure.

Given proper implementation techniques and efficient structure-based heuristics it
is likely that circuit-based SAT solving could be significantly sped up. With attention
shifting increasingly towards solving non-clausal SAT instances, we believe that circuit-
based solvers may soon outperform CNF-based solvers on practical instances.

102

Bibliography

[1] M. D. Agostino and M. Mondadori. The taming of the cut. Classical refutations
with analytic cut. Journal of Logic and Computation, 4(3):285–319, 1994.

[2] R. J. Jr. Bayardo and R. C. Schrag. Using CSP look-back techniques to solve real-
world SAT instances. In Proceedings of the 14th National Conference on Artificial
Intelligence (AAAI), pages 203–208. AAAI Press / The MIT Press, 1997.

[3] A. Biere. The evolution from LIMMAT to NANOSAT. Technical Report 444, Dept.
of Computer Science, ETH Zurich, 2004.

[4] A. Biere. Formal systems 2 - lecture notes. http://fmv.jku.at/fs2/, 2006.

[5] A. Biere. PicoSAT essentials. Journal on Satisfiability, Boolean Modeling and
Computation, 4:75–97, 2008.

[6] A. Biere. Resolve and expand. In Proceedings of the 7th International Conference
on Theory and Applications of Satisfiability Testing (SAT), pages 238–246. Online
Proceedings, 2004.

[7] A. Biere, A. Cimatti, E. M. Clarke, M. Fujita, and Y. Zhu. Symbolic model checking
using SAT procedures instead of BDDs. In Proceedings of the 36th ACM/IEEE
Conference on Design Automation (DAC), pages 317–320. ACM, 1999.

[8] T. Boy de la Tour. An optimality result for clause form translation. Journal of
Symbolic Computation, 14(4):283–301, 1992.

[9] P. Chatalic and L. Simon. ZRES: The old Davis-Putnam procedure meets ZBDD. In
Proceedings of the 17th International Conference on Automated Deduction (CADE),
volume 1831 of Lecture Notes in Computer Science, pages 449–454. Springer, 2000.

[10] S. A. Cook. The complexity of theorem-proving procedures. In Proceedings of the
3rd annual ACM Symposium on Theory of Computing (STOC), pages 151–158.
ACM, 1971.

[11] J. M. Crawford and L. D. Auton. Experimental results on the crossover point in
satisfiability problems. In Proceedings of the 11th National Conference on Artificial
Intelligence (AAAI), pages 21–27. AAAI Press, 1993.

103

[12] M. Davis and H. Putnam. A computing procedure for quantification theory. Journal
of the ACM, 7(3):201–215, 1960.

[13] M. Davis, G. Logemann, and D. Loveland. A machine program for theorem-proving.
Communications of the ACM, 5(7):394–397, 1962.

[14] R. Drechsler, T. A. Juntilla, and I. Niemelä. Handbook of Satisfiability, chapter
Non-Clausal SAT and ATPG (draft June 17, 2008). IOS Press - to be published,
2008.

[15] N. Eén and A. Biere. Effective preprocessing in SAT through variable and clause
elimination. In Proceedings of the 8th International Conference on Theory and Ap-
plications of Satisfiability Testing (SAT), volume 3569 of Lecture Notes in Computer
Science, pages 61–75. Springer, 2005.

[16] N. Eén and N. Sörensson. MiniSAT v2. 0 (beta). Solver description, SAT Race,
2006.

[17] U. Egly. Automated Deduction. A basis for applications. Vol. 1, chapter Cuts in
Tableaux. Kluwer Academic Publishers, 1998.

[18] M. K. Ganai, P. Ashar, A. Gupta, L. Zhang, and S. Malik. Combining strengths
of circuit-based and CNF-based algorithms for a high-performance SAT solver. In
Proceedings of the 39th Conference on Design automation (DAC), pages 747–750.
ACM, 2002.

[19] E. Goldberg and Y. Novikov. BerkMin: A fast and robust Sat-solver. In Proceedings
of the 2002 Conference on Design, Automation and Test in Europe (DATE), pages
142–149. IEEE, 2002.

[20] C. P. Gomes, B. Selman, and H. Kautz. Boosting combinatorial search through
randomization. In Proceedings of the 15th National Conference on Artificial Intel-
ligence (AAAI), pages 431–437. AAAI Press / The MIT Press, 1998.

[21] A. Gupta, A. Gupta, Z. Yang, and P. Ashar. Dynamic detection and removal of
inactive clauses in SAT with application in image computation. In Proceedings of
the 38th Conference on Design Automation (DAC), pages 536–541. ACM, 2001.

[22] J. Huang. The effect of restarts on the efficiency of clause learning. In Proceedings
of the 20th International Joint Conference on Artificial Intelligence (IJCAI), pages
2318–2323. Online Proceedings, 2007.

[23] M. Järvisalo and I. Niemelä. The effect of structural branching on the efficiency of
clause learning SAT solving: An experimental study. Journal of Algorithms, (1–3):
90–113, 2008.

[24] T. A. Juntilla. A file format for constrained Boolean circuits (accessed November
11, 2008). http://www.tcs.hut.fi/~tjunttil/bcsat/.

104

[25] T. A. Juntilla. personal communication, June 25 2008.

[26] T. A. Junttila and I. Niemelä. Towards an efficient tableau method for Boolean
circuit satisfiability checking. In Proceedings of the 1st International Conference
on Computational Logic (CL), volume 1861 of Lecture Notes in Computer Science,
pages 553–567. Springer, 2000.

[27] D. Kröning and O. Strichman. Decision Procedures, chapter Decision Procedures
for Propositional Logic, pages 25–57. Springer, 2008.

[28] A. Kuehlmann and F. Krohm. Equivalence checking using cuts and heaps. In
Proceedings of the 34th annual Conference on Design Automation (DAC), pages
263–268. ACM, 1997.

[29] A. Kuehlmann, M. K. Ganai, and V. Paruthi. Circuit-based Boolean reasoning. In
Proceedings of the 38th Conference on Design Automation (DAC), pages 232–237.
ACM, 2001.

[30] F. Lu, L. C. Wang, K. T. T. Cheng, J. Moondanos, and Z. Hanna. A signal
correlation guided Circuit-SAT solver. Journal of Universal Computer Science, 10
(12):1629–1654, 2004.

[31] M. Luby, A. Sinclair, and D. Zuckerman. Optimal speedup of Las Vegas algorithms.
In Proceedings of the 2nd Israel Symposium on the Theory of Computing Systems
(ISTCS), pages 128–133. IEEE, 1993.

[32] J. P. Marques-Silva. The impact of branching heuristics in propositional satisfi-
ability algorithms. In Proceedings of the 9th Portuguese Conference on Artificial
Intelligence (EPIA), volume 1695 of Lecture Notes in Computer Science, pages 62–
74. Springer, 1999.

[33] J. P. Marques-Silva and K. A. Sakallah. GRASP: A new search algorithm for
satisfiability. In Proceedings of the 1996 IEEE/ACM international Conference on
Computer-aided Design (ICCAD), pages 220–227. IEEE, 1996.

[34] M. W. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang, and S. Malik. Chaff: En-
gineering an efficient SAT solver. In Proceedings of the 38th Design Automation
Conference (DAC). ACM, 2001.

[35] K. Pipatsrisawat and A. Darwiche. A lightweight component caching scheme for
satisfiability solvers. In Proceedings of the 10th International Conference on Theory
and Applications of Satisfiability Testing (SAT), volume 4501 of Lecture Notes in
Computer Science, pages 294–299. Springer, 2007.

[36] K. Pipatsrisawat and A. Darwiche. RSat 2.0: SAT solver description. Solver de-
scription, SAT competition, 2007.

105

[37] D. A. Plaisted and S. Greenbaum. A structure-preserving clause form translation.
Journal of Symbolic Computation, 2(3):293–304, 1986.

[38] L. G. Silva, L. M. Silveira, and J. P. Marques-Silva. Algorithms for solving Boolean
satisfiability in combinational circuits. In Proceedings of the 1999 Conference on
Design, Automation and Test in Europe (DATE), pages 526–530. IEEE, 1999.

[39] N. Sörensson and N. Eén. MiniSat v1.13 - a SAT solver with conflict-clause mini-
mization. Solver Description, SAT 2005, 2005.

[40] R. M. Stallman and G. J. Sussman. Forward reasoning and dependency-directed
backtracking in a system for computer-aided circuit analysis. Artificial Intelligence,
9(2):135–196, 1977.

[41] P. Stephan, R. K. Brayton, and A. L. Sangiovanni-Vincentelli. Combinational test
generation using satisfiability. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems (TCAD), 15(9):1167–1176, 1996.

[42] S. Subbarayan and D. K. Pradhan. NiVER: Non-increasing variable elimination
resolution for preprocessing SAT instances. In Proceedings of the 7th International
Conference on Theory And Applications of Satisfiability Testing (SAT). Online Pro-
ceedings, 2004.

[43] The SAT 2005 Competition. http://www.satcompetition.org/2005/, 2005.

[44] The SAT 2007 Competition. http://www.satcompetition.org/2007/, 2007.

[45] The SAT Race 2008.
http://www-sr.informatik.uni-tuebingen.de/sat-race-2008/, 2008.

[46] C. Thiffault, F. Bacchus, and T. Walsh. Solving non-clausal formulas with DPLL
search. In Prooceedings of the 7th International Conference on Theory and Appli-
cations of Satisfiability Testing. Online Proceedings, 2004.

[47] G. S. Tseitin. On the complexity of derivation in propositional calculus. Studies in
Constructive Mathematics and Mathematical Logic, 2:115–125, 1968.

[48] M. N. Velev. Exploiting signal unobservability for efficient translation to CNF in
formal verification of microprocessors. In Proceedings of the 2004 Conference on
Design, Automation and Test in Europe (DATE), pages 266–271. IEEE, 2004.

[49] M. N. Velev. Encoding global unobservability for efficient translation to SAT. In
Proceedings of the 7th International Conference on Theory and Applications of Sat-
isfiability Testing (SAT). Online Proceedings, 2004.

[50] M. N. Velev. Comparison of schemes for encoding unobservability in translation to
SAT. In Proceedings of the 2005 Conference on Asia South Pacific Design Automa-
tion (ASP-DAC), pages 1056–1059. ACM, 2005.

106

[51] C. A. Wu, T. H. Lin, C. C. Lee, and C. Y. R. Huang. QuteSAT: A robust circuit-
based SAT solver for complex circuit structure. In Proceedings of the 2007 Confer-
ence on Design, Automation and Test in Europe (DATE), pages 1313–1318. ACM,
2007.

[52] H. Zhang and M. E. Stickel. Implementing the Davis-Putnam method. Journal of
Automated Reasoning, 24(1/2):277–296, 2000.

[53] L. Zhang and S. Malik. Cache performance of SAT solvers: a case study for efficient
implementation of algorithms. In Proceedings of the 6th International Conference
on Theory and Applications of Satisfiability Testing (SAT), volume 2919 of Lecture
Notes in Computer Science, pages 287–298. Springer, 2003.

[54] L. Zhang and S. Malik. The quest for efficient Boolean satisfiability solvers. In
Proceedings of the 18th International Conference on Automated Deduction (CADE),
volume 2392 of Lecture Notes in Computer Science, pages 295–313. Springer, 2002.

[55] L. Zhang, C. F. Madigan, M. H. Moskewicz, and S. Malik. Efficient conflict driven
learning in a Boolean satisfiability solver. In Proceedings of the 2001 International
Conference on Computer-Aided Design (ICCAD), pages 279–285. IEEE, 2001.

107

