
mcs-ie: Comparison of hex Rewritings?

Peter Schüller

Institute of Information Systems
Vienna University of Technology

Favoritenstrasse 11, A-1040 Vienna, Austria
schueller@kr.tuwien.ac.at

May 15, 2010

Abstract. This manuscript gives two possible rewritings from the mcs-
ie system input language to hex programs, and compares them with
respect to efficiency of evaluation in dlvhex.

1 Notation

In the following we refer to MCS as defined and explained in [1], we also use
notation from [2]. In particular:

– an MCS M = (C1, . . . , Cn) consists of
– contexts Ci = (Li, kbi, br i) where
– L = (KBL,BSL,ACCL) is a logic (a tuple of two sets and a function, we

do not need more details here),
– kbi ∈ KBLi

is a knowledge base (a set),
– br i is a set of bridge rules of the form

(k : s)← (c1 : p1), . . . , (cj : pj),not (cj+1 : pj+1), . . . ,not (cm : pm). (1)

where 1 ≤ ci ≤ n, 1 ≤ k ≤ n, pi ∈ BSLi
, s ∈

⋃
KBLi

,
– IN i is the set of inputs to a context, which is the set of bridge rule heads s

in some rule in br i,
– OUT i is the set of output beliefs of a context, which is the set of beliefs p of

context i occuring in any bridge rule body as (i : p) or as not (i : p),
– brM is the set of all bridge rules of an MCS M ,
– a diagnosis (D1, D2) of some MCS M is s.t. D1, D2 ⊆ brM , and
– an inconsistency explanation (E1, E2) of some MCS M is s.t. E1, E2 ⊆ brM .

hex programs are an extension of answer set programs with access to external
atoms [3, 4].

? This work was supported by the Vienna Science and Technology Fund (WWTF)
under grant ICT08-020.



2 Rewriting introduced in [2]

This rewriting is used, if the command-line option --useKR2010rewriting is
given to dlvhex (and then passed to the mcs-ie plugin).

The MCS is rewritten to the following hex rules.

ai(p) ∨ āi(p). (2)
normal(r) ∨ d1 (r) ∨ d2 (r). (3)

bi(s)← not d1 (r), ac1(p1), . . . , acj
(pj),

not acj+1(pj+1), . . . , not acm
(pm). (4)

bi(s)← d2 (r). (5)
← not&con outi [ai, bi](). (6)

In the following we give an intuition of these rules.
Via (2) we guess for each output belief p ∈ OUT i in each context Ci of

M whether it is present (ai(p)) or absent (āi(p)) in a belief state. This creates
an output-projected belief state of M , corresponding to an answer set of the
rewritten program.

Additionally we guess a diagnosis via (3), by guessing for each bridge rule
r ∈ brM whether it is part of D1, D2, or not part of one of those sets, encoded
as d1 (r), d2 (r), and normal(r), respectively.1

For each bridge rule r ∈ brM , where each one is of the form (1), we have a
hex rule (4) which evaluates the applicability of the bridge rule if it is not in D1.
This yields a set of active (bi(s)) bridge rule heads.

Additionally, for each r ∈ brM , if the rule is in D2, its head is also added to
the set of active bridge rule heads by (5).

The final step is to kill those answer sets where some context does not accept
the guessed output beliefs when presented with the active bridge rule heads as
input. This is ensured by one constraint (6) for each context Ci.

Drawbacks. This approach has the practical drawback, that the whole guess is
expanded and then each possible equilibrium is checked.

The size of this guess is 3|brM | · 2|OUT1| · 2|OUT2| . . ., where the first factor is
the diagnosis guess and each further factor is the possible output state at each
context.

When using dlvhex, this guess is first evaluated using dlv, stored in memory,
and then it is successively eliminated by checking external atoms (which only
occur in a constraint).

This not only requires a lot of memory for storing all guesses, it also causes
a lot of redundant checks: each input/output combination at some context is

1 This implies, that a bridge rule is never part of both D1 and D2. This has no
influence on ⊆-minimal sets of diagnoses where D1 ∩ D2 = ∅. Furthermore, it is
no restriction for obtaining complete sets of non-minimal diagnoses, because each
diagnosis (D1, D2) can be trivially extended such that all diagnoses are obtained: if
(D1, D2) is a diagnosis, then (D1 ∪D′, D2) is a diagnosis for all D′ ⊆ D2.



checked multiple times, as it occurs in several answer sets of the rewritten program
without the constraint.

In the following, we give an alternative rewriting technique, which eliminates
these drawbacks.

3 Alternative Rewriting

This is the default rewriting used by mcs-ie, as it is in most practical applications
faster than the rewriting from Section 2.

Again, we first give the rules and then some intuition:

ok0. (7)
bi(s) ∨ b̄i(s)← ok i−1. (8)
ai(p) ∨ āi(p)← ok i−1. (9)

ok i ← &con outi [ai, bi](), ok i−1. (10)
← not ok i. (11)

normal(r) ∨ d1 (r) ∨ d2 (r)← okn. (12)
ci(s)← okn, not d1 (r), ac1(p1), . . . , acj (pj),

not acj+1(pj+1), . . . , not acm(pm). (13)
ci(s)← okn, d2 (r). (14)

← ci(s), not bi(s), okn. (15)
← not ci(s), bi(s), okn. (16)

The basic difference of this rewriting to the previous one is a serialization of
guesses, by adding intermediate checks of context semantics. We do not guess
all output beliefs and all diagnoses, then evaluate bridge rules and then check
contexts. Instead, we guess inputs and output beliefs for the first context, then
we check if this is an accepted input/output combination of that context. This
we do successively for all context, in order of their indices. After we have a valid
input/output combination for all n contexts, we guess a diagnosis, evaluate bridge
rules using the previously guessed output beliefs and the diagnosis guess. Finally
we kill all answer sets where the bridge rule evaluation does not yield the same
inputs we initially guessed for each context.

Concretely, the rewriting works as follows: with (7) we define ok0 to be true
for more comfortable notation.

For each context Ci, ok i indicates that a valid input/output belief guess exists
for that context.

For each context Ci, where ok i−1 is true (i.e., we have a successful guess for
the previous context), (8) guesses for each bridge rule head s ∈ IN i whether it is
active (bi(s)) or not active (b̄i(s)), and (9) guesses likewise for each output belief
p ∈ OUT i whether it is active (ai(s)) or not active (āi(s)).

For each context Ci, rule (10) derives ok i if context Ci accepts the guessed
input/output belief combination.



We require that each context accepts the guessed belief set using rules (11).
So far we have the situation, that the hex evaluation guesses 2|IN i|+|OUT i|

combinations for each context, then immediately verifies them and then continues
guessing the next context, until all contexts have a valid input/output combination.
In practice, contexts do not accept lots of output combinations for each input
combination, therefore the verification step will immediately reject most of the
exponentially many guesses.

After the last context has been verified, okn is derived. This activates the
diagnosis guess (12), and evaluation of bridge rules under the effect of the guessed
diagnosis and the guessed output beliefs. This bridge rule evaluation is done
by (13) and (14), and the resulting set of active bridge rule heads is represented
in ci(s).

Finally, constraints (15) and (16) check, whether the same atoms are activated
for ci(s) and bi(s), i.e., whether the guessed active bridge rules correspond to
the evaluated active bridge rules.

This rewriting produces the same set of answer sets as the previous one, if
projecting to output belief and diagnosis predicates.
Efficiency considerations. No external atoms need to be evaluated, once okn

has been derived. This allows dlvhex to push the whole diagnosis guess, including
verification of bridge rule applicability, into the external dlv instance. Therefore,
the whole diagnosis guess can be processed more efficiently, and only answer sets
that contain valid diagnosis guesses need to be communicated between dlvhex

and dlv.
Comparison of both Rewritings. The second rewriting has a larger worst
case space complexity than the first one: if all contexts accept all output beliefs,
then a guess of size Π1≤i≤n2|IN i|+|OUT i| must be sent to dlv for the diagnosis
guess, which then multiplies this guess by 3|brM |.

However, such context behavior is not encountered in practice, therefore this
rewriting is in practice more efficient than the previous one. Benchmarks indicate
a hundredfold increase in speed if no virtual memory swapping is involved, and
even higher performance gains for larger input instances which would require
swapping with the first rewriting and do not with the second one.

Note that these considerations are oriented toward the current implementation
of dlvhex, described in [4].

References

1. Brewka, G., Eiter, T.: Equilibria in heterogeneous nonmonotonic multi-context
systems. In: AAAI. (2007) 385–390

2. Eiter, T., Fink, M., Schüller, P., Weinzierl, A.: Finding explanations of inconsistency
in nonmonotonic multi-context systems. In: KR. (2010) to appear.

3. Eiter, T., Ianni, G., Schindlauer, R., Tompits, H.: A uniform integration of higher-
order reasoning and external evaluations in answer-set programming. In: IJCAI.
(2005) 90–96

4. Schindlauer, R.: Answer-set programming for the Semantic Web. PhD thesis, Vienna
University of Technology (2006)


