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Abstract. Answering conjunctive queries over knowledge bases in f@gm Logics (DLs) has
received increasing attention in the last years. In thegmtegaper, we study the computational
complexity of deciding conjunctive query entailment in eegsive DLs that support transitive roles
and role hierarchies, but no inverse roles. We show that thelegm is 2-ExPTIME-hard for the
DL SH; combining this with the known matching upper bound, we thiexisely characterize the
complexity of the problem fo§H. This result extends to richer classes of DLs and queries. Ou
result complements the previous result proving that irvestes make conjunctive query answering
hard, showing that role hierachies in combination with $iwe roles have the same effect.
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1 Introduction

The recent use of Description Logics (DLs) in a widening enfapplications has led to the study of new
reasoning problems. In particular, answering queries ssgrantically enhanced data schemas expressed by
means of DL ontologies plays an important role in areas lét® énd information integration, peer-to-peer
data management, and ontology-based data access.

In the last years, many authors have proposed algorithmarfewering (extensions ofonjunctive
gueries (CQspver knowledge bases in various DLs and aimed at characigrire computational com-
plexity of this problem. A large share of this research hasi$ed orvery expressiv®Ls which contain at
least the full DLALC (with arbitrary TBoxes), for which the satisfiability preoh is ExPTIME-hard.

The most expressive such DLs for which conjunctive queryvenisag was shown to be decidable are
ALCOLb,cq [1], SHIQ [3], SHOQ [4] and ALCHOT [7]. Respective algorithms yielded 2xETIME
upper bounds (w.r.t. the size of the knowledge base and iy qun the best case, leaving significant gaps
w.r.t. the (best) EPTIME lower bounds that are inherited from the satisfiability peoi! It was then shown
in [6] that the problem is 2-EPTIME-hard for ALCZ, i.e., the extension QflLC with inverse roles; hence,
the algorithms in [1] and [3] are in fact worst case optimaldtirecently, [9] and [6] provided algorithms
for the case without inverse and transitive roles that waorkingle exponential time. They are worst case
optimal and establishX>@TIME-completeness of conjunctive query answeringAdiCH and ALCHQ.

However, the precise complexity of the problem remainechdpeexpressive DLs that support transitive
roles but no inverses, such 8¢, SHOQ and ALCQb,.,4. In this paper, we show that CQ answering in
any DL that containsSH, and hence in the three aforementioned DLs, isx@BME-hard? This matches
the upper bounds known from [1, 3, 4, 8] and shows that traegitles and role hierarchies make deciding
conjunctive query entailment harder than satisfiabilistitey.

2 Preliminaries

In this section, we briefly recall knowledge bases in the$} and the problem of answering conjunctive
gueries over them. For the proofs, we also recall (altemgaffuring Machines and introduce notation.

2.1 Conjunctive Query Answering inSH

S’H Knowledge Bases. We assume countably infinite sefs R andI of concept namesoles andin-
dividuals respectively, wher€ containsT and 1. Conceptsare inductively defined as follows: (a) each
A € Cis aconcept, and (b) i, D are concepts ande R is arole, therCT1 D, C U D, =-C,vr.C, 3r.C
are concepts. Lat’, D be conceptsy, s be roles,a, b be individuals, and le!l be a concept name. Then
expressions

e C'CD aregeneral concept inclusions (GCjs)
e rCs arerole inclusions

e Trangr) aretransitivity axioms

12-ExPTIME membership stems from [1, 3, 4], while [7] yields only a 3% IME upper bound that is believed to be not tight.
2 ALCQb,., can simulate transitive roles and role hierarchies (usammllar expressions and role conjunction); it is strictly
more expressive thafiH Q.
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e a:A and(a,b):r areassertions

An SH knowledge baséB) is a tupleX=(7, A), where

e 7 (theTBoX is a finite set of GCls, Rls and transitivity axioms, and
e A (the ABoX is a finite set of assertions.

By C’ we denote the reflexive transitive closuresaf » € 7.

We assume that the reader is familiar with the standard seeeari SH (see, e.g., [7, 11]). In what fol-
lows, we us€f to denote an interpretation for a KB for its domain, andC'Z andr? for the interpretation
of a conceptC and of a roler, respectively.

Conjunctive Query Answering. We assume a countably infinite Sétof variables A conjunctive query
(CQ) over a KBK is a finite set of atoms of the formA(x) or r(z, y), wherez,y € V, while A is a concept
name and- is a role, both occurring if.3

For a CQq overC, let V(q) denote the variables occuringgnA match forg in an interpretationZ for
K is a mappingr : V(¢) — AZ such that (i)r(x) € AT for eachA(x) € ¢, and (ii) (7 (z), 7 (y)) € r* for
eachr(z,y) € . We writeZ = ¢, if there is a match fog in Z. If Z = ¢ for every modelZ of K, thenK
entailsq, written K |= ¢. Thequery entailment problens to decide, giverlC andg, whetherk |= ¢ holds.

Tree Model Property. The following property ofSH KBs will be useful. An interpretatiolf is tree-
shapedif there is a bijectionf from A7 into the set of nodes of a tré@ such thatd, d') < s*, for any role
names, implies that there aré,, ... , d,, in AT and a sequence of nodgs ... , t, in T such thatl = d;,
d' = d, and for eachi, 1 < i < n, t; is the father of;, 1, f(d;) = t; and(d;, d;11) € r* for some transitive
r C% s. The proof of the following result is standard, using untigeof non-tree-shaped models.

Lemma 2.1 Suppose thak’ is anSH KB in which only one individual occurs. Then for every cowcjive
querygq, K [~ g implies thatlC has some tree-shaped mode$uch thatZ = q.

As K |= ¢ clearly implies thafZ |= ¢ for all tree-shaped modelE of /C, this lemma allows us to consider
only tree-shaped interpretations when deciding conjuaajuery entailment.
2.2 Alternating Turing Machines

The main result of this paper relies on a reduction of the warablem for alternating Turing machines
(ATMs) with exponential work space, whose definition we flyieecall; see e.qg., [2] for background and
details.

An ATM is given by a tupleM = (Q, %, T, qo, ), where

e Q=Q3¥QvW{q}W{q}, the set obtates consists okxistential stateg 3, universal stateqn
Qv, anaccepting state,, and arejecting statey, ;

e Y is theinput alphabet

e ['is thework alphabethat contains thblank symbo] , and satisfiex C T’;

3Note that no individuals occur ip; they can be simulated in the usual way. We consider only &0olCQs (i.e., with no
answer variables), to which CQs with answer variables caedbeced in the usual way.
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e ¢y € Q3 U Qy is thestarting state; and
e ) C @ xI'x@xT x{L,R}isthetransition relation

Without loss of generality, we assume thé,, a) = () for all a € T'. For later use, we defingq, o) :=
{(¢,0', M) | (g,0,d,0', M) € 6}.

A configurationof M is a wordwquw’ with w,w’ € T* andq € @Q, whose intended meaning is that
the one-side infinite tape contains the string’ with only blanks behind it, that the machine is in state
q, and that the head is on the symbol just after The successor configurationsf a configurationwgw’
are defined in terms af as usual; without loss of generality, we assume ihats well-behaved and never
attempts to move left if the head is on the left-most positidrhalting configurationis of the formwquw’
whereq € {qq, ¢}

A computationof an ATM M on a wordw is a sequence of configuratioh§, K1, ... such thatk, =
gow (theinitial configuratio) and K; 1 is a successor configuration af;, for all ¢ > 0. For our concerns,
we may assume that all computations are finite (on any inpat),define acceptance only for this case.

A configurationwg,w’ is accepting if either (a)q = ¢4, or (b) ¢ € Q5 and at least one of its successor
configurations is accepting, or (g)€ Qv and all of its successor configurations are accepting. ThHd AT
M acceptshe inputw, if the initial configurationis accepting. Thevord problem ofM is, given M and
w, to decide whetheM acceptav. We use the following lemma.

Lemma 2.2 ([2]) There is an ATMM for which the word problem i2-ExpPTIME-hard such thatM works
in exponential space, i.e., all configurationdqw” in computations onw fulfill [w/w”| < 2P(*) for some

polynomialp(n), and each computation @¥1 onw has length at moQMw”, for some polynomiaj(n).

3 2-EXPTIME -completeness of CQs itbH

In this section, we establish the main result of this papiet, that CQ entailment ibH is 2-EXPTIME-
complete.

Theorem 3.1 The CQ entailment probled |= ¢ is 2-ExPTIME-complete for the DISH.

The membership part follows from a number of papers (e.g3,[#, 8]), and it thus remains to show
the hardness part. We do this by a reduction from the word@nmolbf an ATM as in Lemma 2.2, where we
build on [6] by adapting a similar reduction given there.

Given M and a wordv, we describe a KB, = (A, 7,,) and a queryy,, that are constructible in poly-
nomial time such thakt’,, = ¢, iff M does not accept; since 2-EXPTIME is closed under complement,
this proves 2-EPTIME-hardness. In what follows, let = p(|w|).

Recall that each run of an ordinary (non-alternating) Tgirimachine is a sequence of its configurations.
In case of Alternating Turing machines, this can be germgdlito trees, where nodes are configurations,
and branching is caused by universal states. The idea isltb/y in such a way that its (relevant) models,
calledcomputation tree mode(®r computation tregs capture the tree-shaped structure of computations of
M onw. From each modél of IC,, such thatZ - ¢, itis possible to extract a computation tree model and,
in turn, an accepting computation 8fl on w. On the other hand, each accepting computation corresponds
to a model ofC,, that is a counter-model far,. Since the size of the configurations to be represented can
be exponential inn, IC,, encodes each of them by means of the exponentially many mddesee whose
depth is linear inn. Hence, every computation tree is composedarffiguration treed’ of depthm, each
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of which represents a configuratidi’ of M that is stored via its leaves, and its root is connected to the
roots of the trees representing the successor configusabioR (see Figure 1). In fact, each stores two
configurations. It uses a set 6}, nodesto store gpreviousconfiguration/, and a set of2;, nodesto store
acurrentconfigurationk” that results fromK by a transition ofM. The queryg,, serves to check whether
corresponding configurations in successive configuratiessi’ and7” (i.e., the current configuration if
and the previous one if’) coincide. More precisely;,, will have a match in the computation tréef this
correspondence fails for sorfieand7” (meaning that the previous configuration is either diffe@mot a
valid configuration); such an is improper(i.e., contains an “error”). Overalk’,, will entail ¢,, iff there is
no proper computation tree that represents an acceptinguation, i.e. M does not accepb.

In the rest of this section, we first describe the knowledgeka,, present then the quegy,, and finally
argue about the correctness of the reduction.

3.1 Knowledge basedC,,

We define

Kw={a:1},T,)
wherea is an individual,/ is a concept name (that identifies the initial node), and BBexT7,, contains the
axioms described below.

Building configuration trees. The first set of axioms constructs configuration trégs.e., binary trees
of depthm whose leaves are labeled witt+-bit addresses (identifying the tape cells) that are impletad
using the concept names;, ..., A,,. They are built using a role and a concept namg for identifying
their roots. For simplicity, then+1 levels of a tre€l” are identified with concept namés, ..., L,,. For
two conceptg” and D, we useC' — D as a shorthand for the concept’ LU D. We introduce the following
axioms, which generate an address bit by bit:

R C Iy
L, C 38.(LZ'+1 M Ai+1) M 38.(LZ'+1 M —|Ai+1) forall0 <i<m
LiMmA; C Vs.(Lit1— Aj) forall0<j<i<m
Lin—=A; T Vs.(Lit1 — —A4)) forall0<j<i<m

EachL,, node has two successors labelBdcalled E nodes one is also labeleds, (for previoug
and calledE, nodg and the other oné’;, (for here) and calledE}, node They will be used to represent
two configurations inl": the Ej,-nodes for the current one, referred tof&g(7"), and E,, for a possible
predecessor configuration from which the current one edwylta transition ofM, referred to agy, (7).
The existence of these nodes is ensured by the followingraxio

L, T 3s(E,NE)N3s.(E,NE)

In the leftmost configuration tree of Figure 1, thenodes below oné.,,, node are shown.

Representing configurations inside configuration trees. As already mentioned, the configuratiéi (7°)
of a configuration tred’, s € {p, h}, is represented using labels of thg nodes inT. EachE;-noden
corresponds to one cell of the tape ofM, whose addresg is the address stored with, ..., A,, at its
L,, parent. We store at the nodethe contents of; and whether the head @# is at positionj or not. To
this end, we use the symbols frdmthe states frond) andnil as concept namésWe label everyE-node

“The conceptuil is not needed, but simplifies matters.
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Figure 1: Some configuration trees in a computation tree

with exactly one concept frofi (the contents of;), and with exactly one concept fro@™ := Q U {nil};
intuitively, the labely € Q means that the head @8 is at the tape positiof and thatM is in stateg, while
the labelnil means that the head is not at positjon

E C |_|al_l |_| —(aMa’)

acl a#a’el

/
B qél_QLq |_lqsf'fq’|_€|Q+ (@na).

We also call the unique paft, ¢) such that:Mgq is true the onstoredat anE-node. As for the configuration
K, (T) represented by th&), nodes ofl’, we ensure that a statec @ is stored at exactly one bit address
h, representing the correct head position. To achieve thes)se a concept nanié (for the head position)
and make sure that it occurs in the label oflagn node iff its address itg, and that only arf;, successor of
such anL,,, node contains labels fro.

Ly & H

(LiMH) T (Vs.(Liz1 M A;) — H)NVs.((Ligq M —4;) — —H))
(] (VS.((LZ'_H M _‘Az) — H) M VS.((LZ'_H M Az) — —|H)) forall0 <i<m

(Lz M —|H) (VS.(LH_l — —|H) foralll <i<m

M

L, H

M

vs.(En — L )
qeQ

L, 1—-H

1M

Vs.(Ep — nil)

For the configuration,(T") represented by th&, nodes ofl’, we omit here adding similar axioms.
Indeed, the query,, that we construct will, as a byproduct, also check whethexretiis exactly one address
such that the correspondirig, node of7" is labeled with a state ¢ Q. This is actually relevant only when
T is not the initial configuration tree, and is done for any siidhy comparing its,, nodes withZ), nodes
of its predecessor tree.

*We note that, although th&, and £, nodes below a given address need not be unique, the quersesrikat if there are
multiple nodes with the same address, they store the $ame¢ values.
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Generating the computation tree. We have shown how configurations are represented insidegcoafi
tion trees. Now we define axioms which ensure that configamatiees conform to computation trees that
describe full computations of1.

In the following, we use&/s’.C to denote thé-fold nestingys. - - - Vs.C. In particular,vs’.C is C.

Initial configuration tree.To ensure that the initial configuration tree describes iit&al configuration of
M, letw=ay,...,a,, letqy be the initial state and set:

M

ds.R

Vs™Hl (pos =i — Vs.(Eyp — a;))  foralli <n
Vs™HL (pos = 0 — Vs.(E, — qo))

V™t (pos > n — Vs.(Ep — )

1 1m

I
I
I
I

1M

where(pos = i) and(pos > n) are the obvious (Boolean) concepts expressing that the wdline address
Aq,..., A, equalsi and is at least, respectively (recall that is the blank symbol).

Successor configuration treesdf a configuration tre€l” represents a configuratioRh = wyqw; where
q € Q3 is existential, thed” will be linked in a proper computation tree to some configoratreeT” repre-
senting a successor configurationfof if ¢ € Qv is universal, therT” will be linked to such a configuration
tree for each successor configuration/of

To this end, we add axioms #,, which state thatX’ has, depending on whetheris existential or
universal, the necessary successor configurations angotalithe transition relation. That the successor
trees are indeed proper (and thus the computation treepeprwill be checked using the quegy;.

In detail, to represent th&t’ is a successor df' upon taking the transitiofy’, a’, M) € 6(q,a), we
label the root of7” with the concept namé, ., 5, and we conneci’ to 7" via two consecutives arcs.
Furthermore, ifj is existential, we enforce that sorfié exists with suitable labél’, ./ s at the root, and if
¢ is universal, we enforce that for ea@i, a’, M) € d(q, a) someT” exists with labell}, . 5; at the root;
we exploit that the statg and the symbod are stored in ark;, of 7", for one unique address.

RN 3sm™H (E,MqMa) C |_| 3s2.(RNTy o) foralge QaacT,
(¢',a/,M)€6(g,a)
RN 3s™tL(E,Mgna) C [ 3s2.(RNTy ) forallge Qy,ael.

(¢',a’',M)€d(g,a)

In Figure 1, the leftmost configuration tree represents tiiteal configuration. Assuming that the initial
stateqq is existential, it needs to have just one successor configareee. The latter has two successor
configuration trees, which corresponds to branching at\zetsal state.

Ensuring accepting computation§ince all computations ol are terminating and(q,,a) = 0 for all
a € T, we can easily enforce that all computations are acceptyngrisuring that the staig. is never
encountered:

g & L

Transitions within configuration trees. We next ensure that the configuratidf),(7") results from the
configurationk, (1) by taking the transition that is described by the ldbgl, », at the root ofI".

To facilitate this, we introduce two additional concept ra&i, and.S, that distinguish left and right
successors in a configuration tree. Note thatanode,1 < i < m, is a right successor, if it is labeled with
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A;, and is a left successor otherwise. Thus, we add far gll: < m the axioms:

Sy
L; M —A; Sy

M1

In the following, we uséi(r; C')".D to denote the:-fold composition
Ir(CNIr(CT1---(CN3Ir.D))--),
and similarly¥(r; C')".D to denote the:-fold composition
Vr(C = Vr.(C —---(C = Vr.D)) ).

Note that3(r; C)°.D = V(r; C)°.D = D.
We locally implement the transition described by a matker, a7, in two steps:

1. Let; be the position of the head i#4,(7") (given by the address of dti,-node that is labeled with some
stateg € Q). The head writes’ at positiony; thus in K, (T’) cell ¢; has contents’, and theE), node
with addresg is labeled witha’. The head then moves frojrone cell in the direction given by/ to the
cell j4+1in K (T). Thus, theF) node with addresg+1 is labeled withy'.

We first label thel,,, node at positiory with an auxiliary concept namg,:

Ly 1 35.(E, 1 (q|€_c|2 9) C H,

Next we add, foraly’ € Q,d’ € T', M € {L, R}, and0 < i < m the axioms:
quya/7M E vsm'(Lm - Tq/7al7M)
L, M Tq/@/,R 1 Hp C \V/.S’.(Eh — a’)

Li M 3s.(Se 1 3(s; S,)™ =) (L, M Ty or. g M Hp))
C Vr.(S, — Y(r; S)m D Vs (B, — ¢'))

Li 1 3s.(S, M 3(s; S)™ =) (L, N Ty o p, 1 H))
C Vr.(Se — V(r; S,)™ D Vs (B — ¢))

We exploit here that\ never moves off the tape. To grasp the second and the thiodhaxiote that any

two L,,,-nodesn andn’ in a configuration tree with stored addresg@sd; + 1, respectively, have some
L;-noden” as common ancestor such thdtr{ is reachable from” by first traveling to the left and then
m — (i + 1) times to the right; andii( »n’ is reachable fromn” by first traveling to the right and then
m — (i + 1) times to the left.

2. All remaining tape cells do not change, i.e., contairki(7") the same symbol as i, (7'):

L, N3s.(E,NaMNnil) CVs.(E, —a) forallael.
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Lm
Ep Ey,
F F
o o
Gy, G

Figure 2: Extended configuration trees

The tree-shaped models of the knowledge base that we coiestreo far almost correspond to accepting
computations ofM onw. In particular, if there exists an accepting run/ef on w, thenC,, has a model
that precisely reflects this run (and can be easily congtdgurom it). However, the converse is not true
in general, since the properness and alignment of confignsain successive configuration trees is not
guaranteed: while the axioms guarantee tkig{7”) is a legal successor configuration of the configuration
K,(T"), there is no guarantee that thi nodes ofl” represent in fact correctly a configuratiéf,(7”) and
that, if this case/<,(1") coincides with the configuratiof(;,(7') in the predecessor tr&eof 7".

Let us call a computation trgwoper, if for all configuration tree§” and their successof®' in it K, (7T')
andK,(7") coincide. This property will be eventually checked using djueryg,,,, which will have a match
if some K,(T') and K,,(T") do not coincide (in particular, this will be the caseAf,(7”) is not a valid
configuration). To this end, we extend configuration treeah auxiliary node levels.

Extending configuration trees. To enable the comparison of configurations with the quernwe extend
configuration trees as follows. To eveBy node, fors € {h,p}, we add a successor labeléd(called F’
node, for which a further successor labeléf] (called G5 nodeor G nodg is generated using a new role
nameo (see Figure 2):

E, T 3s.(Fm30.Gp)

E, C E]S.(F M HO.Gh)

Intuitively, the queryg,, will compare all ;, nodes in the tred’ with the correspondingz, nodes in the
successor treg@”. The F'-nodes serve to construct a gadget that allows the querympa the addresses
and labels ofF’ nodes on a bitwise (i.e., concept by concept) basis, whd&-timodes serve to ensure that
all considered bits are from the sarig node andt, node, respectively.

To identify £, nodes inT” and correspondind,, nodes inZ”, eachE node gets a copy of the address

Aq, ..., A, stored at its parenk,,, while its F' successor gets a copy of the inverted address (obtained
by bitwise complementation). We use fresh concepts3, ..., B,, for these copies and add for each
1 < i < m the following axioms:
L,MA; C Vs.DB;
Lm M _\Ai L VS."BZ‘
ENB; T Vs.—B;
En _‘Bi L VS.BZ'

This ensures that twé& nodesn andn’ store the same address iff for each condéptl < i < m, it holds
that either (a) botm andn’ are labeled withB;, or (b) the'-successors of both andn’ are labeled with
B;. Note that aB; can never occur both in the label of @&hnode and of itd’-successor.

To ease the comparison of the unique péirg;) € I'xQ™ stored atF-nodes in our gadget, we introduce
a concept namg, , for eacha € I andg € Q™; the set of all such concepts is deno#dinformally, Z,, ,



INFSYS RR 1843-08-09 (Preliminary) 9

represents thafa, ¢) is not the pair stored there (we use negation for technical reaatdecome clear
later). Now at thel”;, nodes, we introduce thg, , labels as described:

E, T (aNgq) < —Z,, forallael,qeQ*

For our gadget, rather than at thg nodes themselves, we install thg , labelsat their F'-successorts

E, T (angq) —Vs.(=Zayr |1 Z,,) forallacTandge Q*
(a,q)#(a’,q")

Finally, we label allZ, nodes and alF'-successors of alt;, nodes with all concepts .

E, C Vs.Z,, forallacel,qge @™
E, T Z,, foralla e T',qg € Q"

This labeling has the following property. Lef, be anEj, node and, an E, node (supposed to be in
a successor tree), and bet.s (resp.n,.s) be theF-successor ofy, (resp.ns). If ny, stores(a, ¢), thenn,,
will be labeled withZ \ {Z, ,}, and ifn, stores(d’, ¢'), thenn,,.s will be labeled withZ \ {Z,/ ,/}. Now
suppose we comparg, andn,,.s with respect to theil labels (which is equivalent to comparing the pairs
(a,q) and(d’, ¢') stored aty;, andn,, respectively).

If they have the same labels frof) then we haveZ,, , = Z,/  and neithem,, norn,,.s is labeled with
Z,,q- Henceboth of the following conditionsdo not hold (i) n;, andn, are labeled with7, 4, i.e., Z, ,
occurs at thefs-level of both gadgets; andi ) n;,.s andn,.s are labeled with7, ,, i.e., Z, , occurs at the
F-level of both gadgets. On the other handyjfandn,.s have different labels frori, thenZ, , # Z,/ .

In this case, for every. € Z one of the two conditiong)and {i) holds.

In conclusion, theZ labels ofn, andn,.s are different, i.e.nn;, andn,, store different pairga, ¢) and
(d',q'), exactly if everyZ € Z can be found either at the-level of both gadgets, or at thié-level of both
gadgets. This will be exploited by the query.

Finally, to enable the query to match different bits at déf& levels, we make the rotetransitive and
a superrole of:

sCo  Trando)

This concludes the definition of the TB@,, and hence of the K&,,.

3.2 Querygq,

We now define the query,, which checks whether a computation tree mafles proper. Recall thal
is not proper, if some a configuration tréein it has a successdf’ such that the configuratioi’,, (T),
represented by the&), nodes in7’, is different from the configuratiod,(7") represented by th&, nodes
in 7" (in particular, this holds if,,(7”) is not a valid configuration). The quety, is designed to have
a match inZ precisely for such an “error” that spoils the propernesg .oiMore formally, we say that a
computation-tre€ has an error, if it has two nodes, andn,, such that:

(Q1) ny, is anEjp,-node in a configuration treé€ andn,, is anE, node in a successor tréé of T,
(Q2) ny, andn, have the same address encoded in their labeBby. ., B,,, and

(Q3) ny, and theF-successor of,,, n,.s, have different labels fror.



10 INFSYS RR 1843-08-09 (Preliminary)

(" n

.L'A »B1 zBm 221 zZn
s
A A By B Zy zZ
vo £ Yo vy ™ Yo vy " .B1 2Bm 21 1 n
s N 0 0 0 0
yf‘ 1
A
Y
S " ZA 2 e
yA . m+ yBl yByn yZl Zn
At mt n Imtl ¥mi1 7n+17,Zym+l

m+3 By . Bm™, ;21 T 4n

Figure 3: The basic query( A, u, v) and the final query,,.

It is easy to see that a computation tfees not proper if and only i has an error; we exploit the gadget of
E, F andG nodes from above to obtain a match for the qugpyf this is the case.

Informally, ¢,, consists of two subqueriegs (u, v) andqgz(u, v) which share the variablesandwv that
are mapped to the (uniquéj-descendants of candidate nodgsandn,,. A match forgg(u,v) witnesses
that (Q1) and (Q2) are satisfied, while a match §gfu, v) witnesses that (Q1) and (Q3) are satisfied; a
combined match witnesses thus an error.

Both gg(u, v) andgz(u, v) work on a bitwise (concept by concept) basis, and use thewoilh scheme
q(A,u,v) that accesses two nodes in successive configuration traearth on the same level, and tests
whether they are both labeled with the concdpt

Definition 3.2 Given a concept namé and variables:, v, the queryg(A, u, v) is as follows:

q(Au,v) = { s yd), st ut) s i) Ay 1), 0(yim 415 1), Ga(u)
S(Z’A, zéq)> 8(264, zf&)’ s 7S(Z7’é74+27 zTéL+3)7 A(zrﬁ+3)v O(zrﬁ+3> U)7 GP(U) }

The queryg(A, u,v) is graphically shown in Figure 3(I), where solid arrows es@nts-arcs and dotted
arrows represent-arcs. Informally, it works as follows. The query has twormiaes, a-branchz? —
yot — yit - and az-branchz4 — 25! — 2{'... which have to be mapped into configuration trdes
andT”, respectively; as the-branch is two arcs longer than tlyebranch,7” must be a successor tree of
T. To map the branches infB and7”, the variabler? must be mapped eithei) (o the root ofT" or (i)
to its parent (recall Figure 1; the root of every tree has aonmngs arc). In casei}, the Iasty;“ variable
in the y -branch,y;} . ;, will be mapped to ar’-nodeny,.s in T, and the last;! variable in thez-branch,
z;‘Hg, will be mapped to ai#’-noden,,.s in T”; furthermore, as andv must be mapped 6 successors of
ny.s respectivelyn,,.s, ny,.s andn,.s must in fact be successors of ajy-noden,, respectively ar,-node
np. The query checks that botf),.s andn,.s are labeled withA. In case i), the situation is similar, but
y,{,‘LH andzﬁ+3 will be mapped one level higher up, to &f,-noden,, in T and to ank,-noden,, in 7",
respectively, provided they are both labeled withSince the role is transitive and containg the G-node
belown,, resp.n,, can be reached in one step.
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Usingq(A,u,v) as a building block, we can now readily define the qugsyu, v) which identifies an
E}, node in a tred” and ank), node in a successor tréé of T that have the same address:

QB(U,U) = U Q(Bivuvv)' (l)

1<i<m

Note that the sharing of the variablesandwv enforces that alj-branches (respz-branches) end in the same
node, and run through the samhg, node (recall Figure 2); this ensures that we compare alliitsf one
address. By the labeling of the and F'-nodes, positive bits find a match/atnodes and negative bits at the
F-nodes (which carry the inverted address). A matdor ¢g(u,v) in the computation treg& then means
that at theE-predecessors of(u) andz(v) the same address is encoded; only in this case such a match is
possible.

The querygz(u, v) for checking (Q1) and (Q3) is also very simple:

qz(u,v) = U q(Z,u,v). 2

A/

To see that this query works, recall the labelingibhodes and theif’-successors with respectZ The
variablesyZ . ; andzZ , ; are respectively mapped eithéy {0 the F-successors of af), and anE, node,
or (i) directly to anE),, and anE'p node in successive tredsand7”. In case i), this means that both’

nodes are labeled with, and in caseii) that bothE nodes are labeled with. If there is a matchr for

qz(u,v), then for the two gadgets containingu) andx(v), we can find eacly’ € Z either at theE-level

of both gadgets, or at the-level of both gadgets. As discussed in the previous sedfienlatter holds iff
the Z labels of thels,-node abover(u) and theZ labels of theF' node abover(u) (which is below ank,

node) are different; in other words, tit&, node and theéZ, node have different labels from and@™, and
thus K, (T') and K p(T') are different.

Finally, we definey,, by joining ¢g(u, v) andqz(u,v):

qw = qB(u,v) U gz(u, v). 3
The queryg,, is graphically shown in Figure 3(Il), whe#& = {7y, ..., Z,}.

3.3 Entailment of ¢, from I,

Given the construction of,, andq,, above, it is not hard to argue that the problem of decidingl= q., is
equivalent to verifying whethek1 acceptsuv, i.e., we have defined a proper reduction. Assume an anpitrar
modelZ of K, such thatZ }~ ¢,,. Sincek,, has only one individual, by Lemma 2.1, we can w.l.0.g. assume
thatZ is tree-shaped. We can further assume Thigta computation tree (it does not contain any labels that
are not implied by the axioms). IndeedZifis a tree-shaped counter model {gr, then each sub-model of

7 (each model7 that is homomorphically embeddable irfp is also a counter-model fay,. As already
argued, sinc€ |~ q,, Z is a proper computation tree, and it encodes an acceptingfri on w. On

the other hand, given an accepting runfdf on w, we can easily define a computation tree for which the
query g, cannot mapped because the tree does not contain errorss(peoper). Hence, we conclude the
following.MS: rephrased, pls chk

Proposition 3.3 M accepts an input word iff K., = gy

As easily verified, the knowledge bakg, and the query;,, are computable in polynomial time from
M andw. This proves Theorem 3.1.
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4 Related Work and Conclusion

We have shown that deciding the entailment of CQs in expre$3Ls supporting transitive roles and role
hierarchies is 2-EPTIME-hard, and hence provably harder (by one exponential) thaustandard reason-
ing tasks, like satisfiability and instance checking, in anbar of DLs for which the latter problems are
EXPTIME-complete.

From our proof, we obtain that CQs are 248 IME-hard even over KBs that have just a single ABox
assertion, one role inclusion and one transitive role. Hewrmore, sinc&H supports efficient TBox inter-
nalization [10], it extends to KBs with empty TBoxes (w.(XCIs), provided that the ABox may contain
complex concepts. It also extends to all expressive DLsalatv for complex role inclusions of the form
s -0 C o, without the possibility to express transitiviRyOur proof can be easily adapted to this setting
(using this inclusion and C ¢/, and by replacing in the queryby o). Similarly, it can be adapted to role
conjunction instead of a role hierarchy (by making evergode ans ' o successor of it parent).

However, we point out that the interaction between, on the ftand, transitivity or role composition,
and, on the other hand, role inclusion or role conjunctisrgrucial in our proof and for the 2XTIME-
hardness result. Indeed, for expressive DLs with role hiias but no transitivity CQ entailment was
shown to be decidable inX®@TIME [6, 9]. Further evidence of the importance of this intei@ctvill be
provided in an extended version of this report that alsoatttarizes the complexity of.

In the light of our result, a natural question is under whiestrictions answering CQs ov8f{ knowl-
edge bases has lower complexity. Fo€CZ, it was shown that the problem becomesX¥E IME-complete
if queries are rooted, i.e., have at least one answer varighl As already remarked in [6], this restric-
tion does not reduce the worst case complexity in the presehmle hierarchies and transitivity. In fact,
the queryg,, in the reduction above can be easily rooted, by adding a feskver variable: and atoms
o(z,xBY), ...o(z,xPm), o(x,2%), .. .o(x, z%") that connect: to the roots of all the components @f .

In [9], theorder-freeness degree (OFmas introduced as a measure of the structural complexityQs,C
which roughly is the maximum number of query variables tleach in the query graph a common sink via
a transitive role, but mutually not each other. As shown i §&ciding entailment of CQs whose OFD
is bounded by a constant fro8# KBs is feasible in KPTIME; unsurprisingly,q,, has unbounded OFD.
As a simple consequence, all queries with constantly manghblas in transitive role atoms are solvable in
ExPTIME. This contrasts a very recent result of [5], which shows @@tentailment in the DISHZ QO is
2-ExpPTIME-hard even for queries with only two variables.

Finally, the 2-ExPTIME hardness of CQ entailment f6fH and for ALCZ [6] matches the known upper
bounds forunions of CQover SHZQ KBs and the even more expressiweo-way positive regular path
queriesover ALC QTb,., KBs from [1]. This shows that, once either inverse roles ¢ foerarchies and
transitivity are allowed, one can significantly extend bibgh query language and the DL considered without
further increasing the worst case complexity of query amnsge
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