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Deutsche Zusammenfassung

In dieser Diplomarbeit führen wir Techniken zur Vereinfachung disjunktiver
Datalogprogramme mit Negation ein und studieren deren Komplexität. Dis-
junktive Datalogprogramme mit Negation werden dazu verwendet, Prob-
leme unterschiedlicher Art zu beschreiben. Dazu zählen etwa kombina-
torische Probleme, Planungsprobleme sowie Probleme aus der Künstlichen
Intelligenz. Ein Datalogprogramm bestimmt dabei die Lösungen einer Prob-
leminstanz, ohne auf deren Berechnung einzugehen. Daher spricht man von
deklarativer Programmierung.

In manchen Situationen ist es sinnvoll Datalogprogramme zu verein-
fachen, zum Beispiel wenn dadurch die Auswertung des Programms beschl-
eunigt wird. Vereinfachung ist insbesondere für automatisch generierte Pro-
gramme interessant, da diese redundante Programmteile enthalten können.
Zum Beispiel generiert das System DLVK aus der Beschreibung eines Plan-
nungsproblems automatisch ein Datalogprogramm, das seinerseits durch das
System DLV1 ausgewertet werden kann. Auch für das theoretische Arbeiten
mit Datalogprogrammen bringt es Erleichterungen mit sich, vereinfachte
Programme zu betrachten.

Zwei Formen der Vereinfachung werden vorgestellt: Regelelimination
und Regeltransformation. Ein Datalogprogramm ist eine Menge von Regeln.
Eine Regel kann entfernt werden, wenn dabei Äquivalenz erhalten bleibt.
Wir betrachten hierfür gewöhnliche Äquivalenz, starke Äquivalenz und uni-
forme Äquivalenz. Diese und andere notwendige Begriffe werden im Kapi-
tel 2 präsentiert. Kapitel 3 widmet sich der Regelelimination und Regel-
transformation wird im Kapitel 4 behandelt. Regeltransformation bezeich-
net die Umformung einer Regel in eine oder mehrere strukturell einfachere
Regeln, sodass das resultierende Programm äquivalent zum ursprünglichen
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Programm ist. Kapitel 5 behandelt Aspekte der Implementierung. Offene
Fragen und weiterführende Arbeiten werden im Kapitel 6 besprochen. Eine
Zusammenfassung der Resultate findet sich im Kapitel 7.

Die erzielten Resultate umfassen eine Menge von Techniken. Wir be-
weisen deren Korrketheit, d.h., die angewandten Techniken erhalten Äqui-
valenz. Außerdem analysieren wir die Komplexität der Techniken, zeigen
also, mit welchem rechnerischem Aufwand Regelelimination und Regeltrans-
formation durchgeführt werden können. Einige der Probleme sind in poly-
nomieller Zeit lösbar, andere dagegen vollständig für NP bzw. für PSPACE.
Die komplexitätstheoretischen Grundbegriffe werden ebenfalls in Kapitel
2 eingeführt. Die wichtigsten Resultate wurden in [E+06] und [EFT05]
veröffentlicht.
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Abstract

In this thesis we introduce techniques for simplifying disjunctive datalog
programs with negation and study their complexity. Disjunctive datalog
programs with negation are used to describe problems of different kind. For
example, combinatorial problems, planning problems, and problems of Arti-
ficial Intelligence. A datalog program determines the solutions of a problem
instance without saying anything about the way of computing it. Therefore,
we speak of declarative programming.

In some situations it is useful to simplify datalog programs, e.g., if the
evaluation of the program becomes faster. Simplification is especially in-
teresting for automatically generated programs since these programs may
contain large redundant parts. For example, the system DLVK generates
from a description of a planning problem automatically a datalog program
which then can be evaluated by the system DLV2. But also for theoretical
considerations it is often preferable to use simplified programs.

Two kinds of simplification are presented: rule elimination and rule
transformation. A datalog program is a set of rules. A rule may be elimi-
nated if equivalence is preserved. We are considering ordinary equivalence,
strong equivalence, and uniform equivalence. The necessary notions will in-
troduced in Chapter 2. Chapter 3 concerns rule elimination and rule trans-
formation will be studied in Chapter 4. Rule transformation is the rewriting
of a rule into one or more structural simpler rules such that the resultant
program is equivalent to the original program. Chapter 5 concerns aspects of
implementations. Open questions and further work are discussed in Chapter
6. A summarization of the results can be found in Chapter 7.

Our results encompass several techniques. We are proving their correct-
2http://www.dlvsystem.com
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ness, i.e., the techniques preserve equivalence. Moreover, we analyze their
complexity, that is, we analyze the computational resources needed for rule
elimination and rule transformation. Some of the problems are solvable in
polynomial time, others are complete for NP or PSPACE. The complexity
theoretic notions are introduced in Chapter 2. Our most important results
have been published in [E+06] and [EFT05].
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Chapter 1

Introduction

In this thesis disjunctive datalog programs with negation are considered.
The semantics of disjunctive datalog programs with negation is based upon
the stable model semantics of propositional datalog programs with nega-
tion as failure which was introduced by Gelfond and Lifschitz [GL91]. A
disjunctive datalog program with negation consists of rules of the form

a1 ∨ ... ∨ ak← ak+1, ..., am, not am+1, ...,not an

where the ai’s are atoms with variables. Intuitively, whenever the body of
the rule (right side) is satisfied then the head (left side) has to be satisfied
too.

Simplifications of disjunctive datalog programs with negation are useful
in many situations. Simplifications can be considered to

• make the program smaller,

• simplify the structure of the program, or

• speed up the evaluation of the program.

Because of this latter important case we also speak of optimization. The
major aim of this thesis is to study program simplification and optimization,
and to analyze the complexity of the used techniques in particular.

Simplification involves that the resultant program is equivalent to the
original program. There are several notions of equivalence. Two important
ones in the area of logic programs are strong and uniform equivalence. The
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notion of strong equivalence in the propositional case was introduced by Lif-
schitz, Pearce and Valverde [LPV01], and the notion of uniform equivalence
by Eiter and Fink [EF03] which based upon [Sagiv88, Maher88]. Similar
notions for the non-ground case – the programs may have variables – were
studied by Eiter et al. [EFTW05]. These notions are used instead of ordi-
nary equivalence because ordinary equivalence is a rather weak notion for
disjunctive datalog programs with negation.

The considered techniques fall into two categories.

• Rule elimination: Under which circumstances can a rule r be elimi-
nated from a program Π such that Π is strongly equivalent/uniformly
equivalent to Π− {r}.

• Rule transformation: Under which circumstances can a rule r be re-
placed in a program Π by rules r′1, ..., r

′
n stemming from a syntacti-

cally more restricted setting than r such that Π is strongly equiva-
lent/uniformly equivalent to Π− {r} ∪ {r′1, ..., r′n}.

As an example of rule elimination we are considering a technique by
which every rule of the form

a1 ∨ ... ∨ ai ∨ ... ∨ ak← ak+1, ..., ai, ..., am, not am+1, ...,not an.

can be eliminated from a program Π. The atom ai occurs in the head and
unnegated in the body. The simplest example is the following rule r:

s(X)← s(X).

For every program Π it holds that Π is strongly equivalent/uniformly equiv-
alent to Π− {r}.

A technique for rule transformation we will study transforms a rule

a(X) ∨ b(Y )← c(X, Y )

into rules

a(X)← c(X,Y ), not b(Y )
b(Y )← c(X,Y ), not a(X)

The new rules do not have any disjunction in the head.
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The most general way of program simplification is testing strong/uniform
equivalence. Rule elimination and transformation are special cases of it.
But testing strong equivalence of disjunctive datalog programs with nega-
tion is complete for coNEXPTIME and therefore provably intractable. Even
worse, testing uniform equivalence is undecidable. This is the reason why
we concentrate on special techniques for rule elimination and transformation
besides an implementation of a strong equivalence test. Together with im-
plementations of some techniques we provide a first prototype of a toolbox
for program simplification and optimization of disjunctive datalog programs
with negation.

In the literature, techniques for simplifying propositional datalog pro-
grams under the stable model semantics were already studied. But for prac-
tice, datalog programs with variables are more important. In this work,
we will generalize techniques from the propositional to the non-ground case
which were studied by Eiter et al. [EFTW04] and Lin and Chen [LC05]. Our
main results are briefly summarized as follows:

• We introduce the generalized techniques which we named G-TAUT, G-
CONTRA, G-RED−, G-NONMIN, G-S-IMPL, G-SUBS, and G-LSH.

• We show that the generalized techniques preserve strong equivalence
and/or uniform equivalence.

• We analyze the complexity of the applicability of the techniques.

• We implement the most important techniques and a test for deciding
strong equivalence in general.

To see the implications of our work consider for example program op-
timization. There are two kinds of optimizations: online and offline opti-
mization. Online means that the program might be updated at runtime.
The algorithms for online optimization have to be efficient. In the gen-
eral case such algorithms do not exist. Therefore we have to study special
techniques for program simplification and optimization. Some of the stud-
ied techniques are indeed efficiently computable and hence can be used for
online optimization. Others are not. For example, we show that testing
applicability of G-LSH is PSPACE complete. But still this is an interest-
ing technique since if G-LSH can be applied a program is produced where
the problem of deciding satisfiability is complete for NEXPTIME instead of
NEXPTIMENP which is the complexity of the general case. Moreover, we
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found a for practice important special case of G-LSH which is in NL.

The overall background of this thesis is Answer Set Programming (ASP),
an area of logic programming receiving growing interest within the last years.
Answer set programs and what we called here disjunctive datalog programs
with negation are essentially the same. From a theoretical point of view ASP
is a quite general approach to declarative problem solving because of its high
expressive power. For example, problems complete for NP may be expressed
easily in ASP. And the evaluation complexity of answer set programs has
exponential time lower bounds. This is also a reason why program simplifi-
cation and optimization are important. In practice, ASP has found its way
into many different areas of applications: Planning, Verification and Con-
figuration, Multi-Agent Systems, Security and Crypto-Analysis (e.g. veri-
fication of cryptographic protocols), Diagnostic Systems and Inconsistency
Management. The basis for successful applications are systems like DLV1

[D+01, L+05], Smodels2 [NSS00, NSS02], NoMoRe3 [AKL01, LAK02], AS-
SAT4 [LZ02, LZ03], and Cmodels5 [Lierler05]. All of them can be found on
the web currently.

The outline of this thesis is as follows. The preliminaries, i.e., exact
definitions and some theorems, are provided in Chapter 2. In particular we
define disjunctive datalog programs with negation, equivalence of programs,
provide some examples, shortly introduce computational complexity and list
the major complexity results in answer set programming. In Chapter 3 we
study rule elimination and in Chapter 4 rule transformation. Both chap-
ters have the same structure. First we introduce the techniques and prove
that they preserve strong and/or uniform equivalence. Then we study their
complexity. Chapter 5 is devoted to implementations. Algorithms for test-
ing strong equivalence and the most important techniques are introduced.
We also address implementation issues. Finally we discuss further work in
Chapter 6 and summarize our results in Chapter 7.

Parts of this thesis on the theory and practice of program simplification
and optimization of non-ground disjunctive datalog programs with negation
have already been accepted for publication [E+06, EFT05].

1http://www.dlvsystem.com
2http://www.tcs.hut.fi/Software/smodels
3http://www.cs.uni-potsdam.de/ linke/nomore/
4http://assat.cs.ust.hk
5http://www.cs.utexas.edu/users/tag/cmodels.html
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Chapter 2

Preliminaries

This chapter provides the necessary background for our results. For an
overview of Answer Set Programming see [Baral02, Niemelae99, MT99,
GL02, FL05]. Some textbooks on computational complexity are [Pap94,
Sipser97]. Further material about complexity classes can be found in [GJ79,
Johnson90].

2.1 Disjunctive Datalog Programs

We fix a language L = 〈D,R〉 whereD is a countable infinite set of constants,
the domain, and for every arity k ∈ N = {0, 1, 2, ...} there are countable in-
finite many relational symbols in R, i.e., the set Rk of all relational symbols
of arity k is countable infinite. Note that we also allow relational symbols of
arity 0. We usually omit the parentheses in this case. There are no function
symbols. An atom of arity k has the form

p(x1, ..., xk)

where xi is a variable or a constant. We are using upper letters for variables,
lower letters for relational symbols, and lower letters or numbers for con-
stants, e.g., p(X, 1), q(1, c), r(U, V, W ) are atoms with variables U, V, W,X
and constants c, 1.

Let ai denote an atom. A disjunctive datalog program with negation
(program for short) is a finite set of rules where each rule has the form

a1 ∨ ... ∨ ak← ak+1, ..., am, not am+1, ...,not an (2.1)
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and the safety requirement holds, i.e., every variable in a1, ..., ak, am+1, ..., an

occurs in ak+1, ..., am.

For a rule r of the form (2.1) we define

• the head of r as H(r) := {a1, ..., ak},
• the body of r as B(r) := {ak+1, ..., am, not am+1, ...,not an},
• the positive body of r as B+(r) := {ak+1, ..., am}, and

• the negative body of r as B−(r) := {am+1, ..., an}.

A constraint is a rule with an empty head, and a disjunctive fact is a
rule with an empty body. A program may contain constraints or disjunctive
facts. A (non-disjunctive) fact is a rule with an empty body and without
disjunction. We usually omit the symbol ”←” for facts. If the head consists
of at most one atom then the rule is called normal ; if the negative body is
empty then the rule is called positive; and if the rule is normal and positive
it is called Horn. A program is called normal/positive/Horn if every rule is
normal/positive/Horn.

The base BL = BR,D of a language L is the set of all ground atoms
– i.e. variable-free atoms – build from R and D. An interpretation in a
language L is a subset of BL. For a program Π denote by L(Π) = 〈DΠ,RΠ〉
the language of Π and by maxar(Π) denote the maximal arity of relational
symbols in RΠ. The set RΠ contains exactly the relational symbols in Π,
and the set DΠ, which is called the active domain of Π, contains exactly the
constants in Π.

Example 1. Let Π be

e(1, 2)←
e(1, 3)←

e(2, 3) ∨ e(3, 2)←
v(X)← e(X, Y )
v(Y )← e(X, Y )

The active domain is DΠ = {1, 2, 3}, and RΠ = {e, v}. The maximal arity
is maxar(Π) = 2.
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Let r be a rule, C ⊆ D and ϑ : Vr → C a ground substitution where Vr is
the set of all variables in r. Then rϑ denotes the result of the substitution,
called the instantiation of r. Let Gr(Π, C) := {rϑ : r ∈ Π, ϑ : Vr → C} and
for some fixed c ∈ D

Gr(Π) :=

{
Gr(Π,DΠ) if DΠ 6= {}
Gr(Π, {c})

be the grounding of Π. An interpretation M is a model of Π, symbolically
M |= Π, iff for all r ∈ Gr(Π):

if B+(r) ⊆ M and B−(r) ∩M = {} then H(r) ∩M 6= {}.
For an interpretation I of Π define

ΠI := {H(r)←B+(r) : B−(r) ∩ I = {}, r ∈ Gr(Π)}
is the reduct of Π relative to I. A stable model of Π is a subset-minimal
model of ΠI . Let SM(Π) denote the set of stable models of Π.

From this definition of a (stable) model it follows that only interpreta-
tions I with I ⊆ BL(Π) are relevant. Note, that BL(Π) is finite.

In what follows, we illustrate these basic notions on some examples.

Example 2. The grounding for the program

e(0, 1)
e(Y,X)← e(X, Y )

is

e(0, 1)
e(0, 0)← e(0, 0)
e(1, 0)← e(0, 1)
e(0, 1)← e(1, 0)
e(1, 1)← e(1, 1)

The only stable model is {e(0, 1), e(1, 0)}.
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Example 3. The program

e(1, 2)
e(1, 3)

e(2, 3) ∨ e(3, 2)
v(X)← e(X, Y )
v(Y )← e(X, Y )

has the stable models

I := {e(1, 2), e(1, 3), e(2, 3), v(1), v(2), v(3)},
J := {e(1, 2), e(1, 3), e(3, 2), v(1), v(2), v(3)}.

Because of the minimality of I and J neither I∪J nor any K ⊇ I, J is a sta-
ble model of Π. For instance, {e(1, 2), e(1, 3), e(2, 3), v(1), v(2), v(3), e(3, 3)}
is not a stable model of Π

Example 4. The program Π

a

c← a,not b

b← a,not c

has the reduct ΠI = {a; b← a} relative to I = {a, b} and the reduct ΠJ =
{a; c← a} relative to J = {a, c}. Since I is a subset-minimal model of ΠI

and J a subset-minimal model of ΠJ both are stable models of Π. But the
classical model K := {a, b, c} is not a stable model of Π because it is not a
subset-minimal model of ΠK = {a}.

2.2 Propositional Programs

A rule/program is called propositional iff it contains only relational symbols
of arity 0. For instance, the program of Example 4 is propositional.

The relational symbols in R0 are also called propositional atoms. Let
µ be a bijective mapping of ground atoms over L to propositional atoms
from R0. Extend µ to be a bijective mapping of ground programs over L to
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propositional programs over R0.

Example 5. For instance, µ assigns to {a(1)← b(3), c(7); b(3)← b(5)} the
propositional program {p← q, r; q← s} where µ(a(1)) = p, µ(b(3)) = q,
µ(c(7)) = r, and µ(b(5)) = s.

2.3 Equivalences

Two programs P and Q are (ordinary) equivalent, symbolically P ≡ Q, iff
they have the same stable models. They are strongly equivalent, symboli-
cally P ≡s Q, iff for every program R it holds that P ∪R ≡ Q∪R, and they
are uniformly equivalent, symbolically P ≡u Q, iff for every finite set F of
facts P ∪ F ≡ Q ∪ F .

The following proposition is an immediate consequence of these defini-
tions.

Proposition 1. Let P and Q be programs. If P ≡s Q then P ≡u Q.

For our purposes, we note that this proposition implies that every tech-
nique which preserves strong equivalence also preservers uniform equiva-
lence. We will make use this result throughout the thesis without mention-
ing it.

Strong equivalence has a model-theoretic characterization. We need the
following definition.

Definition 1. Let Π be a program and C ⊆ D. An SE-model of Π is a pair
(X, Y )C of interpretations X,Y ⊆ BR,C such that X ⊆ Y , Y |= Gr(Π, C),
and X |= Gr(Π, C)Y , symbolically (X, Y )C |=s Π.

SEC(Π) := {(X, Y )C : X ⊆ Y ⊆ BR,C , (X,Y )C |=s Π}.

9



SE(Π) :=
⋃

C⊆D SEC(Π).

Instead of arbitrary sets C we may consider only finite sets C ⊆fin D.

SEfin(Π) :=
⋃

C⊆finD SEC(Π).

Now we can state the model-theoretic characterization of strong equiv-
alence. The theorem is used for example in proving that testing strong
equivalence of two programs is decidable. We will use it later for showing
that the techniques we study preserve strong equivalence.

Proposition 2 ([EFTW05]). Let P and Q be programs. Then, P ≡s Q
iff SE(P ) = SE(Q).

Inspecting the proof of this proposition in [EFTW05] we get the following
more general proposition we will use later on.

Proposition 3. Let P and Q be programs. Then, P ≡s Q iff SEfin(P ) =
SEfin(Q).

Example 6. The programs

h(X)← a(X)
t(X)←h(X)
a(X)← t(X)
a(X)←h(X)

and

h(X)← a(X)
t(X)←h(X)
a(X)← t(X)

are strongly equivalent. Eliminating the rule a(X)←h(X) from the first
program does not change the SE-models. The first program states that
a ⊆ h, h ⊆ t, t ⊆ a, and hence a = h = t. Therefore, the last rule which
states t ⊆ h can be eliminated.

10



For the purpose of lifting we will need the propositional counterparts of
these notions.

Two propositional programs P and Q are propositional equivalent, sym-
bolically P ≡prop Q, iff they have the same propositional stable models.
They are propositional strongly equivalent, symbolically P ≡prop

s Q, iff for
every propositional program R it holds that P ∪ R ≡prop Q ∪ R, and they
are propositional uniformly equivalent, symbolically P ≡prop

u Q, iff for every
finite set F of propositional facts P ∪ F ≡prop Q ∪ F .

Definition 2. Let Π be a propositional program. A propositional SE-model
of Π is a pair (X, Y ) of interpretations X, Y ⊆ R0 such that X ⊆ Y , Y |= Π,
and X |= ΠY , symbolically (X,Y ) |=prop

s Π.

SEprop(Π) := {(X,Y ) : X ⊆ Y ⊆ R0, (X, Y ) |=prop
s Π}.

Proposition 4 ([Turner01, Turner03]). Let P and Q be propositional
programs. Then P ≡prop

s Q iff SEprop(P ) = SEprop(Q).

If P and Q are propositional programs then P ≡s Q iff P ≡prop
s Q.

Another connection between strong equivalence and propositional strong
equivalence is given in the following lemma. We will use it later on in the
correctness proofs of the techniques. It involves the mapping µ between
ground atoms and propositional atoms we defined in the previous section.

Lemma 1. Let P and Q be a programs and C ⊆ D. If µ(Gr(P, C)) ≡prop
s

µ(Gr(Q,C)) then SEC(P ) = SEC(Q).

Proof. Let (X,Y )C ∈ SEC(P ). The following implications are easy conse-
quences of the involved definitions: X ⊆ Y ⊆ BR,C implies µ(X) ⊆ µ(Y ) ⊆
R0, Y |= Gr(P,C) implies µ(Y ) |= µ(Gr(P, C)), and X |= Gr(P, C)Y implies
µ(X) |= µ(Gr(P, C))µ(Y ). Hence (µ(X), µ(Y )) ∈ SEprop(µ(Gr(P, C))) and
(µ(X), µ(Y )) ∈ SEprop(µ(Gr(Q,C))). The following implications also hold:
µ(Y ) |= µ(Gr(Q,C)) implies Y |= Gr(Q,C), and µ(X) |= µ(Gr(Q,C))µ(Y )

implies X |= Gr(Q,C)Y . Therefore (X, Y )C ∈ SEC(Q). One shows that
(X, Y )C ∈ SEC(P ) for (X,Y )C ∈ SEC(Q) in the same way.
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2.4 Head-cycle Free Programs

Let Π be a program and A be the set of all atoms in Gr(Π). The de-
pendency graph D(Gr(Π)) of Π has exactly the vertices A and contains an
edge e = (a, b) iff there exists a rule r ∈ Gr(Π) such that a ∈ H(r) and
b ∈ B+(r) ∪ B−(r), moreover, e is marked with + if b ∈ B+(r) and e is
marked with − if b ∈ B−(r). Denote by D+(Gr(Π)) the graph restricted
to edges in D(Gr(Π)) which have only the mark +. An atom a positively
depends on an atom b iff there exists a path from a to b in D+(Gr(Π)). A
rule r ∈ Gr(Π) is head-cycle free iff no distinct atoms a, b ∈ H(r) mutually
positively depend on each other. A program Π is head-cycle free iff every
rule r ∈ Gr(Π) is head-cycle free.

Example 7. Consider the program

a ∨ d← b, c

b ∨ c← a

a ∨ e← d

The third rule is head-cycle free in the program. The first rule is not head-
cycle free because (d, b, a, d) is a cycle in the positive dependency graph and
the second rule is not head-cycle free because of the cycle (b, a, c, a, b).

Example 8. The program

r(X) ∨ u(X)← s(X)
s(X)← t(X,Y )

t(X, 0)←u(0)
u(1)← r(X)

is head-cycle free. But the program

r(X) ∨ u(X)← s(X)
s(X)← t(X,Y )

t(X, 0)←u(0)
u(0)← r(X)

is not. The head-cycle in the latter program is (r(0), s(0), t(0, 0), u(0), r(0)).
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2.5 Computational Complexity

In this section we present all notions and results we need from complexity
theory. We also give an overview of complexity results concerning disjunc-
tive datalog programs with negation.

Let Σ be a finite alphabet, Σ∗ be the set of all finite words over Σ, and
denote by |x| the number of symbols in the string x ∈ Σ∗. A language
L ⊆ Σ∗ is in P iff there exists a polynomial function p : N→N and a Turing-
Machine M which accepts L and for all x ∈ L: tM (x) ≤ p(|x|). The function
tM (x) denotes the time complexity of M for the input x, i.e., the number
of executed steps. We also consider space complexity. Denote by sM (x) the
space complexity of M for the input x, i.e., the number of used tape cells.
A language L ⊆ Σ∗ is in PSPACE iff there exists a polynomial function
p : N→N and a Turing-Machine M which accepts L and for all x ∈ L:
sM (x) ≤ p(|x|), and L is in the class L iff for all x ∈ L: sM (x) ≤ lg(p(|x|)).

The classes L, P, and PSPACE have the nondeterministic counterparts
NL, NP, and NPSPACE. It holds that PSPACE = NPSPACE and coNL =
NL where coNL is the complement class of NL. The relationship of these
classes is: L ⊆ NL ⊆ P ⊆ NP ⊆ PSPACE. Denote by FL the class of all
functions f : Σ∗→Σ∗ which are computable in logarithmic space. A lan-
guage L1 is reducible to a language L2, symbolically L1 ≤L

m L2, iff there
exists f ∈ FL such that for all x ∈ Σ∗: x ∈ L1 iff f(x) ∈ L2. A language L
is complete for a complexity class C iff L ∈ C and for all L′ ∈ C: L′ ≤L

m L.
We will also use polynomial time reductions. An introductory treatment
of these notions can be found in the book [Sipser97] of Sipser. There one
also find a more accurate definition of an oracle Turing machine we provide
here. Informally, an oracle Turing machine ML for a language (oracle) L
can decide L with unit cost. Oracle complexity classes are defined in the
usual way. See also [Pap94, S76].

The following two problems will be used later on. A digraph G is a
pair (V, E) of a finite set V of vertices and of a set E of directed edges, i.e.
E ⊆ V × V . Let s, t ∈ V . We say that t is reachable from s in G iff there
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exists a path from s to t in G. The problem of deciding if t is reachable
from s in G is complete for NL. A graph G is a pair (V, E) of a finite set V
of vertices and of a set E of undirected edges, i.e., E consists of two element
subsets of V . A 3-coloring of a graph G is a function χ : V →{1, 2, 3} such
that for all {x, y} ∈ E: χ(x) 6= χ(y). Deciding if there exists a 3-coloring of
a graph G is complete for NP.

Now we give a short overview of complexity results concerning disjunc-
tive datalog programs with negation. We will not need these results for
our proofs but they should help in getting a better understanding of the
computational cost needed to solve problems in the area of Answer Set Pro-
gramming.

First, we consider the problem to decide if a program of a particular
form (Horn, Normal, General) has a stable model. The following results are
well known. See for example [EGM97], [EF+04], [DE+01].

propositional non-ground
Horn P EXPTIME
Normal NP NEXPTIME
General NPNP NEXPTIMENP

EXPTIME is the set of all problems solvable in exponential time. All the
problems are indeed complete for the complexity classes. Next we consider
the problem to decide strong/uniform equivalence.

propositional non-ground
SE coNP [PTW01, Lin02] coNEXPTIME [EFTW05]
UE coNPNP [EF03] undecidable [EFTW05]

All the problems with the exception to decide uniform equivalence of
(non-ground) programs are complete for the complexity classes.

We are also interested in reasoning problems, especially brave reasoning.
For a negated or an unnegated ground atom b and a program Π the problem
is to decide if there exists an I ∈ SM(Π) such that b ∈ I. We only need the
brave reasoning problem for Horn programs. In the propositional case this
problem is complete for P and in the non-ground case complete for EXP-
TIME.

14



2.6 Further Examples

In this section we present further examples to illustrate how, for instance,
Answer Set Programming is applied for solving problems over graphs.

Example 9. 3-Coloring.

e(Y, X)← e(X, Y )
r(X) ∨ g(X) ∨ b(X)← e(X, Z)

← g(X), g(Y ), e(X, Y )
← b(X), b(Y ), e(X, Y )
← r(X), r(Y ), e(X, Y )

Adding a set E of facts of the form e(c, d) yields a program which describes
by its stable models the admissible 3-colorings of the graph represented by
E.

Example 10. Transitive closure. The programs

t(X,Y )← e(X,Y )
t(X,Z)← t(X,Y ), t(Y, Z)

and

t(X,Y )← e(X,Y )
t(X,Z)← e(X,Y ), t(Y, Z)

both compute the transitive closure t of e. They are ordinary equiva-
lent and remain ordinary equivalent if any set E of facts e(c, d) is added.
But they are neither strongly equivalent nor uniformly equivalent. Adding
{t(1, 2), t(2, 3)} to both programs yields non-equivalent programs.

Example 11. Here are two programs which are strongly equivalent and con-
tain negation.
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Program 1:

a(X)←not b(X)
a(X)← c(X)
c(X)← a(X)
c(X)←not b(X)

Program 2:

a(X)←not b(X)
a(X)← c(X)
c(X)← a(X)

Removing the last rule of the first programs does not change the SE-models.
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Chapter 3

Rule Elimination

In this chapter we study rule elimination. First, we recall techniques for rule
elimination in the propositional case which are subsequently generalized to
the non-ground case. These generalizations were first pointed out in an in-
formal way by Eiter et al. [E+04].

Definition 3. A rule r is an s-implication of a rule r′, symbolically r′ ¢ r,
iff there exists A ⊆ B−(r) such that H(r′) ⊆ H(r)∪A, B−(r′) ⊆ B−(r)−A,
B+(r′) ⊆ B+(r).

Proposition 5 ([ONA01, EFTW04]). Let Π be a propositional program
and r, r′ ∈ Π. Π ≡prop

s Π− {r} if one of the following conditions hold

• TAUT(r): H(r) ∩B+(r) 6= {}
• CONTRA(r): B+(r) ∩B−(r) 6= {}
• RED−(r, r′): H(r′) ⊆ B−(r), B(r′) = {}
• NONMIN(r, r′): H(r) ⊆ H(r′), B(r) ⊆ B(r′)

• S-IMP(r, r′): r′ ¢ r

In the previous proposition we named the conditions. We often say that
TAUT is the technique where TAUT(r) has to hold such that we can elim-
inate r. And instead of saying that TAUT(r) does not hold we use the
notation TAUT(r). The rules TAUT, CONTRA, RED−, and NONMIN are
due to Brass and Dix [BD99] and the rule S-IMP is originally due to Wang
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and Zhou [WZ05].

Example 12. The rules a← a, b and c← a,not a can be eliminated from the
program Π

a← a, b

a ∨ c← b

c← a, not a

by applying TAUT, and respectively CONTRA. It holds that Π ≡s {a ∨
c← b}.

If NONMIN(r, r′) holds then also S-IMP(r, r′). The condition SUBS(r, r′)
in the following proposition is even more general in the sense that it implies
NONMIN(r, r′). We note this in the next but one proposition.

Proposition 6 ([LC05]). Let Π be a propositional program and r, r′ ∈ Π.
Π ≡prop

s Π− {r} if the following condition holds

• SUBS(r, r′): B+(r′) ⊆ B+(r), B−(r′) ⊆ B−(r), H(r′) ⊆ H(r)∪B−(r).

Proposition 7. Let r, r′ be propositional rules. The following implications
hold:

• NONMIN(r, r′) ⇒ S-IMP(r, r′) ⇒ SUBS(r, r′),

• RED−(r, r′) ⇒ S-IMP(r, r′) ⇒ SUBS(r, r′).

In what follows we provide generalizations of these conditions and show
that the according techniques preserve strong equivalence. Recall that by
Proposition 1, this immediately implies that the techniques also preserve
uniform equivalence.
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3.1 G-TAUT and G-CONTRA

We start with the generalization of TAUT and CONTRA to the non-ground
case.

Definition 4. Let r be a rule. G-TAUT(r) iff H(r) ∩B+(r) 6= {}.
Definition 5. Let r be a rule. G-CONTRA(r) iff B+(r)∩B−(r) 6= {}.

The conditions in the non-ground case are the same as in the propo-
sitional case. We have to show that these techniques remain correct, i.e.,
if G-TAUT(r) or G-CONTRA(r) holds then r can be eliminated from any
program such that the resulting program remains strongly equivalent.

Theorem 1. (Correctness) Let Π be a program and r ∈ Π. Then, Π ≡s

Π− {r} if

1. G-TAUT(r) or

2. G-CONTRA(r).

Proof. 1) Because of Proposition 3 we have to show SEC(Π) = SEC(Π −
{r}) for every C ⊆fin D. Let C ⊆fin D. We only need to show that
µ(Gr(Π, C)) ≡prop

s µ(Gr(Π− {r}, C)) (cf. Lemma 1).

Define
∆ := Gr(Π, C)−Gr(Π− {r}, C).

We are showing µ(Gr(Π, C)) ≡prop
s µ(Gr(Π, C)) − µ(S) by induction on

the size of S ⊆ ∆. The induction start |S| = 0 is clear. Assume that
µ(Gr(Π, C)) ≡s µ(Gr(Π, C)) − µ(S) for 0 < |S| < |∆|, and let r′ ∈ ∆ − S.
The rule r′ is an instantiation of r, and because of G-TAUT(r) it holds that
TAUT(µ(r′)). Therefore by Proposition 5 µ(Gr(Π, C))− µ(S)− {r′} ≡prop

s

µ(Gr(Π, C))− µ(S) ≡prop
s µ(Gr(Π, C)).

This proves µ(Gr(Π, C)) ≡s µ(Gr(Π, C)) − µ(∆) and hence SEC(Π) =
SEC(Π− {r}).

2) Analogous.
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Example 13. For example, s(X) ∨ t(X)← s(X) is redundant because every
instantiation s(c) ∨ t(c)← s(c) is a tautology. t(c) is not derived because
of minimality. Another example is ← s(X), not s(X). Every instantiation
← s(c), not s(c) is a contradiction.

There is another way to generalize the techniques from the propositional
case:

Definition 6. Let r be a rule. G-TAUT∗(r) iff for all ϑ : Vr→D: H(rϑ) ∩
B+(rϑ) 6= {}.
Definition 7. Let r be a rule. G-CONTRA∗(r) iff for all ϑ : Vr→D:
B+(rϑ) ∩B−(rϑ) 6= {}.

Obviously G-TAUT(r) implies G-TAUT∗(r), and G-CONTRA(r) im-
plies G-CONTRA∗(r), i.e., these generalization might be even more general
than the previous ones. But it shows up that they are equivalent.

Theorem 2. Let Π be a program and r ∈ Π.

1. G-TAUT∗(r) iff G-TAUT(r).

2. G-CONTRA∗(r) iff G-CONTRA(r).

Proof. 1) ⇒) By contraposition. G-TAUT(r) iff H(r) ∩ B+(r) = {}. De-
fine ϑ(Xi) := ci where X1, ..., Xn are the variables in r and c1, ..., cn are
new and distinct constants; ϑ is a ground substitution and of the form
Vr→{c1, ..., cn}. Note, that the domain is infinite. Let a ∈ H(r), b ∈
B+(r). If a and b have different relational symbols then aϑ 6= bϑ. Oth-
erwise, they have at least one different variable at some place because of
H(r)∩B+(r) = {} and again aϑ 6= bϑ. Hence, H(rϑ)∩B+(rϑ) = {} which
implies G-TAUT∗(r).

⇐) Let a ∈ H(r) ∩B+(r). For all ϑ : Vr→D: aϑ ∈ H(rϑ) ∩B+(rϑ).

2) Analogous.
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3.2 G-RED−

Next, we provide the generalization of RED−.

Definition 8. Let r and s be rules. G-RED−(r, s) iff H(s) ⊆ B−(r) and
B(s) = {}.

No disjunctive fact contains a variable because of the safety requirement.
This explains why G-RED− and RED− are the same.

Theorem 3. (Correctness) Let Π be a program and r, s ∈ Π. If G-RED−(r, s)
then Π ≡s Π− {r}.
Proof. This proof is similar to that of Theorem 1. We only need to prove
that µ(Gr(Π, C)) ≡prop

s µ(Gr(Π − {r}, C)) for any C ⊆fin D because of
Proposition 3 and Lemma 1.

Define
∆ := Gr(Π, C)−Gr(Π− {r}, C).

We are showing µ(Gr(Π, C)) ≡prop
s µ(Gr(Π, C)) − µ(S) again by induction

on the size of S ⊆ ∆. The induction start |S| = 0 is clear. Assume that
µ(Gr(Π, C)) ≡s µ(Gr(Π, C)) − µ(S) for 0 < |S| < |∆|, and let r′ ∈ ∆ − S.
The rule r′ is an instantiation of r, and because of G-RED−(r, s) it holds
that r′ = r since s has to be ground because of the safety requirement and
H(s) = {}. It then follows that RED−(µ(r′), µ(s)) holds. Therefore by
Proposition 5 µ(Gr(Π, C)) − µ(S) − {r′} ≡prop

s µ(Gr(Π, C)) − µ(S) ≡prop
s

µ(Gr(Π, C)). This proves µ(Gr(Π, C)) ≡s µ(Gr(Π, C))− µ(∆).

3.3 G-NONMIN, G-S-IMPL, and G-SUBS

In this section we provide generalizations of NONMIN, S-IMPL, and SUBS.

Definition 9. Let r and s be rules. G-NONMIN(r, s) iff for all C ⊆fin D
and r′ ∈ Gr(r, C) there exists an s′ ∈ Gr(s, C), such that H(s′) ⊆ H(r′) and
B(s′) ⊆ B(r′).
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Definition 10. Let r and s be rules. G-S-IMPL(r, s) iff for all C ⊆fin D
and r′ ∈ Gr(r, C) there exists an s′ ∈ Gr(s, C), such that s′ ¢ r′.

Definition 11. Let r and s be rules. G-SUBS(r, s) iff for all C ⊆fin D
and r′ ∈ Gr(r, C) there exists an s′ ∈ Gr(s, C), such that B+(s′) ⊆ B+(r′),
B−(s′) ⊆ B−(r′), and H(s′) ⊆ H(r′) ∪B−(r′).

Proposition 8. Let r and s be rules. G-SUBS(r, s) holds, whenever G-
NONMIN(r, s) or G-S-IMPL(r, s) holds.

Theorem 4. (Correctness) Let Π be a program and r, s ∈ Π. Then, Π ≡s

Π− {r} if

1. G-NONMIN(r, s),

2. G-S-IMPL(r, s), or

3. G-SUBS(r, s).

Proof. 3) This proof is similar to that of Theorem 1. We only need to prove
that µ(Gr(Π, C)) ≡prop

s µ(Gr(Π − {r}, C)) for any C ⊆fin D because of
Proposition 3 and Lemma 1.

Define
∆ := Gr(Π, C)−Gr(Π− {r}, C).

We are showing µ(Gr(Π, C)) ≡prop
s µ(Gr(Π, C)) − µ(S) again by induction

on the size of S ⊆ ∆. The induction start |S| = 0 is clear. Assume that
µ(Gr(Π, C)) ≡s µ(Gr(Π, C)) − µ(S) for 0 < |S| < |∆|, and let r′ ∈ ∆ − S.
The rule r′ is an instantiation of r, and because of G-SUBS(r, s) it fol-
lows that there exists an s′ such that SUBS(µ(r′), µ(s′)) holds. Therefore
µ(Gr(Π, C)) − µ(S) − {r′} ≡prop

s µ(Gr(Π, C)) − µ(S) ≡prop
s µ(Gr(Π, C)).

This proves µ(Gr(Π, C)) ≡s µ(Gr(Π, C))− µ(∆).

1, 2) If G-NONMIN(r, s) or G-S-IMPL(r, s) holds then also G-SUBS(r, s)
holds by Proposition 8 and hence Π ≡s Π− {r}.

NONMIN(r, s) implies G-NONMIN(r, s), but the converse does not hold.
Consider the following example.
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Example 14. Let r be the rule

s(X2)← t(X1, 0), t(0, X2), t(X2, X2)

and s the rule
s(Y3)← t(Y1, Y2), t(Y2, Y3).

G-NONMIN(r, s) holds, but NONMIN(r, s) does not hold. But after substi-
tuting also NONMIN(r, s) does. Define ϑ := {Y1 7→ X1, Y2 7→ 0, Y3 7→ X2}
or ϑ := {Y1 7→ 0, Y2 7→ X2, Y3 7→ X2}. It holds that H(sϑ) ⊆ H(r) and
B(sϑ) ⊆ B(r), i.e., NONMIN(rϑ, s) holds.

The previous example motivates the following definitions, providing an al-
ternative generalization of NONMIN, S-IMP, and SUBS to the non-ground
case.

Definition 12. Let r and s be rules. NONMIN∗(r, s) iff there exists a
substitution ϑ : Vs→Vr ∪ Dr, such that H(sϑ) ⊆ H(r) and B(sϑ) ⊆ B(r).

Definition 13. Let r and s be rules. S-IMPL∗(r, s) iff there exists a sub-
stitution ϑ : Vs→Vr ∪ Dr and A ⊆ B−(r), such that H(sϑ) ⊆ H(r) ∪ A,
B−(sϑ) ⊆ B−(r)−A, and B+(sϑ) ⊆ B+(r).

Definition 14. Let r and s be rules. SUBS∗(r, s) and there exists a substi-
tution ϑ : Vs→Vr ∪ Dr, such that B+(sϑ) ⊆ B+(r), B−(sϑ) ⊆ B−(r), and
H(sϑ) ⊆ H(r) ∪B−(r).

Theorem 5. Let Π be a program and r, s ∈ Π. Then,

1. G-NONMIN(r, s) iff NONMIN∗(r, s).

2. G-S-IMPL(r, s) iff S-IMPL∗(r, s).

3. G-SUBS(r, s) iff SUBS∗(r, s).

Proof. We prove (2). (1) and (3) are analogous.

2,⇒) Let {c1, ..., cm} = Dr ∪ Ds and {X1, ..., Xn} = Vr. Since D is
infinite there exists C ⊆ D such that |C| ≥ m + n. Define ϑ1(Xi) := di
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where c1, ..., cm, d1, ..., dn are distinct and from C; ϑ1 has the form Vr→C.
Let r′ = rϑ1. It follows from G-S-IMPL(r, s) that there exists s′ ∈ Gr(s, C),
i.e., ∃ϑ2 : Vs→C with s′ = sϑ2, and A ⊆ B−(r′) such that H(s′) ⊆ H(r′)∪
A,B−(s′) ⊆ B−(r′)−A, B+(s′) ⊆ B+(r′). Now, define

ϑ(X) :=

{
Y if ϑ1(Y ) = ϑ2(X)
ϑ2(X)

The substitution ϑ is well defined because if there exists Y with ϑ1(Y ) =
ϑ2(X) then there exists exactly one since ϑ1 is bijective. Because of the
same reason and since variables are only substituted with new constants we
can reverse the substitution for all atoms in A and get E = Aϑ−1

1 ⊆ B−(r).

Claim: H(sϑ) ⊆ H(r) ∪ E. For an atom a denote by a(i) the content
of the i-th place of a. Let b ∈ H(s). Then, there exists a ∈ H(r) ∪ E such
that aϑ1 = bϑ2 = p(c′1, ..., c

′
k) for a relational symbol p. Now, assume a(i)

is a variable Y . Then b(i) can not be a constant because in the definition
of ϑ1 every variable is mapped to a different constant symbol not occur-
ring in r or s, i.e., no variable is mapped to cj for some j in this case. It
follows that b(i) is a variable X and after the definition of ϑ it holds that
ϑ(X) = Y . Next, assume that a(i) is a constant c. If b(i) is also a con-
stant c′ then c′ = c. Otherwise, let b(i) be the variable X. Since there
exists no Y with ϑ1(Y ) = ϑ2(X) it holds that ϑ(X) = ϑ2(X) = c. Hence,
H(sϑ) ⊆ H(r) ∪ E. The same argument shows B−(sϑ) ⊆ B−(r) − A and
B+(sϑ) ⊆ B+(r). From this it is also clear that ϑ has the form Vs→Vr∪Dr.

2,⇐) Let C ⊆ D and r′ ∈ Gr(r, C). There exists a substitution ϑ1 : Vr→C
such that r′ = rϑ1. Let ϑ and A be as in the definition of S-IMPL∗(r, s).
Define

ϑ2(X) :=

{
ϑ(X) if ϑ(X) ∈ D
ϑ1(ϑ(X))

The substitution ϑ2 is of the form Vs→C, and therefore sϑ2 ∈ Gr(s, C). It
holds that Aϑ1 ⊆ B−(r′), H(sϑ2) ⊆ H(r′)∪Aϑ1, B−(sϑ2) ⊆ B−(r′)−Aϑ1,
and B+(sϑ2) ⊆ B+(r′), i.e., s′¢r′ for s′ = sϑ2. Hence, G-S-IMPL(r, s).

The previous theorem shows that G-NONMIN, G-S-IMPL, and G-SUBS
are decidable. In the next section we will analyze their complexity.
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3.4 Complexity Analysis

G-TAUT, G-CONTRA, and G-RED− are obviously polynomial time decid-
able. For analyzing the complexity of deciding G-NONMIN, G-S-IMPL, and
G-SUBS a special case of the subsumption problem is useful.

Definition 15. Let A and B be two sets of atoms without function symbols.
A subsumes B iff there exists a substitution ϑ from the variables of A into
the variables and constants of B such that Aϑ ⊆ B.

The following proposition is well known.

Proposition 9. {(A,B) : A subsumes B} is complete for NP.

To see this, consider a digraph G over the vertices {1, ..., n}. Define
B := {e(r, g), e(g, r), e(r, b), e(b, r), e(g, b), e(b, g)} and e(Xi, Xj) ∈ A iff (i, j)
is an edge in G. This establishes a reduction from the 3-Colorability problem.

Theorem 6. Deciding any of the sets

1. {(r, s) : G-NONMIN(r, s) holds, r, s rules},
2. {(r, s) : G-S-IMPL(r, s) holds, r, s rules}, or

3. {(r, s) : G-SUBS(r, s) holds, r, s rules}
is complete for NP.

Proof. Let r and s be rules. We only need to consider NONMIN∗(r, s), S-
IMPL∗(r, s), and S-SUBS∗(r, s) because of Theorem 5. In every three cases
membership can be decided by guessing a substitution ϑ : Vs→Vr ∪Dr and
checking the respective conditions from Proposition 5. For the hardness
proof assume that r and s are constraints with only positive atoms, i.e.,
H(r) = H(s) = B−(r) = B−(s) = {}. This special case is the subsumption
problem which is NP-complete (cf. Proposition 9).

Hence, in implementing these techniques we will consider G-SUBS(r, s)
only because it is a generalization of G-NONMIN(r, s) and G-S-IMPL(r, s)
with the same complexity to decide.
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Chapter 4

Rule Transformation

In this chapter we study rule transformation. First, we recall a technique
for rule transformation in the propositional case which is subsequently gen-
eralized to the non-ground case. This generalization was pointed out in an
informal way by Eiter et al. [E+04], and stresses under which circumstances,
disjunction can be eliminated.

Define for a rule r its shift as

r→ :=

{
{a←B(r), not (H(r)− {a}) : a ∈ H(r)} if |H(r)| > 1
{r}

Definition 16. Let Π be a propositional program and r ∈ Π. Then,
LSH(Π, r) iff r is head-cycle free in Π and |H(r)| > 1.

Proposition 10 ([EFTW04]). Let Π be a propositional program and
r ∈ Π. If LSH(Π, r) then Π ≡prop

u Π− {r} ∪ r→.

The following proposition will be used in the proof of Theorem 7.

Proposition 11. Let Π be a propositional program and r ∈ Π. Then
Π ≡prop Π ∪ r→.

Proof. ⇒) Let I be a stable model of Π. If I∩B−(r) 6= {} then I∩B−(i) 6= {}
for every i ∈ r→. Let I ∩ B−(r) = {}. Since I |= rI it holds that
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I∩H(r) 6= {}. If |I∩H(r)| > 1 then for every rule in i ∈ r→: I∩B−(i) 6= {}.
If |I ∩H(r)| = 1 then exactly the rule i ∈ r→ with a ∈ I ∩H(i) is in Gr(Π)I ,
and it is satisfied.

⇐) Let I be a stable model of Π ∪ r→ and assume I ∩ B−(r) = {}.
Because of the same reason as before there exists exactly one rule i ∈ r→

with a ∈ I ∩H(i) which is in Gr(Π)I , and is satisfied.

4.1 G-LSH

We generalize LSH to the non-ground case next.

Definition 17. Let Π be a program and r ∈ Π. G-LSH(Π, r) iff for all
C ⊆fin D and r′ ∈ Gr(r, C) it holds that r′ is head-cycle free in Gr(Π, C)
and |H(r′)| > 1.

Theorem 7. (Correctness) Let Π be a program and r ∈ Π. Then, Π ≡u

Π− {r} ∪ r→ if G-LSH(Π, r) .

Proof. Π ≡u Π − {r} ∪ r→ iff for all finite sets of facts F : Gr(Π ∪ F ) ≡
Gr(Π−{r}∪r→∪F ). Define ∆ := Gr(Π∪F )−Gr(Π−{r}∪F ). Let r′1 ∈ ∆,
i.e., there exists ϑ1 : Vr→DΠ∪F such that r′1 = rϑ1. If Gr(Π,DΠ ∪ DF ) is
head-cycle free then also Gr(Π ∪ F ) since F is a set of facts. From this
and G-LSH(Π, r) it follows that LSH(µ(Gr(Π∪F )), µ(r′1)) holds. Therefore,
Gr(Π∪F ) ≡ Gr(Π∪F )−{r′1}∪(r′1)

→ because of Proposition 10. Let r′2 ∈ ∆
and r′1 6= r′2 if such an r′2 exists. Since (r′1)

→ does not introduce any new
positive dependencies it follows that Gr(Π ∪ F ) ≡ Gr(Π ∪ F ) − {r′1, r′2} ∪
(r′1)

→ ∪ (r′2)
→ by the same argument as before. Repeating this argument

yields Gr(Π ∪ F ) ≡ Gr(Π ∪ F ) − ∆ ∪ ∆→ = Gr(Π − {r} ∪ F ) ∪ ∆→ =: G
where ∆→ = (r′1)

→ ∪ ... ∪ (r′n)→. Define Γ := Gr(Π − {r} ∪ r→ ∪ F ) − G.
Every r′ ∈ Γ is an instantiation of r→ and can be added to G because of
Proposition 11. Therefore Gr(Π ∪ F ) ≡ Gr(Π − {r} ∪ r→ ∪ F ). Note, that
the active domain is not changed by the transformation.
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4.2 Complexity Analysis

We analyze the complexity of deciding G-LSH. Therefore, we first study the
problem to decide if a program is head-cycle free.

Definition 18. Let Π be a program and r ∈ Π. HCF(Π, r) iff for all C ⊆fin

D and r′ ∈ Gr(r, C) it holds that r′ is head-cycle free in Gr(Π, C).

The following lemma shows that HCF is decidable by restricting C to
be a subset of a finite set. We say that Gr(Π, C) contains an r-head-cycle,
r ∈ Gr(Π, C), iff there exist distinct a, b ∈ H(r), and a cycle C(a, b) in
D+(Gr(Π, C)) which starts and ends with a and contains b. Hence, r is
head-cycle free in D+(Gr(Π)) iff D+(Gr(Π)) contains no r-head-cycle.

Lemma 2. Let Π be a program, n := maxar(Π), and A, B be sets of
constants such that |A| = 2n, |B| = n, and A,B,DΠ be pairwise disjoint.
There exist DΠ ⊆ C ⊆ D, r ∈ Gr(Π, C), and an r-head-cycle in Gr(Π, C) iff
there exists r′ ∈ Gr(Π,D0), and an r′-head-cycle in Gr(Π,D0) with D0 :=
DΠ ∪A ∪B.

Proof. ⇒) In the following it is useful to assume that C ∩ (A ∪B) = {}. If
C ∩ (A ∪ B) 6= {} replace every constant from C ∩ (A ∪ B) in A ∪ B by a
new and different constants such that A and B fullfill the prerequisites of
the Lemma.

Define D := D+(Gr(Π, C)) and D0 := D+(Gr(Π,D0)). Let C(a, b) be
an r-head-cycle in D. Denote by l the length of C(a, b). We write the i-th
edge in C(a, b) as (xiϑi, yiϑi)ri : xi ∈ H(ri), yi ∈ B+(ri), ϑi : Vri →C a
ground substitution, and therefore (xiϑi, yiϑi) ∈ E(D). Here, E(D) is the
edge relation of the graph D. We will construct ϑ′i : Vri →D0 for every
1 ≤ i ≤ l such that C ′(a′, b′) := ((x1ϑ

′
1, y1ϑ

′
1), (x2ϑ

′
2, y2ϑ

′
2), ..., (xlϑ

′
l, ylϑ

′
l)) is

a head-cycle in D0.

Following the prerequisite there exists x, y ∈ H(r), and ϑ : Vr→C
such that a = xϑ and b = yϑ. Let ∆ := (D{a} ∩ D{b}) − DΠ and g :
∆→B be an injection; g exists since |∆| ≤ n. Consider the first edge
(x1ϑ1, y1ϑ1)r1 in C(a, b). Let f1 be an injection which maps to every con-
stant in D{x1ϑ1,y1ϑ1} −DΠ −∆ a constant from A. Such an injection exists
since |D{x1ϑ1,y1ϑ1}| ≤ |A|. Define ϑ′1 := (f1 ∪ g) ◦ ϑ1. ϑ′1 is of the form
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Vr1 →D0 and therefore (x1ϑ
′
1, y1ϑ

′
1) ∈ E(D0).

There exists a second edge in C(a, b) since a 6= b. We have to find
ϑ′2 : Vr2 →D0 such that y1ϑ

′
1 = x2ϑ

′
2. Let f ′ be f1 with dom(f1) restricted

to constants from D{x2ϑ2}−DΠ−∆, i.e., f ′(c) = f1(c) if c ∈ D{x2ϑ2}−DΠ−∆.
Extend f ′ to f2 : (D{x2ϑ2,y2ϑ2}−DΠ−∆)→A such that f2 is injective. There
are enough constants in A for this. Define ϑ′2 := (f2 ∪ g) ◦ ϑ2; ϑ′2 is of the
form Vr2 →D0. Again (x2ϑ

′
2, y2ϑ

′
2) ∈ E(D0). Note, that y1ϑ

′
2 = x2ϑ

′
2. Now

we can repeat this step and construct the head-cycle C ′(a′, b′): In the i-th
step f ′ is the restriction of fi−1 to constants from D{xiϑi} − DΠ − ∆, and
fi : (D{xiϑi,yiϑi} −DΠ −∆)→A is an injective extension of f ′.

At last we show that there exists a ground substitution ϑ′ : Vr→D0 such
that a′ = xϑ′ and b′ = yϑ′. Let r′ be rϑ′. Since x, y ∈ H(r) it follows that
a′, b′ ∈ H(r′), and therefore, C ′(a′, b′) is a head-cycle in D0. Recall that ∆
contains the constants which are both in a and b and not in Π. Through-
out the construction these constants are mapped via g to constants from B.
Extend g to f : Vr→D0 such that a′ = x(f ◦ ϑ) and b′ = y(f ◦ ϑ). Define
ϑ′ := (f ◦ ϑ).

⇐) Clear.

With this result at hand, we now show that G-LSH can be decided in
PSPACE. We start to show this result for the condition HCF, and briefly
argue latter on that the remaining condition from Definition 17 is not harder
to decide.

Theorem 8. Deciding

{(Π, r) : HCF(Π, r) holds, Π a program, r ∈ Π}

is complete for PSPACE.

Proof. It holds that, deciding HCF(Π, r) is complete for PSPACE iff deciding
HCF(Π, r) is complete for PSPACE. We are considering HCF(Π, r), i.e., if
there exists r′ ∈ Gr(Π,D0) and an r′-head-cycle in Gr(Π,D0) (cf. Lemma 2).

Membership. Define P := {(Π, r) : HCF(Π, r)}. The following algorithm
shows that P ∈ NPSPACE, which implies P ∈ PSPACE.

29



1. Let n be the size of Π and k := maxar(Π).

2. For all a, b ∈ H(r): {
3. Nondeterministically instantiate a, b with constants from D0 to a′, b′.

4. Reject if a′ = b′.

5. Set h to 0.

6. Set z to a′.

7. For i = 1, ..., (4 · n)k+1: {
8. Nondeterministically choose s ∈ Π.

9. For all x ∈ H(s), y ∈ B+(s): {
10. Nondet. instantiate x, y with constants from D0 to x′, y′.

11. If z 6= x′ then reject.

12. Set z to y′.

13. If z = a′ and h = 1 then accept.

14. If z = b′ then set h to 1.

15. }
16. }}
17. Reject.

Claim. The algorithm accepts (Π, r) iff (Π, r) ∈ P .

Denote by z1, z2, ..., zl the values of z in the computation of M on input
(Π, r). Assume, the algorithm accepts (Π, r). This is the case if z1 = zl = a′

and zj = b′ for some j. The latter is indicated by the value of h. Therefore,
z1, z2, ..., zl induces an r′-head-cycle in D0 := D+(Gr(Π,D0)) for some in-
stantiation r′ of r, i.e., (Π, r) ∈ P . Now assume, (Π, r) ∈ P . From Lemma
2 it follows that (Π, r) ∈ P iff there exists an r′-head-cycle in D0. The
algorithm nondeterministically searches all paths in D0 of length at most
(4 · n)k+1. The number of different vertices in D0 is at most (4 · n)k+1, be-
cause there are at most n different relational symbols in Π, and the number
of different instantiations of an atom is bounded by (4 · n)k. For the latter,
recall that |D0| = |DΠ|+ 3 · k ≤ 4 · n. This shows |V (D0)| ≤ (4 · n)k+1, and
that the algorithm accepts (Π, r).

Claim. Let n and k be as in the algorithm, and sM be the space com-
plexity of M . Then sM (n) = O(lg(n) · k).
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The loops over H(r), H(s), B+(s), and the choice of s ∈ Π can be imple-
mented by pointers to the input with size O(lg(n)). The elements of D0 can
be represented with size O(lg(n)) since |D0| = |DΠ| + 3 · k ≤ 4 · n = O(n).
For every relational symbol a in Π: maxar(a) ≤ k. Therefore, the instanti-
ation of a, b, x, and y needs size O(lg(n) · k). The loop variable i needs size
lg((4 · n)k+1) = O(lg(n) · k).

Hardness. Let M = 〈Q,Σ, q0, qa, qr, δ〉 be a polynomial space bounded
Turing machine where Q is a finite set of states, Σ a finite set of symbols,
¤,t 6∈ Q ∪ Σ and Q ∩ Σ = {}, q0 ∈ Q is the initial state, qa ∈ Q is the ac-
cepting state, qr ∈ Q is the rejecting state and δ : Q×Σ→Σ×{←, |,→}×Q
is the transition function. The Turing machine has one tape with the left
delimiter ¤ and the blank symbol t. The space complexity sM (n) of M is
bounded by a polynomial p over N, i.e., for all n ∈ N : sM (n) ≤ p(n).

Define for the input x ∈ Σ∗ the initial configuration as follows: M is
in q0, the tape contains ¤x t t t ... and the r/w head points to ¤. Final
configurations: M is either in qa or qr, the tape contains ¤ t t t ... and
the r/w head points to ¤. A configuration for M can be represented by a
string s ∈ (Σ ∪ Q ∪ {¤,t})∗ with |s| = 2 + p(n). We have to consider the
left delimiter ¤ and one symbol which represents the current state and the
position of the r/w head. This symbol is on the left to the symbol the r/w
head points to.

The reduction f maps to (M, x) a program Π and a rule r such that M
accepts x iff HCF(Π, r). Let u be a 2+p(|x|)-place relational symbol. Define
u0 := u(q0, ¤, x1, ..., x|x|,t,t,t, ...) and ua := u(qa, ¤,t,t,t, ...). The rule
r is the disjunctive fact u0 ∨ ua←. The rules u0 ∨ ua← and ua←u0 are in
Π. If δ(q, σ) = (σ′,←, q′) then for every 1 < i < 2 + p(|x|) the rule

u(..., Xi−1, q, σ, ...)←u(..., q′, Xi−1, σ
′, ...)

is in Π. If δ(q, σ) = (σ′, |, q′) then for every 1 < i < 2 + p(|x|) the rule

u(..., Xi−1, q, σ, ...)←u(..., Xi−1, q
′, σ′, ...)

is in Π. If δ(q, σ) = (σ′,→, q′) then for every 1 < i < 2 + p(|x|) the rule

u(..., Xi−1, q, σ, ...)←u(..., Xi−1, σ
′, q′, ...)

is in Π. The rules for i = 1 and i = 2 + p(n) if admissible are special case
which we will not consider here. Note, that these rules are safe. The size
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of Π is polynomial in the size of (M,x) and f is computable in logarithmic
space.

Consider the dependency graph D = D+(Gr(Π, C)) for some C ⊇ DΠ.
There exists exactly one vertex w with (u0, w) ∈ E(D) since there exists
exactly one configuration after the initial configuration and because of the
construction of (Π, r). The same holds for every configuration in the com-
putation of M on x. For seeing this just note, that the string representation
of a configuration k has exactly one q ∈ Q in it and that every atom in Π
has exactly one symbol q ∈ Q in it. So, there exists a unique path from u0

to either ua or u(qr, ¤,t,t,t, ...).

Assume that M accepts x. There exists a path from u0 to ua and
an edge (ua, u0) in D+(Gr(Π)). Therefore, D+(Gr(Π)) contains a head-
cycle C(u0, ua), which implies HCF(Π, r). Now, assume HCF(Π, r). Since
Gr(r, C) = {u0∨ua←} for any C, and r is the only rule in Π with |H(r)| > 1,
there are a two possible cases: ∃C(u0, ua) or ∃C(ua, u0). Both cases imply
that there exists a path P (u0, ua) from u0 to ua. The path P (u0, ua) induces
an accepting computation of M for x.

The previous result also holds for G-LSH. The upper bound holds since
deciding if |H(r′)| > 1 holds for all r′, r′ as in the definition of G-LSH, is an
unification problem which is linear time decidable. Another way to see this
is to ”accept” in line 4 of the algorithm of the previous proof. The lower
bound holds since HCF is reducible to G-LSH.

Theorem 9. Deciding

{(Π, r) : G-LSH(Π, r) holds, Π a program, r ∈ Π}

is complete for PSPACE.

Example 15. Let Π be

b(X)← a(X)
a(X) ∨ b(X)← c(X)

For every DΠ ⊆ C ⊆ D the program Gr(Π, C) is head-cycle free. Therefore
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Π is uniformly equivalent to

b(X)← a(X)
a(X)← c(X), not b(X)
b(X)← c(X), not a(X)

because also a(c) 6= b(c) for every c ∈ D.

Now we consider the problems if we bound the maximal arity of the pro-
grams by a constant. Define HCFk(Π, r) as HCF(Π, r) + (maxar(Π) ≤ k).

Theorem 10. Let k ∈ N. Deciding

{(Π, r) : HCFk(Π, r), Π a program, r ∈ Π}
is complete for NL.

Proof. We will show that HCFk is complete for coNL = NL.

Membership. Consider the algorithm from the previous proof. It runs
in space O(lg(n) · k) = O(lg(n)) since k is constant here.

Hardness. The reachability problem in digraphs can be reduced to HCF0

which is a special case of HCFk.

Define G-LSHk(Π, r) as G-LSH(Π, r)+(maxar(Π) ≤ k). The correctness
of this rule is a consequence of Theorem 7. Again, the previous theorem also
holds for G-LSHk(Π, r).

Theorem 11. Let k ∈ N. Deciding

{(Π, r) : G-LSHk(Π, r), Π a program, r ∈ Π}
is complete for NL.

Proof. Membership. We already have shown that HCFk is in NL. Deciding
the set

{r : ∃r′ an instantiation of r such that |H(r′)| ≤ 1}

33



can be done in nondeterministic space by iterating with a pointer to the
input through the head and writing down nondeterministically the values of
the instantiated variables. Since coNL = NL also the complementary prob-
lem is in NL and hence, G-LSHk is in NL.

Hardness. The reachability problem in digraphs can be reduced to
G-LSH0. Since k = 0 here, it holds that there exists an instantiation r′

of r ∈ Π for a program Π with |H(r′)| ≤ 1 iff there are two atoms in H(r)
with different relational symbols, i.e., |H(r)| ≤ 1.

In many applications it seems that the arity does not exceed, say, 5. This
number is arbitrary here. But it rarely occurs that the arity grows linear
with the input size. Therefore, Theorem 11 says that in many applications
G-LSH(Π, r) is efficiently decidable.

34



Chapter 5

Implementations

In this chapter we provide implementations for

• deciding strong equivalence of programs,

• deciding SUBS∗, and

• deciding G-LSH.

The algorithms are essentially reductions, i.e., the reduce the problem to
some already implemented problem. Testing strong equivalence is reduced
to the unsatisfiability problem of Bernays-Schönfinkel formulas. Deciding
SUBS∗ is reduced to the Boolean conjunctive query problem. And decid-
ing G-LSH is reduced to the brave reasoning problem of disjunctive datalog
programs with negation. The first algorithm is written in C++ and addi-
tionally uses the automated theorem prover Darwin1. The other algorithms
are written in Perl and use the system DLV2 for evaluating disjunctive dat-
alog programs with negation. The algorithm for testing strong equivalence
is presented in Section 5.1 and the other algorithms are presented in Section
5.2.

1http://goedel.cs.uiowa.edu/Darwin/
2http://www.dlvsystem.com
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5.1 Strong Equivalence Test

Lin [Lin02] showed how to reduce the problem of testing strong equiva-
lence to the unsatisfiability problem of Bernays-Schönfinkel formulas. In
the next paragraph we introduce this problem and refine the reduction. In
the last paragraph we discuss implementation issues. Roughly spoken, two
DLV programs Π1 and Π2 are translated into two Darwin clausal forms
ϕ1 and ϕ2 such that Π1 and Π2 are strongly equivalent iff ϕ1 and ϕ2 are
unsatisfiable. Darwin is an automated theorem prover. Baumgartner and
Tinelli [BT03] pointed out that the model evolution calculus terminates for
Bernays-Schönfinkel formulas. Darwin implements this calculus and there-
fore halts on Bernays-Schönfinkel formulas unlike most other automated
theorem provers. We also remark here that we need the refinement because
the reduction of Lin [Lin02] does not use clausal form which is needed for
most automated theorem provers.

Algorithm for Testing Strong Equivalence First we define Bernays-
Schönfinkel formulas. For a quantifier free formula ϕ without function and
constant symbols a Bernays-Schönfinkel formula is of the form

∃x1...xk∀y1...ylϕ(x1, ..., xk, y1, ..., yl)

For such a formula ψ the satisfiability problem is complete for NEXPTIME.
The clausal form of ψ is obtained from ψ by replacing the variables x1, ..., xk

in ϕ with new constant symbols, transforming the resulting formula ϕ′ into
a conjunctive normal form ϕ′′, and putting all clauses of ϕ′′ in a set Σ(x̄)
where x̄ are the free variables of ϕ′′. The clausal form Σ(x̄) is satisfiable iff
ψ is satisfiable. We say that a clausal form Σ(x̄) is satisfiable iff ∀x̄Σ(x̄) is
satisfiable. The notion

l1, ..., lk ` lk+1, ..., ln

stands for the clause

l1 ∨ ... ∨ lk ∨ ¬lk+1 ∨ ... ∨ ¬ln.

Next we describe a reduction of the complementary problem of deciding
strong equivalence to the Bernays-Schönfinkel satisfiability problem. This
resembles the reduction by Lin [Lin02].
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For every relational symbol ri, 1 ≤ i ≤ k, of the programs Π1, Π2 let r′i
be a new relational symbol of the same arity. Then

Σ(x̄1, ..., x̄k) := {r′1(x̄1) ` r1(x̄1), ..., r′k(x̄k) ` rk(x̄k)}.

Here we assume that x̄i and x̄j are disjoint for i 6= j without loss of generality
since we can rename the variables of a rule arbitrary as long as different
variables remain different. For each rule

h1(u1) ∨ ... ∨ hl(ul)← p1(v1), ..., pm(vm),not pm+1(vm+1), ...,not pn(vn)

in Π, let ΓΠ(ū, v̄) contain

h1(u1), ..., hl(ul) ` p1(v1), ..., pm(vm),¬p′m+1(vm+1), ...,¬p′n(vn)

and

h′1(u1), ..., h′l(ul) ` p′1(v1), ..., p′m(vm),¬p′m+1(vm+1), ...,¬p′n(vn).

Let U be the set of unique names axioms, i.e. U asserts that no two constants
are equal. Therefore a new relational symbol Ui for every constant symbol
ci is introduced:

U1(c1) ∧ ¬U2(c1) ∧ ... ∧ ¬Uk(ck)
¬U1(c1) ∧ U2(c1) ∧ ... ∧ ¬Uk(ck)
...
¬U1(cl) ∧ ¬U2(c1) ∧ ... ∧ Uk(ck)

For a formula ϕ, let ϕx
y be the formula with y replaced by x. Analogous for

a set of formulas. Let c̄ be c1, ..., ck. Lin [Lin02] showed that Π and Π′ are
strongly equivalent iff

∀ū∀ȳ∃x̄∃z̄(¬U ū
c̄ ∨ ¬Σ(z̄) ∨ ¬ΓΠ(x̄)ū

c̄ ∨ ΓΠ′(ȳ)ū
c̄ )

and
∀ū∀ȳ∃x̄∃z̄(¬U ū

c̄ ∨ ¬Σ(z̄) ∨ ¬ΓΠ′(x̄)ū
c̄ ∨ ΓΠ(ȳ)ū

c̄ )

are valid. Therefore, Π and Π′ are not strongly equivalent iff

∃ū∃ȳ∀x̄∀z̄(U ū
c̄ ∧ Σ(z̄) ∧ ΓΠ(x̄)ū

c̄ ∧ ¬ΓΠ′(ȳ)ū
c̄ )

or
∃ū∃ȳ∀x̄∀z̄(U ū

c̄ ∧ Σ(z̄) ∧ ΓΠ′(x̄)ū
c̄ ∧ ¬ΓΠ(ȳ)ū

c̄ )
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is satisfiable.

The sets U , Σ, ΓΠ(x̄), ΓΠ′(ȳ) are in clausal form, but ¬ΓΠ(x̄), ¬ΓΠ′(ȳ)
are not. They are in quantifier free disjunctive normal form. It is suffi-
cient to use satisfiability equivalent formulas to gain clausal form. Denote
these formulas by Γ∗Π(x̄), Γ∗Π′(ȳ). It follows that Π and Π′ are not strongly
equivalent iff

∃ū∃ȳ∀x̄∀z̄(U ū
c̄ ∧ Σ(z̄) ∧ ΓΠ(x̄)ū

c̄ ∧ Γ∗Π′(ȳ)ū
c̄ )

or
∃ū∃ȳ∀x̄∀z̄(U ū

c̄ ∧ Σ(z̄) ∧ ΓΠ′(x̄)ū
c̄ ∧ Γ∗Π(ȳ)ū

c̄ )

is satisfiable. By Skolemization, this is the case iff

U ∪ Σ(z̄) ∪ ΓΠ(x̄) ∪ Γ∗Π′

or
U ∪ Σ(z̄) ∪ ΓΠ′(x̄) ∪ Γ∗Π

is satisfiable. In the following denote U ∪ Σ(z̄) ∪ ΓΠ(x̄) ∪ Γ∗Π′ by ∆(Π, Π′).

Now we show by an example how to get Γ∗ from a quantifier free disjunc-
tive normal form Γ. Let Γ be A ∨ (B ∧ C) and s be a new unary relational
symbol. Then Γ∗ is (A ∨ s(c)) ∧ (B ∨ ¬s(c)) ∧ (C ∨ ¬s(c)) where c does
not occur in Γ. Therefore ∀x̄(Γ(x̄)) is satisfiable iff ∀x̄(Γ∗(x̄)) is satisfiable.
The algorithm for computing Γ∗ from Γ in general is defined as follows. It
assumes that the variables in different terms of the DNF, i.e. the variables
in the conjunctions in the DNF, are disjoint. This holds for the DNF’s we
consider.

Algorithm: A0
Input: a quantifier free DNF Γ, such that the variables in different terms are disjoint
Output: a clausal form Γ∗

1. Γ∗ := {}, ϕ := ⊥, and let s be a new unary relational symbol.

2. For every t ∈ Γ:

3. Let t be l1 ∧ ... ∧ lk, and c be a new constant symbol.

4. Add l1 ∨ ¬s(c), ..., lk ∨ ¬s(c) to Γ∗.

5. Set ϕ to ϕ ∨ s(c).

6. Delete t from Γ.
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7. Add ϕ to Γ∗.

Proposition 12. (Correctness) Let Γ be a a quantifier free DNF and Γ∗

be the output of algorithm A0 on input Γ. Then Γ∗ is satisfiable iff Γ is
satisfiable.

Proof. By construction, Γ∗ is in quantifier free CNF. Assume that Γ∗ is
satisfiable. Since ϕ ∈ Γ∗, it holds that s(c) is true for some c. It follows
that the l1, ..., lk which were added in the step when c was used are true, i.e.
l1∧ ...∧ lk is true, and therefore Γ is satisfiable. On the other hand, let M be
a model of Γ. There exists a true term in Γ for which a constant symbol c
in the construction of Γ∗ was used. Let M∗ be the structure obtained from
M such that additionally s(c) holds in M∗. Since the used constants do not
occur in Γ it holds that M∗ is a model of Γ∗.

Note that no function symbols of positive arity were introduced.

The following algorithm reduces the strong equivalence problem to the
unsatisfiability problem of Bernays-Schönfinkel formulas. Its correctness fol-
lows from what we said previously.

Algorithm: A1
Input: programs P and Q

Output: two clausal forms C1, C2

1. Compute C1 := ∆(P,Q).

2. Compute C2 := ∆(Q, P ).

3. Output (C1, C2).

Proposition 13. (Correctness) Let P and Q be programs and C1, C2 be
the clausal forms computed by A1 on input (P,Q). Then P ≡s Q iff C1 and
C2 are unsatisfiable.

The algorithm obviously works in polynomial time. For estimating the
size of the output we need a more detailed output language which is intro-
duced in the next paragraph.
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Implementation Issues We first describe the syntax of DLV and Darwin
and later give an estimation of the output size of algorithm A1.

The used DLV syntax in EBNF:

rule ::= head ’.’ | head ’:-’ body ’.’ | ’:-’ body ’.’

head ::= literal {’v’ literal}
body ::= literal {’,’ literal}
literal ::= atom | ’not’ atom

atom ::= symb [’(’ term {’,’ term}’)’]
term ::= variable | symb | num

variable ::= (’A’-’Z’ ) {’a’-’z’ | ’A’-’Z’ | ’0’-’9’}
symb ::= (’a’-’z’) {’a’-’z’ | ’A’-’Z’ | ’0’-’9’}
num ::= (’0’-’9’) {’0’-’9’}

Let LDLV be the language given by this syntax description.

Remarks.

• Equality is not supported. There is no = symbol in LDLV .

• Comments are not supported. There is no % symbol.

• Anonymous variables are not supported. There is no in LDLV .

• The set of atoms in LDLV is a proper subset of the set of atoms in
LDarwin.

The used Darwin syntax in EBNF:

clause ::= head [’:-’ body].

head ::= literal {’;’ literal}
body ::= literal {’,’ literal}
literal ::= [(’-’ | ’∼’)] atom | ’true’ | ’false’

atom ::= symb | symb ’(’ term {’,’ term} ’)’

| ’(’ term ’=’ term ’)’

term ::= variable | symb [’(’ term {’,’ term} ’)’]

variable ::= (’A’-’Z’ | ’ ’) {’a’-’z’ | ’A’-’Z’ | ’0’-’9’ | ’ ’}
symb ::= (’a’-’z’ | ’0’-’9’) {’a’-’z’ | ’A’-’Z’ | ’0’-’9’ | ’ ’}
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Let LDarwin be the language given by this syntax description. With these
languages we can represent the sets Π, Π′, U , Σ, ... Their size | · | is the
number of symbols used.

The size of ΓΠ is linear in |Π|. The size of Γ∗Π is linear in the size of
ΓΠ. Let nc be the number of constant symbols, and nr be the number of
relational symbols in Π and Π′. The size of Σ is linear in nr and the size
of U is quadratic in nc. The following proposition follows directly from the
construction of ∆(Π, Π′).

Proposition 14. |∆(Π,Π′)| ≤ e · (|Π|+ |Π′|+ nr + n2
c) for some e ∈ N.

Algorithm A1 is implemented in the programming language C++ and
uses the automated theorem prover Darwin. Although there are other the-
orem provers with a similar input language as LDarwin one has to be careful
because it is not guaranteed in general that a theorem prover halts on an
Bernays-Schönfinkel input. Darwin does this. It is also clear that the overall
performance of testing strong equivalence depends heavily on the automated
theorem prover since algorithm A1 is rather efficient and the complex prob-
lem to solve is checking unsatisfiability of Bernays-Schönfinkel formulas.

We end this paragraph with an example of how the implementation
works.

Example 16. Let Π (in DLV syntax) be

a(k1).

a(k2).

h(X):- a(X).

t(X):- h(X).

a(X):- t(X).

a(X):- h(X).

The program Π states that a ⊆ h ⊆ t ⊆ a, i.e. a = h = t. Therefore the
last rule is useless.
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Let Π′ be

a(k1).

a(k2).

h(X):- a(X).

t(X):- h(X).

a(X):- t(X).

In the following the single parts of the resulting formula ∆(Π, Π′) are
given in Darwin syntax.

Σ:
a (X1):-a(X1).
t (X1):-t(X1).
h (X1):-h(X1).

Γ(Π):
a(k1). a(k2). a (k1). a (k2).
h(X):- a(X). h (X):- a (X).
t(X):- h(X). t (X):- h (X).
a(X):- t(X). a (X):- t (X).
a(X):- h(X). a (X):- h (X).

U :
u1(k1). -u1(k2).
-u2(k1). u2(k2).

Using Darwin a refutation is found. This also holds for ∆(Π′, Π). Hence
Π′ and Π are strongly equivalent.

5.2 Simplifier

In this section we will show how to handle SUBS∗(r, s) and G-LSH(Π, r) in
practice. The problem is to decide if the rule is applicable. We will reduce
both problems to evaluation problems of disjunctive datalog programs with
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Γ∗(Π′):
-a(k1):- s (1). -a (k1):- s (6).
-a(k2):- s (2). -a (k2):- s (7).
-h(sk 1):- s (3). -h (sk 4):- s (8).
a(sk 1):- s (3). a (sk 4):- s (8).
-t(sk 2):- s (4). -t (sk 5):- s (9).
h(sk 2):- s (4). h (sk 5):- s (9).
-a(sk 3):- s (5). -a (sk 6):- s (0).
t(sk 3):- s (5). t (sk 6):- s (0).

s (1), s (2), s (3),
s (4), s (5), s (6),
s (7), s (8), s (9),
s (0).

negation which can be solved by the DLV3 system. The next two paragraphs
are dedicated to algorithms for deciding SUBS∗(r, s) and G-LSH(Π, r) re-
spectively. In the last paragraph we discuss implementation issues, e.g., we
shortly present the prototype of a toolbox we named Simplifier.

Algorithm for SUBS∗(r, s) We will reduce SUBS∗(r, s) to the Boolean
conjunctive query problem which is defined as follows.

Definition 19. A rule q is a Boolean conjunctive query iff it is of the form

b← a1, ..., am

where the ai’s are atoms, and b is a propositional atom.

The Boolean conjunctive query problem (BCQ) is the problem to decide
if for a set F of facts with b 6∈ F and a Boolean conjunctive query q there
exists a stable model I of F ∪ {q} such that b ∈ I. Note that for all F
and q the program F ∪ {q} has a stable model. This stable model is unique
because F ∪ {q} is Horn and every Horn program has at most one stable
model. It also coincides with the unique subset-minimal classical model of
F ∪ {q}. Hence, the BCQ problem is equivalent to the problem to decide if

3http://www.dlvsystem.com
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there exists a variable assignment θ : Vq →DF such that B(qθ) ⊆ F because
this is the only case that b becomes true.

Proposition 15. (q, F ) ∈ BCQ iff ∃θ : Vq →DF such that B(qθ) ⊆ F .

The following algorithm reduces SUBS∗ to BCQ. We only have to take
care of that

B+(sθ) ⊆ B+(r), B−(sθ) ⊆ B−(r),H(sθ) ⊆ H(r) ∪B−(r)

holds. For this purpose the algorithm introduces new relational symbols.

Algorithm: A2
Input: rules r, s

Output: Boolean conjunctive query q, set of facts F

1. A1 := H(s), B1 := H(r) ∪B−(r),
A2 := B+(s), B2 := B+(r),
A3 := B−(s), B3 := B−(r).

2. Replace every relational symbol in A2∪B2 by a symbol which does not occur
in A1 ∪B1 such that different symbols remain different.

3. Replace every relational symbol in A3∪B3 by a symbol which does not occur
in A1 ∪B1 ∪A2 ∪B2 such that different symbols remain different.

4. Set A := A1 ∪A2 ∪A3, B := B1 ∪B2 ∪B3.

5. Replace every variable in B by a constant which does not occur in A ∪ B
such that different symbols remain different.

6. Let b be a propositional atom which does not occur in A ∪B.

7. Set q := (b←A), F := B.

8. Output (q, F ).

Example 17. Let r be

e(X, Y ) ∨ e(Y, Z)← e(Y, X), g(Z,X), not e(X, X)

and s be
e(W,V ) ∨ e(V, V )← g(Z, V ), not e(W,W ).
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For example, A might look like

{e(W,V ), e(V, V ), gp(Z, V ), en(W,W )}

and B like

{e(1, 2), e(2, 3), e(1, 1), ep(2, 1), gp(3, 1), en(1, 1)}.

The relational symbols en, ep, and gp are new symbols relative to r and
s. The variable assignment θ := {V 7→ 1,W 7→ 1, Z 7→ 3} makes the
query b←A true with respect to B. The corresponding substitution ϑ is
{V 7→ X, W 7→ X, Z 7→ Z}.

Theorem 12. SUBS∗ is polynomial time reducible to BCQ.

Proof. Let r and s be rules. Recall that SUBS∗(r, s) holds iff there exists a
substitution ϑ of the form Vs→Vr ∪ Dr such that

B+(sϑ) ⊆ B+(r), B−(sϑ) ⊆ B−(r),H(sϑ) ⊆ H(r) ∪B−(r). (5.1)

Algorithm A2 assigns to every pair (r, s) of rules a Boolean conjunctive query
q and a set of facts F such that a variable assignment θ directly corresponds
with a substitution ϑ: Let ν : Vr→D be the bijection created implicitly in
step 5 of algorithm A2. Assume that ∃θ : Vq →DF with B(qθ) ⊆ F . Define
ϑ := ν−1 ◦ θ. Then (5.1) holds because of the replacement of relational
symbols and the construction of θ in A2. On the other side assume that
such a ϑ which fulfills (5.1) exists. Then θ := ν ◦ ϑ is a variable assign-
ment with B(qθ) ⊆ F . And from Proposition 15 we follow that there exists
θ : Vq →DF such that B(qθ) ⊆ F iff (q, F ) ∈ BCQ and hence, (q, F ) ∈ BCQ
iff SUBS∗(r, s) holds.

The output size of algorithm A2 is linear in the input size. Implementa-
tion issues will be discussed in the last paragraph of this section.

Algorithm for G-LSH(Π, r) In this paragraph we present two algorithms
for deciding G-LSH. The first calls several times an oracle of the brave rea-
soning problem and the second algorithm directly reduces G-LSH to the
brave reasoning problem which will be introduced subsequently.

45



Assume that we have an algorithm A which decides if a ground atom
t is reachable from a ground atom s in the positive dependency graph
D+(Gr(Π,D0)) where D0 is as in Lemma 2 and Ds ⊆ D0, Dt ⊆ D0. The
algorithm A takes as input Π, s, and t. Using A we can decide if r is head-
cycle free in Π. For all distinct s, t ∈ Gr(Π,D0) we test if A(Π, s, t) and
A(Π, t, s). If there exists such ground atoms then r is not head-cycle free in
Π. Otherwise r is head-cycle free in Π.

We will need the following operators. Let U be a set of variables or
constants and p ∈ R1. Define

α(p, U) := {p(x) : x ∈ U}

Let r be a rule with H(r) 6= {} and B+(r) 6= {}. Define

β(r, p) := {(b← a, α(p, Vb)) : a ∈ H(r), b ∈ B+(r)}

and for some p ∈ R1 −RΠ

γ(Π, p) :=
⋃
{β(r, p) : r ∈ Π,H(r) 6= {}, B+(r) 6= {}}.

Example 18. Let Π be

a(1)
a(X) ∨ b(Y )← c(X, Y ), not d(X)

← b(X), not c(X)

The transformation of the second rule with the new relational symbol p is

c(X, Y )← a(X), p(X), p(Y )
c(X, Y )← b(Y ), p(X), p(Y )

It equals γ(Π, p). The first and third rule are not considered.
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The following algorithm decides G-LSH(Π, r). It uses an oracle query
Π |=b q which is true iff the ground atom q is an element of some stable
model of the program Π. This is sometimes called brave reasoning. We call
the corresponding problem the brave reasoning problem (BR).

Algorithm: A3
Input: program Π, rule r ∈ Π
Output: Boolean value b

1. Determine the active domain DΠ.

2. Set D0 to DΠ and add new constants such that |D0| = 4 · |DΠ|.
3. Determine a new relational symbol p relative to Π.

4. Compute A := α(p,D0).

5. Compute B := γ(Π, p).

6. For all s, t ∈ H(r′), r′ ∈ Gr(r,D0):

7. If s = t or (A ∪B ∪ {s} |=b t and A ∪B ∪ {t} |=b s) return b := false

8. Return b := true.

Theorem 13. Algorithm A3 decides G-LSH.

Proof. We need only to proof that A ∪ B ∪ {s} |=b t iff t is reachable
from s in D+(Gr(Π,D0)). The program Π := A ∪ B ∪ {s} is Horn and has
a stable model by construction. Therefore, Π has exactly one stable model I.

Every rule in B has the form

a(x1, ..., xn)← b(y1, ..., yn), p(x1), ..., p(xn)

where the xi and yj are variables or constants. They need not to be dif-
ferent. The atom p(xi) is only there for making the rule safe. Note, that
p(c) ∈ I for every c ∈ D0 because A ⊆ I. The ground atom a(c1, ..., cn) is
in I for some c1, ..., cn if b(d1, ..., dn) ∈ I for some constants d1, ..., dn. From
this it follows that for every atom u 6= s: u ∈ I −A iff u is reachable from s
in D+(Gr(Π),D0).

Algorithm A3 calls several times the oracle for the brave reasoning prob-
lem (BR). We now present an algorithm which directly reduces G-LSH to
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BR. In the following xn
1 denotes the sequence x1, ..., xn of variables or con-

stants. We describe a relation t(a, xn
1 , b, yn

1 ) which solves the reachability
problem first. We will need the following operators: The operator η assigns
to p ∈ R1, c ∈ D, t ∈ R2k, and to the two atoms a(xm

1 ) and b(yn
1 ) with

m,n ≤ k − 1 the rule

t(a, xm
1 , uk−m

1 , b, yn
1 , vk−n

1 )←α(p, V{xm
1 ,yn

1 })

where ui = c for 1 ≤ i ≤ k −m− 1 and vi = c for 1 ≤ i ≤ k − n− 1.

Example 19. Let a(xm
1 ) be r(X, 0, Y ), b(yn

1 ) be s(Z, Z), and k be 6. Then η
generates the rule

t(a, X, 0, Y, c, c, b, Z, Z, c, c, c)← p(X), p(Y ), p(Z)

Note, that this rule is safe.

Let r be a rule with H(r) 6= {} and B+(r) 6= {}. Define

β′(r, p, c, t) := {η(p, c, t, a(xm
1 ), b(yn

1 )) : a(xm
1 ) ∈ H(r), b(yn

1 ) ∈ B+(r)}
and

γ′(Π, p, c, t) :=
⋃
{β′(r, p, c, t) : r ∈ Π, H(r) 6= {}, B+(r) 6= {}}.

Example 20. Let Π be

a(1)
a(X) ∨ b(Y )← e(X,Y ), not d(X)

← b(X), not d(X)

The transformation of the second rule with the new relational symbol p is

t(a,X, c, e,X, Y )← p(X), p(Y )
t(b, Y, c, e, X, Y )← p(X), p(Y )

It equals γ′(Π, p, c, t). The first and third rule are not considered.
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Consider the rule

t(Xk
1 , Zk

1 )← t(Xk
1 , Y k

1 ), t(Y k
1 , Zk

1 )

together with γ′(Π, p, c, t). This program describes a transitive closure.

To complete the reduction we need to select two ground atoms from
the head of some instantiation of r ∈ Π. Therefore we need the following
operator:

δ(r, p, c, s) := {η(p, c, s, a(xm
1 ), b(yn

1 )) : a(xm
1 ) ∈ H(r), b(yn

1 ) ∈ H(r)}

The following algorithm takes as input a program P and r ∈ P . It out-
puts a propositional atom b and a program Q such that G-LSH(P, r) holds
iff Q |=b b.

Algorithm: A4
Input: program P , rule r ∈ P

Output: propositional atom b, program Q

1. Determine the active domain DP .

2. Set D0 to DP and add new constants such that |D0| = 4 · |DP |.
3. Determine k := maxar(P ) + 1.

4. Determine new and different relational symbols b, p, s, t relative to P : b ∈ R0,
p ∈ R1, s, t ∈ Rk.

5. Compute A := α(p,D0).

6. Fix a constant c.

7. Compute B := δ(r, p, c, s).

8. Compute C := γ′(P, p, c, t).

9. Add t(Xk
1 , Zk

1 )← t(Xk
1 , Y k

1 ), t(Y k
1 , Zk

1 ) to C.

10. Add b← t(Xk
1 , Y k

1 ), t(Y k
1 , Xk

1 ), s(Xk
1 , Y k

1 ) to C.

11. Add b← s(Xk
1 , Xk

1 ) to C.

12. Set Q := A ∪B ∪ C.

13. Output (b, Q).

Theorem 14. G-LSH is polynomial time reducible to BR.
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Proof. We have to show that G-LSH(P, r) holds iff Q |=b b. The set A
consists of facts only. The relation p is used in B and C to make rules safe.
The set C contains all rules for describing a transitive closure of the positive
dependency graph D. The graph D is essentially D+(Gr(Π),D0) with the
exception that every atom a(xl

1) with arity l < k− 1 is replaced by an atom
a(xl

1, c, ..., c) with arity k − 1. The relation t(a, x1, ..., xk−1, b, y1, ..., yk−1)
then holds in a stable model of Q iff b(yk−1

1 ) is reachable from a(xk−1
1 ) in D

iff for the corresponding atoms a(xl1
1 ), b(yl2

1 ): b(yl2
1 ) is reachable from a(xl1

1 )
in D+(Gr(Π),D0). The relation s just contains every pair of atoms of some
instantiation of H(r) extended to arity k if necessary. Therefore, the rule

b← t(Xk
1 , Y k

1 ), t(Y k
1 , Xk

1 ), s(Xk
1 , Y k

1 ),

expresses: if there exists X1, ..., Xk, Y1, ..., Xk such that Y k
1 is reachable from

Xk
1 and vice versa, and Xk

1 , Y k
1 are two atoms from the head of some instan-

tiation of r then b is true. The atom b also becomes true if Xk
1 are Y k

1 equal.
The last rule added to c ensures this. Since these are the only possibilities
to make b true Q |=b b holds iff G-LSH(P, r) holds.

We will not give a detailed a analysis of the output size here. But it is
easy that to see that the output size is quadratic in the input size.

Implementation Issues In the implementation of algorithm A2, A3, and
A4 we use DLV syntax. This concerns the input, output, and the programs
generated in algorithm A3. The supported DLV syntax in EBNF is the one
we specified in the previous section. But DLV actually has a richer language.
Especially, the variables can contain an underscore. This is not allowed here
because we use it to simplify the algorithms A2, A3, and A4, i.e., the intro-
duction of new symbols becomes easier. See the following example.

Example 21. Let r be

e(X,Y) v e(Y,Z):- e(Y,Z), g(Z,X), not e(X,X).

and s be
e(W,V) v e(V,V):- g(Z,V), not e(W,W).

For example, A might look like

{e(W,V), e(V,V), g p(Z,V), e n(W,W)}
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and B like

{e(c 1,c 2), e(c 2,c 3), e(c 1,c 1),

e p(c 2,c 3), g p(c 3,c 1), e n(c 1,c 1)}.

The relational symbols e p, g p, and e n are new symbols because the un-
derscore does not occur in the supported DLV syntax. The same holds for
the constants c 1,c 2,c 3.

The algorithms A2, A3, and A4 were implemented in the programming
language Perl. In practice it is the case that algorithm A4 outperforms al-
gorithm A3.

The toolbox we call Simplifier consists of two scripts which take as input
a program P in DLV syntax. The first is named simplify subs. After
calling it with

simplify subs input.dl

on the command line it outputs all rules r, s ∈ P such that SUBS∗(r, s)
holds. The file input.dl is just the input DLV file. If no input file is
specified then the input is read from the standard input device. The second
script is named simplify glsh. After calling it with

simplify glsh input.dl

on the command line it outputs all rules r ∈ P such that G-LSH(P, r) holds.
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Chapter 6

Further Work

In this chapter we discuss our work and open questions. We also discuss
some related work.

We introduced several techniques for program simplification and opti-
mization of disjunctive datalog programs with negation. Our approach
was based upon single results in the propositional case. Lin and Chen
[LC05] tried a more systematic way; also in the propositional case. They
concentrated on strong equivalence and studied the k-m-n simplification
problem for fixed k, m, n: Is {a1, ..., ak, b1, ..., bm} strongly equivalent to
{a1, ..., ak, c1, ..., cn} where ai, bj , ck are rules? Note that for variable k, m, n
this problem would be just the problem of deciding strong equivalence of
arbitrary programs. For m = 1, n = 0 we have what we called rule elimi-
nation. It is remarkable that Lin and Chen found full characterizations for
the 0-1-0 and 1-1-0 problem and others. Whereas we only showed that if
for some rule r, TAUT(r) or CONTRA(r) holds, r can be eliminated they
also showed that in the propositional case the converse holds, i.e., if the rule
can be eliminated by considering only the rule itself and not the rest of the
program then TAUT(r) or CONTRA(r) hold. We expect that results of this
kind also hold for non-ground programs.

Another question is to find further techniques for simplification which
are useful in practice, i.e., they indeed simplify/optimize programs used in
practice and their complexity is low. Consider the case whether we find a
technique for the 2-2-1 simplification problem of non-ground programs. Does
such a technique often apply in practice? And what about the complexity
of the general 2-2-1 simplification problem? The simplification problems we
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studied are elementary and intuitively it seems reasonable to assume that
they apply to programs used in practice, especially if the programs are gen-
erated automatically. But an important topic for further work is to apply
the results of program simplification and optimization to a larger class of
programs than we did in our experiments. We also remark that our concept
of rule transformation does not fit into the approach of Lin and Chen since
in testing if a rule can be transformed we had to check for head-cycle free-
ness, i.e., the whole program needed to be considered. Therefore we can not
fix the parameter k here.

If we look at the correctness proofs of the techniques we see some simi-
larities. One might question if there are some general principles behind it,
and indeed, there are. We will not go into the details because for explain-
ing it we would need the formal definitions. But roughly speaking, we can
find ”replacement schemes” and study them in general. A technique then is
an instance of such a replacement scheme. Together with these generaliza-
tions our results of Chapters 3 and 4 will be published in an upcoming paper.

At the end we will discuss our implementations. Our first implemen-
tation solves the general strong equivalence problem. It was published in
[EFT05]. There one also finds some experiments. This implementation can
be used for program simplification and optimization. But because of the
high complexity this will not work for large, complicated programs or even
for online optimization in general. (But for small programs one should con-
sider this implementation.) The same holds for the Simplifier toolbox. With
this considerations the following question is immediate at hand: How to im-
prove the implementations? Deciding SUBS∗ was reduced to the Boolean
conjunctive query problem. This problem is closely related to the constraint
satisfaction problem and some others. These problems are well studied and
many special cases were identified. For example, see [GLS02] by Gottlob et
al. This knowledge might be used in further work. We also solved the gen-
eral problem of deciding G-LSH. However, it is not clear if there exists an
algorithm for, say, G-LSH3 which runs in time O(n3). These issues remain
for further research.
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Chapter 7

Conclusion

We contributed to the theory and practice of program simplification and op-
timization of non-ground disjunctive datalog programs with negation by in-
troducing techniques for rule elimination (G-TAUT, G-CONTRA, G-RED−,
G-NONMIN, G-S-IMPL, G-SUBS) and for rule transformation (G-LSH,
G-LSHk). Similar techniques were studied for the propositional case in
[ONA01] and [EFTW04]. We proved the correctness of these techniques.
G-TAUT, G-CONTRA, G-RED−, G-NONMIN, G-S-IMPL, and G-SUBS
preserve strong and uniform equivalence. G-LSH and G-LSHk preserve
uniform equivalence. These results establish that we can use the consid-
ered techniques for program simplification and optimization in principle. Of
course, the actual use of these techniques depends on the complexity of their
applicability. The complexity results we established are summarized in the
following table.

Technique Complexity
G-TAUT in P
G-CONTRA in P
G-RED− in P
G-NONMIN NP complete
G-S-IMPL NP complete
G-SUBS NP complete
G-LSH PSPACE complete
G-LSHk NL complete

G-TAUT, G-CONTRA, and G-RED− are efficiently decidable and easy
to implement. Therefore we concentrated on the remaining techniques.
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G-SUBS is a generalization of G-NONMIN and G-S-IMPL with the same
complexity. Hence, G-SUBS might be used instead of G-NONMIN and G-
S-IMPL. Algorithm A2 reduces G-SUBS to the Boolean conjunctive query
problem. The implementation of A2 is written in Perl and uses the DLV
system.

G-LSHk is decidable in polynomial time since NL ⊆ P. But the running
times of algorithm A3 and A4 crucial depend on k. Indeed, an upper bound
for the time complexity of G-LSHk is O(nc·k) for some c ∈ N. Algorithm
A3 decides G-LSH with several oracle calls and A4 reduces G-LSH to an
evaluation problem of disjunctive datalog problems with negation. Empiri-
cal results show that algorithm A4 outperforms A3 and hence algorithm A4
should be used instead of A3. The implementation of A4 is again written in
Perl and uses the DLV system.

We also implemented an algorithm for deciding strong equivalence of
two programs. Algorithm A1 reduces the problem to the unsatisfiability
problem of Bernays-Schönfinkel formulas. The implementation of algorithm
A1 is written in C++ and uses the automated theorem prover Darwin.

To summarize, the results in this thesis provide a first step towards the
development of effective optimization methods for non-ground Answer Set
Programming, an issue which has been merely addressed for propositional
programs so far.
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[NSS00] I. Niemelä, P. Simons, T. Syrjänen. Smodels: A System for Answer
Set Programming, Proceedings of the 8th International Workshop on Non-
Monotonic Reasoning, 2000.
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Appendix A

Unsafe Programs

In the absence of the safety requirement we use the additional requirement
DΠ−{r} ⊆ DΠ, i.e., the active domain of Π does not change if r is removed.
Denote this requirement by AD.

Proposition 16. (Correctness) Let Π be a (not necessarily safe) program
and r ∈ Π. Π ≡s Π− {r} if

1. AD + G-TAUT(r),

2. AD + G-CONTRA(r),

3. AD + G-NONMIN(Π, r, s),

4. AD + G-S-IMPL(Π, r, s), or

5. AD + G-SUBS(Π, r, s).

Proof. 1) Π ≡s Π−{r} iff for all programs R: Π∪R ≡ Π−{r} ∪R. Define
G := Gr(Π∪R), G′ := Gr(Π−{r}∪R), and {r′1, ..., r′n} := G−G′. It follows
from G-TAUT(r) that TAUT(µ(r′1)). Therefore µ(G) ≡ µ(G) − {µ(r′1)}
because of Proposition 5. And since µ preserves ordinary equivalence it
holds that G ≡ G′ − {r′1}. By repeating this argument it follows that
G ≡ G − {r′1, ..., r′n} = G′ which implies Π ∪ R ≡ Π − {r} ∪ R since the
active domain does not change. Uniform equivalence is implied by strong
equivalence.

2, 3, 4, 5) Analogous.
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