
I N F S Y S

R E S E A R C H

R E P O R T

Institut für Informationssysteme

AB Wissensbasierte Systeme

Technische Universität Wien

Favoritenstrassße 9-11

A-1040 Wien, Austria

Tel: +43-1-58801-18405

Fax: +43-1-58801-18493

sek@kr.tuwien.ac.at

www.kr.tuwien.ac.at

INSTITUT FÜR INFORMATIONSSYSTEME

ARBEITSBEREICHWISSENSBASIERTESYSTEME

COMPLEXITY OF CONJUNCTIVE QUERY

ANSWERING IN DESCRIPTIONLOGICS WITH

TRANSITIVE ROLES

Thomas Eiter Carsten Lutz Magdalena Ortiz

MantasŠimkus

INFSYS RESEARCHREPORT1843-08-09 (PRELIMINARY)

SEPTEMBER 2008

INFSYS RESEARCH REPORT

INFSYS RESEARCHREPORT1843-08-09 (PRELIMINARY), SEPTEMBER2008

COMPLEXITY OF CONJUNCTIVE QUERY ANSWERING IN

DESCRIPTIONLOGICS WITH TRANSITIVE ROLES

Thomas Eiter,1 Carsten Lutz,2 Magdalena Ortiz,3 MantasŠimkus4

Abstract. Answering conjunctive queries over knowledge bases in Description Logics (DLs) has
received increasing attention in the last years. In the present paper, we study the computational
complexity of deciding conjunctive query entailment in expressive DLs that support transitive roles
and role hierarchies, but no inverse roles. We show that the problem is 2-EXPTIME-hard for the
DL SH; combining this with the known matching upper bound, we thusprecisely characterize the
complexity of the problem forSH. This result extends to richer classes of DLs and queries. Our
result complements the previous result proving that inverse roles make conjunctive query answering
hard, showing that role hierachies in combination with transitive roles have the same effect.

1Institute of Information Systems, Vienna University of Technology, Austria. E-mail: eiter@kr.tuwien.ac.at.
2Fachbereich Informatik,Universität Bremen, Germany. E-mail: clu@informatik.uni-bremen.de
3Institute of Information Systems, Vienna University of Technology. E-mail: ortiz@kr.tuwien.ac.at.
4Institute of Information Systems, Vienna University of Technology. E-mail: simkus@kr.tuwien.ac.at.

Copyright c© 2008 by the authors

INFSYS RR 1843-08-09 (Preliminary) I

Contents

1 Introduction 1

2 Preliminaries 1
2.1 Conjunctive Query Answering inSH . 1
2.2 Alternating Turing Machines 2

3 2-EXPT IME -completeness of CQs inSH 3
3.1 Knowledge baseKw . 4
3.2 Queryqw . 9
3.3 Entailment ofqw from Kw . 11

4 Related Work and Conclusion 12

INFSYS RR 1843-08-09 (Preliminary) 1

1 Introduction

The recent use of Description Logics (DLs) in a widening range of applications has led to the study of new
reasoning problems. In particular, answering queries oversemantically enhanced data schemas expressed by
means of DL ontologies plays an important role in areas like data and information integration, peer-to-peer
data management, and ontology-based data access.

In the last years, many authors have proposed algorithms foranswering (extensions of)conjunctive
queries (CQs)over knowledge bases in various DLs and aimed at characterizing the computational com-
plexity of this problem. A large share of this research has focused onvery expressiveDLs which contain at
least the full DLALC (with arbitrary TBoxes), for which the satisfiability problem is EXPTIME-hard.

The most expressive such DLs for which conjunctive query answering was shown to be decidable are
ALCQIbreg [1], SHIQ [3], SHOQ [4] andALCHOI [7]. Respective algorithms yielded 2-EXPTIME

upper bounds (w.r.t. the size of the knowledge base and the query) in the best case, leaving significant gaps
w.r.t. the (best) EXPTIME lower bounds that are inherited from the satisfiability problem.1 It was then shown
in [6] that the problem is 2-EXPTIME-hard forALCI, i.e., the extension ofALC with inverse roles; hence,
the algorithms in [1] and [3] are in fact worst case optimal. Most recently, [9] and [6] provided algorithms
for the case without inverse and transitive roles that work in single exponential time. They are worst case
optimal and establish EXPTIME-completeness of conjunctive query answering forALCH andALCHQ.

However, the precise complexity of the problem remained open for expressive DLs that support transitive
roles but no inverses, such asSH, SHOQ andALCQbreg. In this paper, we show that CQ answering in
any DL that containsSH, and hence in the three aforementioned DLs, is 2-EXPTIME-hard.2 This matches
the upper bounds known from [1, 3, 4, 8] and shows that transitive roles and role hierarchies make deciding
conjunctive query entailment harder than satisfiability testing.

2 Preliminaries

In this section, we briefly recall knowledge bases in the DLSH and the problem of answering conjunctive
queries over them. For the proofs, we also recall (alternating) Turing Machines and introduce notation.

2.1 Conjunctive Query Answering inSH

SH Knowledge Bases. We assume countably infinite setsC, R andI of concept names, roles, and in-
dividuals, respectively, whereC contains⊤ and⊥. Conceptsare inductively defined as follows: (a) each
A ∈ C is a concept, and (b) ifC, D are concepts andr ∈ R is a role, thenC ⊓ D, C ⊔D, ¬C, ∀r.C, ∃r.C

are concepts. LetC,D be concepts,r, s be roles,a, b be individuals, and letA be a concept name. Then
expressions

• C⊑D aregeneral concept inclusions (GCIs);

• r⊑s arerole inclusions;

• Trans(r) aretransitivity axioms;

12-EXPTIME membership stems from [1, 3, 4], while [7] yields only a 3NEXPTIME upper bound that is believed to be not tight.
2
ALCQbreg can simulate transitive roles and role hierarchies (using regular expressions and role conjunction); it is strictly

more expressive thanSHQ.

2 INFSYS RR 1843-08-09 (Preliminary)

• a:A and〈a, b〉:r areassertions.

An SH knowledge base(KB) is a tupleK=〈T ,A〉, where

• T (theTBox) is a finite set of GCIs, RIs and transitivity axioms, and

• A (theABox) is a finite set of assertions.

By ⊑∗
T we denote the reflexive transitive closure ofs⊑ r ∈ T .

We assume that the reader is familiar with the standard semantics ofSH (see, e.g., [7, 11]). In what fol-
lows, we useI to denote an interpretation for a KB,∆I for its domain, andCI andrI for the interpretation
of a conceptC and of a roler, respectively.

Conjunctive Query Answering. We assume a countably infinite setV of variables. A conjunctive query
(CQ) over a KBK is a finite set of atoms of the formA(x) or r(x, y), wherex, y ∈V, while A is a concept
name andr is a role, both occurring inK.3

For a CQq overK, letV(q) denote the variables occuring inq. A match forq in an interpretationI for
K is a mappingπ : V(q) → ∆I such that (i)π(x)∈AI for eachA(x)∈ q, and (ii) 〈π(x), π(y)〉 ∈ rI for
eachr(x, y)∈ q. We writeI |= q, if there is a match forq in I. If I |= q for every modelI of K, thenK
entailsq, writtenK |= q. Thequery entailment problemis to decide, givenK andq, whetherK |= q holds.

Tree Model Property. The following property ofSH KBs will be useful. An interpretationI is tree-
shaped, if there is a bijectionf from ∆I into the set of nodes of a treeT such that(d, d′) ∈ sI , for any role
names, implies that there ared1, . . . , dn in ∆I and a sequence of nodest1, . . . , tn in T such thatd = d1,
d′ = dn and for eachi, 1 ≤ i < n, ti is the father ofti+1, f(di) = ti and(di, di+1) ∈ rI for some transitive
r ⊑∗

T s. The proof of the following result is standard, using unraveling of non-tree-shaped models.

Lemma 2.1 Suppose thatK is anSH KB in which only one individual occurs. Then for every conjunctive
queryq, K 6|= q implies thatK has some tree-shaped modelI such thatI 6|= q.

As K |= q clearly implies thatI |= q for all tree-shaped modelsI of K, this lemma allows us to consider
only tree-shaped interpretations when deciding conjunctive query entailment.

2.2 Alternating Turing Machines

The main result of this paper relies on a reduction of the wordproblem for alternating Turing machines
(ATMs) with exponential work space, whose definition we briefly recall; see e.g., [2] for background and
details.

An ATM is given by a tupleM = (Q,Σ,Γ, q0, δ), where

• Q = Q∃ ⊎ Q∀ ⊎ {qa} ⊎ {qr}, the set ofstates, consists ofexistential statesin Q∃, universal statesin
Q∀, anaccepting stateqa, and arejecting stateqr;

• Σ is theinput alphabet;

• Γ is thework alphabetthat contains theblank symbol and satisfiesΣ ⊆ Γ;

3Note that no individuals occur inq; they can be simulated in the usual way. We consider only Boolean CQs (i.e., with no
answer variables), to which CQs with answer variables can bereduced in the usual way.

INFSYS RR 1843-08-09 (Preliminary) 3

• q0 ∈ Q∃ ∪ Q∀ is thestartingstate; and

• δ ⊆ Q × Γ × Q × Γ × {L,R} is thetransition relation.

Without loss of generality, we assume thatδ(qr, a) = ∅ for all a ∈ Γ. For later use, we defineδ(q, σ) :=
{(q′, σ′,M) | (q, σ, q′, σ′,M) ∈ δ}.

A configurationof M is a wordwqw′ with w,w′ ∈ Γ∗ andq ∈ Q, whose intended meaning is that
the one-side infinite tape contains the stringww′ with only blanks behind it, that the machine is in state
q, and that the head is on the symbol just afterw. Thesuccessor configurationsof a configurationwqw′

are defined in terms ofδ as usual; without loss of generality, we assume thatM is well-behaved and never
attempts to move left if the head is on the left-most position. A halting configurationis of the formwqw′

whereq ∈ {qa, qr}.
A computationof an ATMM on a wordw is a sequence of configurationsK0,K1, . . . such thatK0 =

q0w (the initial configuration) andKi+1 is a successor configuration ofKi, for all i ≥ 0. For our concerns,
we may assume that all computations are finite (on any input),and define acceptance only for this case.

A configurationwqaw
′ is accepting, if either (a)q = qa, or (b)q ∈ Q∃ and at least one of its successor

configurations is accepting, or (c)q ∈ Q∀ and all of its successor configurations are accepting. The ATM
M acceptsthe inputw, if the initial configuration is accepting. Theword problem ofM is, givenM and
w, to decide whetherM acceptsw. We use the following lemma.

Lemma 2.2 ([2]) There is an ATMM for which the word problem is2-EXPTIME-hard such thatM works
in exponential space, i.e., all configurationsw′qw′′ in computations onw fulfill |w′w′′| ≤ 2p(|w|) for some
polynomialp(n), and each computation ofM onw has length at most22q(|w|)

, for some polynomialq(n).

3 2-EXPT IME -completeness of CQs inSH

In this section, we establish the main result of this paper, viz. that CQ entailment inSH is 2-EXPTIME-
complete.

Theorem 3.1 The CQ entailment problemK |= q is 2-EXPTIME-complete for the DLSH.

The membership part follows from a number of papers (e.g., [1, 3, 4, 8]), and it thus remains to show
the hardness part. We do this by a reduction from the word problem of an ATM as in Lemma 2.2, where we
build on [6] by adapting a similar reduction given there.

GivenM and a wordw, we describe a KBKw = 〈Aw,Tw〉 and a queryqw that are constructible in poly-
nomial time such thatKw |= qw iff M does not acceptw; since 2-EXPTIME is closed under complement,
this proves 2-EXPTIME-hardness. In what follows, letm = p(|w|).

Recall that each run of an ordinary (non-alternating) Turing machine is a sequence of its configurations.
In case of Alternating Turing machines, this can be generalized to trees, where nodes are configurations,
and branching is caused by universal states. The idea is to build Kw in such a way that its (relevant) models,
calledcomputation tree models(or computation trees), capture the tree-shaped structure of computations of
M onw. From each modelI of Kw such thatI 6|= qw, it is possible to extract a computation tree model and,
in turn, an accepting computation ofM on w. On the other hand, each accepting computation corresponds
to a model ofKw that is a counter-model forqw. Since the size of the configurations to be represented can
be exponential inm, Kw encodes each of them by means of the exponentially many nodesof a tree whose
depth is linear inm. Hence, every computation tree is composed ofconfiguration treesT of depthm, each

4 INFSYS RR 1843-08-09 (Preliminary)

of which represents a configurationK ′ of M that is stored via its leaves, and its root is connected to the
roots of the trees representing the successor configurations of K (see Figure 1). In fact, eachT stores two
configurations. It uses a set ofEp nodesto store apreviousconfigurationK, and a set ofEh nodesto store
acurrentconfigurationK ′ that results fromK by a transition ofM. The queryqw serves to check whether
corresponding configurations in successive configuration treesT andT ′ (i.e., the current configuration inT
and the previous one inT ′) coincide. More precisely,qw will have a match in the computation treeI if this
correspondence fails for someT andT ′ (meaning that the previous configuration is either different or not a
valid configuration); such anI is improper(i.e., contains an “error”). Overall,Kw will entail qw iff there is
no proper computation tree that represents an accepting computation, i.e.,M does not acceptw.

In the rest of this section, we first describe the knowledge baseKw, present then the queryqw, and finally
argue about the correctness of the reduction.

3.1 Knowledge baseKw

We define
Kw = 〈{a : I},Tw〉

wherea is an individual,I is a concept name (that identifies the initial node), and the TBox Tw contains the
axioms described below.

Building configuration trees. The first set of axioms constructs configuration treesT , i.e., binary trees
of depthm whose leaves are labeled withm-bit addresses (identifying the tape cells) that are implemented
using the concept namesA1, . . . , Am. They are built using a roles and a concept nameR for identifying
their roots. For simplicity, them+1 levels of a treeT are identified with concept namesL0, . . . , Lm. For
two conceptsC andD, we useC → D as a shorthand for the concept¬C ⊔D. We introduce the following
axioms, which generate an address bit by bit:

R ⊑ L0

Li ⊑ ∃s.(Li+1 ⊓ Ai+1) ⊓ ∃s.(Li+1 ⊓ ¬Ai+1) for all 0 ≤ i < m

Li ⊓ Aj ⊑ ∀s.(Li+1 → Aj) for all 0 < j ≤ i < m

Li ⊓ ¬Aj ⊑ ∀s.(Li+1 → ¬Aj) for all 0 < j ≤ i < m

EachLm node has two successors labeledE, calledE nodes; one is also labeledEp (for previous)
and calledEp node, and the other oneEh (for here) and calledEh node. They will be used to represent
two configurations inT : the Eh-nodes for the current one, referred to asKh(T), andEp for a possible
predecessor configuration from which the current one results by a transition ofM, referred to asKp(T).
The existence of these nodes is ensured by the following axiom:

Lm ⊑ ∃s.(Ep ⊓ E) ⊓ ∃s.(Eh ⊓ E)

In the leftmost configuration tree of Figure 1, theE-nodes below oneLm node are shown.

Representing configurations inside configuration trees. As already mentioned, the configurationKs(T)
of a configuration treeT , s ∈ {p, h}, is represented using labels of theEs nodes inT . EachEs-noden

corresponds to one cellcj of the tape ofM, whose addressj is the address stored withA1, . . . , Am at its
Lm parent. We store at the noden the contents ofcj and whether the head ofM is at positionj or not. To
this end, we use the symbols fromΓ, the states fromQ andnil as concept names.4 We label everyE-node

4The conceptnil is not needed, but simplifies matters.

INFSYS RR 1843-08-09 (Preliminary) 5

s

Lm

Ep Eh

I

s

R

R

s

s

s

R

R, L0
s

s

Figure 1: Some configuration trees in a computation tree

with exactly one concept fromΓ (the contents ofcj), and with exactly one concept fromQ+ := Q ∪ {nil};
intuitively, the labelq ∈ Q means that the head ofM is at the tape positionj and thatM is in stateq, while
the labelnil means that the head is not at positionj:

E ⊑ ⊔
a∈Γ

a ⊓ ⊓
a6=a′∈Γ

¬(a ⊓ a′)

E ⊑ ⊔
q∈Q+

q ⊓ ⊓
q 6=q′∈Q+

¬(q ⊓ q′).

We also call the unique pair(a, q) such thata⊓q is true the onestoredat anE-node. As for the configuration
Kh(T) represented by theEh nodes ofT , we ensure that a stateq ∈ Q is stored at exactly one bit address
h, representing the correct head position. To achieve this, we use a concept nameH (for the head position)
and make sure that it occurs in the label of anLm node iff its address itsh, and that only anEh successor of
such anLm node contains labels fromQ.

L0 ⊑ H

(Li ⊓ H) ⊑ (∀s.((Li+1 ⊓ Ai) → H) ⊓ ∀s.((Li+1 ⊓ ¬Ai) → ¬H))
⊔ (∀s.((Li+1 ⊓ ¬Ai) → H) ⊓ ∀s.((Li+1 ⊓ Ai) → ¬H)) for all 0 ≤ i < m

(Li ⊓ ¬H) ⊑ (∀s.(Li+1 → ¬H) for all 1 ≤ i < m

Lm ⊓ H ⊑ ∀s.(Eh →⊔
q∈Q

q)

Lm ⊓ ¬H ⊑ ∀s.(Eh → nil)

For the configurationKp(T) represented by theEp nodes ofT , we omit here adding similar axioms.
Indeed, the queryqw that we construct will, as a byproduct, also check whether there is exactly one address
such that the correspondingEp node ofT is labeled with a stateq ∈ Q.5 This is actually relevant only when
T is not the initial configuration tree, and is done for any suchT by comparing itsEp nodes withEh nodes
of its predecessor tree.

5We note that, although theEp andEh nodes below a given address need not be unique, the query ensures that if there are
multiple nodes with the same address, they store the same(a, q) values.

6 INFSYS RR 1843-08-09 (Preliminary)

Generating the computation tree. We have shown how configurations are represented inside configura-
tion trees. Now we define axioms which ensure that configuration trees conform to computation trees that
describe full computations ofM.

In the following, we use∀si.C to denote thei-fold nesting∀s. · · · ∀s.C. In particular,∀s0.C is C.

Initial configuration tree.To ensure that the initial configuration tree describes the initial configuration of
M, let w = a0, . . . , an, let q0 be the initial state and set:

I ⊑ ∃s.R

I ⊑ ∀sm+1.(pos = i → ∀s.(Eh → ai)) for all i < n

I ⊑ ∀sm+1.(pos = 0 → ∀s.(Eh → q0))

I ⊑ ∀sm+1.(pos ≥ n → ∀s.(Eh →))

where(pos = i) and(pos ≥ n) are the obvious (Boolean) concepts expressing that the value of the address
A1, . . . , Am equalsi and is at leastn, respectively (recall that is the blank symbol).

Successor configuration trees.If a configuration treeT represents a configurationK = w0qw1 where
q ∈ Q∃ is existential, thenT will be linked in a proper computation tree to some configuration treeT ′ repre-
senting a successor configuration ofK; if q ∈ Q∀ is universal, thenT will be linked to such a configuration
tree for each successor configuration ofK.

To this end, we add axioms toKw which state thatK has, depending on whetherq is existential or
universal, the necessary successor configurations according to the transition relation. That the successor
trees are indeed proper (and thus the computation tree is proper) will be checked using the queryqw.

In detail, to represent thatT ′ is a successor ofT upon taking the transition(q′, a′,M) ∈ δ(q, a), we
label the root ofT ′ with the concept nameTq′,a′,M and we connectT to T ′ via two consecutives arcs.
Furthermore, ifq is existential, we enforce that someT ′ exists with suitable labelTq′,a′,M at the root, and if
q is universal, we enforce that for each(q′, a′,M) ∈ δ(q, a) someT ′ exists with labelTq′,a′,M at the root;
we exploit that the stateq and the symbola are stored in anEh of T , for one unique address.

R ⊓ ∃sm+1.(Eh ⊓ q ⊓ a) ⊑ ⊔
(q′,a′,M)∈δ(q,a)

∃s2.(R ⊓ Tq′,a′,M) for all q ∈ Q∃, a ∈ Γ,

R ⊓ ∃sm+1.(Eh ⊓ q ⊓ a) ⊑ ⊓
(q′,a′,M)∈δ(q,a)

∃s2.(R ⊓ Tq′,a′,M) for all q ∈ Q∀, a ∈ Γ.

In Figure 1, the leftmost configuration tree represents the initial configuration. Assuming that the initial
stateq0 is existential, it needs to have just one successor configuration tree. The latter has two successor
configuration trees, which corresponds to branching at a universal state.

Ensuring accepting computations.Since all computations ofM are terminating andδ(qr, a) = ∅ for all
a ∈ Γ, we can easily enforce that all computations are accepting by ensuring that the stateqr is never
encountered:

qr ⊑ ⊥

Transitions within configuration trees. We next ensure that the configurationKh(T) results from the
configurationKp(T) by taking the transition that is described by the labelTq′,a′,M at the root ofT .

To facilitate this, we introduce two additional concept namesSℓ andSr that distinguish left and right
successors in a configuration tree. Note that anLi node,1 ≤ i ≤ m, is a right successor, if it is labeled with

INFSYS RR 1843-08-09 (Preliminary) 7

Ai, and is a left successor otherwise. Thus, we add for all1 ≤ i ≤ m the axioms:

Li ⊓ Ai ⊑ Sr

Li ⊓ ¬Ai ⊑ Sℓ

In the following, we use∃(r;C)n.D to denote then-fold composition

∃r.(C ⊓ ∃r.(C ⊓ · · · (C ⊓ ∃r.D)) · · ·),

and similarly∀(r;C)n.D to denote then-fold composition

∀r.(C → ∀r.(C → · · · (C → ∀r.D)) · · ·).

Note that∃(r;C)0.D = ∀(r;C)0.D = D.
We locally implement the transition described by a markerTq,′,a′,M , in two steps:

1. Letj be the position of the head inKp(T) (given by the address of anEp-node that is labeled with some
stateq ∈ Q). The head writesa′ at positionj; thus inKh(T) cell cj has contentsa′, and theEh node
with addressj is labeled witha′. The head then moves fromj one cell in the direction given byM to the
cell j±1 in Kh(T). Thus, theEh node with addressj±1 is labeled withq′.

We first label theLm node at positionj with an auxiliary concept nameHp:

Lm ⊓ ∃s.
(

Ep ⊓ (⊔
q∈Q

q)
)

⊑ Hp

Next we add, for allq′ ∈ Q, a′ ∈ Γ, M ∈ {L,R}, and0 ≤ i < m the axioms:

Tq′,a′,M ⊑ ∀sm.(Lm → Tq′,a′,M)

Lm ⊓ Tq′,a′,R ⊓ Hp ⊑ ∀s.(Eh → a′)

Li ⊓ ∃s.(Sℓ ⊓ ∃(s;Sr)
m−(i+1).(Lm ⊓ Tq′,a′,R ⊓ Hp))

⊑ ∀r.(Sr → ∀(r;Sℓ)
m−(i+1).∀s.(Eh → q′))

Li ⊓ ∃s.(Sr ⊓ ∃(s;Sℓ)
m−(i+1).(Lm ⊓ Tq′,a′,L ⊓ Hp))

⊑ ∀r.(Sℓ → ∀(r;Sr)
m−(i+1).∀s.(Eh → q′))

We exploit here thatM never moves off the tape. To grasp the second and the third axiom, note that any
two Lm-nodesn andn′ in a configuration tree with stored addressesj andj +1, respectively, have some
Li-noden′′ as common ancestor such that (i) n is reachable fromn′′ by first traveling to the left and then
m − (i + 1) times to the right; and (ii) n′ is reachable fromn′′ by first traveling to the right and then
m − (i + 1) times to the left.

2. All remaining tape cells do not change, i.e., contain inKh(T) the same symbol as inKp(T):

Lm ⊓ ∃s.(Ep ⊓ a ⊓ nil) ⊑ ∀s.(Eh → a) for all a ∈ Γ.

8 INFSYS RR 1843-08-09 (Preliminary)

Lm

Gp

Ep

F

Gh

Eh

F

o o

Figure 2: Extended configuration trees

The tree-shaped models of the knowledge base that we constructed so far almost correspond to accepting
computations ofM on w. In particular, if there exists an accepting run ofM on w, thenKw has a model
that precisely reflects this run (and can be easily constructed from it). However, the converse is not true
in general, since the properness and alignment of configurations in successive configuration trees is not
guaranteed: while the axioms guarantee thatKh(T ′) is a legal successor configuration of the configuration
Kp(T

′), there is no guarantee that theEp nodes ofT ′ represent in fact correctly a configurationKp(T
′) and

that, if this case,Kp(T
′) coincides with the configurationKh(T) in the predecessor treeT of T ′.

Let us call a computation treeproper, if for all configuration treesT and their successorsT ′ in it Kh(T)
andKp(T

′) coincide. This property will be eventually checked using the queryqw, which will have a match
if someKh(T) andKp(T

′) do not coincide (in particular, this will be the case ifKp(T
′) is not a valid

configuration). To this end, we extend configuration trees with auxiliary node levels.

Extending configuration trees. To enable the comparison of configurations with the queryqw, we extend
configuration trees as follows. To everyEs node, fors ∈ {h, p}, we add a successor labeledF (calledF

node), for which a further successor labeledGs (calledGs nodeor G node) is generated using a new role
nameo (see Figure 2):

Ep ⊑ ∃s.(F ⊓ ∃o.Gp)
Eh ⊑ ∃s.(F ⊓ ∃o.Gh)

Intuitively, the queryqw will compare allEh nodes in the treeT with the correspondingEp nodes in the
successor treeT ′. TheF -nodes serve to construct a gadget that allows the query to compare the addresses
and labels ofE nodes on a bitwise (i.e., concept by concept) basis, while the G-nodes serve to ensure that
all considered bits are from the sameEh node andEp node, respectively.

To identify Eh nodes inT and correspondingEp nodes inT ′, eachE node gets a copy of the address
A1, . . . , Am stored at its parentLm, while its F successor gets a copy of the inverted address (obtained
by bitwise complementation). We usem fresh conceptsB1, . . . , Bm for these copies and add for each
1 ≤ i ≤ m the following axioms:

Lm ⊓ Ai ⊑ ∀s.Bi

Lm ⊓ ¬Ai ⊑ ∀s.¬Bi

E ⊓ Bi ⊑ ∀s.¬Bi

E ⊓ ¬Bi ⊑ ∀s.Bi

This ensures that twoE nodesn andn′ store the same address iff for each conceptBi, 1 ≤ i ≤ m, it holds
that either (a) bothn andn′ are labeled withBi, or (b) theF -successors of bothn andn′ are labeled with
Bi. Note that aBi can never occur both in the label of anE node and of itsF -successor.

To ease the comparison of the unique pairs(a, q) ∈ Γ×Q+ stored atE-nodes in our gadget, we introduce
a concept nameZa,q for eacha ∈ Γ andq ∈ Q+; the set of all such concepts is denotedZ. Informally, Za,q

INFSYS RR 1843-08-09 (Preliminary) 9

represents that(a, q) is not the pair stored there (we use negation for technical reasonsthat become clear
later). Now at theEh nodes, we introduce theZa,q labels as described:

Eh ⊑ (a ⊓ q) ↔ ¬Za,q for all a ∈ Γ, q ∈ Q+

For our gadget, rather than at theEp nodes themselves, we install theZa,q labelsat their F -successors:

Ep ⊑ (a ⊓ q) → ∀s.(¬Za,q ⊓ ⊓
(a,q)6=(a′,q′)

Za′,q′) for all a ∈ Γ andq ∈ Q+

Finally, we label allEp nodes and allF -successors of allEh nodes with all concepts inZ.

Eh ⊑ ∀s.Za,q for all a ∈ Γ, q ∈ Q+

Ep ⊑ Za,q for all a ∈ Γ, q ∈ Q+

This labeling has the following property. Letnh be anEh node andnp anEp node (supposed to be in
a successor tree), and letnh.s (resp.np.s) be theF -successor ofnh (resp.ns). If nh stores(a, q), thennh

will be labeled withZ \ {Za,q}, and ifnp stores(a′, q′), thennp.s will be labeled withZ \ {Za′,q′}. Now
suppose we comparenh andnp.s with respect to theirZ labels (which is equivalent to comparing the pairs
(a, q) and(a′, q′) stored atnh andnp, respectively).

If they have the same labels fromZ, then we haveZa,q = Za′,q′ and neithernh nornp.s is labeled with
Za,q. Henceboth of the following conditionsdo not hold: (i) nh andnp are labeled withZa,q, i.e., Za,q

occurs at theE-level of both gadgets; and (ii) nh.s andnp.s are labeled withZa,q, i.e.,Za,q occurs at the
F -level of both gadgets. On the other hand, ifnh andnp.s have different labels fromZ, thenZa,q 6= Za′,q′ .
In this case, for everyZ ∈ Z one of the two conditions (i) and (ii) holds.

In conclusion, theZ labels ofnh andnp.s are different, i.e.,nh andnp store different pairs(a, q) and
(a′, q′), exactly if everyZ ∈ Z can be found either at theE-level of both gadgets, or at theF -level of both
gadgets. This will be exploited by the queryqw.

Finally, to enable the query to match different bits at different levels, we make the roleo transitive and
a superrole ofs:

s⊑ o Trans(o)

This concludes the definition of the TBoxTw, and hence of the KBKw.

3.2 Queryqw

We now define the queryqw which checks whether a computation tree modelI is proper. Recall thatI
is not proper, if some a configuration treeT in it has a successorT ′ such that the configurationKh(T),
represented by theEh nodes inT , is different from the configurationKp(T

′) represented by theEp nodes
in T ′ (in particular, this holds ifKp(T

′) is not a valid configuration). The queryqw is designed to have
a match inI precisely for such an “error” that spoils the properness ofI. More formally, we say that a
computation-treeI has an error, if it has two nodesnh andnp such that:

(Q1) nh is anEh-node in a configuration treeT andnp is anEp node in a successor treeT ′ of T ,

(Q2) nh andnp have the same address encoded in their labels byB1, . . . , Bm, and

(Q3) nh and theF -successor ofnp, np.s, have different labels fromZ.

10 INFSYS RR 1843-08-09 (Preliminary)

.

.

.

.

.

.

.

.

.

.

.

.

xZnxZ1
· · ·

y
B1
0

s

xB1 xBm
· · ·

s

y
Bm
0

y
Z1
0

y
Zn
0

.

.

.

.

.

.

.

.

.

.

.

.

y
B1
m+1

s

o

B1 Bm

y
Bm
m+1

y
Z1
m+1

y
Zn
m+1

ZnZ1

z
B1
0

z
Z1
0

z
Zn
0

z
Bm
0

z
B1
m+3

B1 Bm

z
Bm
m+3

z
Z1
m+3

z
Zn
m+3

ZnZ1

v

uGh

Gp

· · · · · ·

· · · · · ·

.

.

.

s

xA

s

yA
m+1

s

Gh
u

o

A

.

.

.

Gp

zA
m+3

v

A

zA
0

zA
1

zA
m+2

(I) (II)

yA
m

yA
1

yA
0

Figure 3: The basic queryq(A,u, v) and the final queryqw.

It is easy to see that a computation treeI is not proper if and only ifI has an error; we exploit the gadget of
E, F andG nodes from above to obtain a match for the queryqw if this is the case.

Informally, qw consists of two subqueriesqB(u, v) andqZ(u, v) which share the variablesu andv that
are mapped to the (unique)G-descendants of candidate nodesnh andnp. A match forqB(u, v) witnesses
that (Q1) and (Q2) are satisfied, while a match forqZ(u, v) witnesses that (Q1) and (Q3) are satisfied; a
combined match witnesses thus an error.

Both qB(u, v) andqZ(u, v) work on a bitwise (concept by concept) basis, and use the following scheme
q(A,u, v) that accesses two nodes in successive configuration trees that are on the same level, and tests
whether they are both labeled with the conceptA.

Definition 3.2 Given a concept nameA and variablesu, v, the queryq(A,u, v) is as follows:

q(A,u, v) := { s(xA, yA
0), s(yA

0 , yA
1), . . . , s(yA

m, yA
m+1), A(yA

m+1), o(y
A
m+1, u), Gh(u)

s(xA, zA
0), s(zA

0 , zA
1), . . . , s(zA

m+2, z
A
m+3), A(zA

m+3), o(z
A
m+3, v), Gp(v) }.

The queryq(A,u, v) is graphically shown in Figure 3(I), where solid arrows represents-arcs and dotted
arrows represento-arcs. Informally, it works as follows. The query has two branches, ay-branchxA →
yA
0 → yA

1 · · · and az-branchxA → zA
0 → zA

1 · · · which have to be mapped into configuration treesT

andT ′, respectively; as thez-branch is two arcs longer than they branch,T ′ must be a successor tree of
T . To map the branches intoT andT ′, the variablexA must be mapped either (i) to the root ofT or (ii)
to its parent (recall Figure 1; the root of every tree has an incomings arc). In case (i), the lastyA

i variable
in they -branch,yA

m+1, will be mapped to anF -nodenh.s in T , and the lastzA
i variable in thez-branch,

zA
m+3, will be mapped to anF -nodenp.s in T ′; furthermore, asu andv must be mapped toG successors of

nh.s respectivelynp.s, nh.s andnp.s must in fact be successors of anEh-nodenh respectively anEp-node
np. The query checks that bothnh.s andnp.s are labeled withA. In case (ii), the situation is similar, but
yA

m+1 andzA
m+3 will be mapped one level higher up, to anEh-nodenh in T and to anEp-nodenp in T ′,

respectively, provided they are both labeled withA. Since the roleo is transitive and containss, theG-node
belownh resp.np can be reached in one step.

INFSYS RR 1843-08-09 (Preliminary) 11

Usingq(A,u, v) as a building block, we can now readily define the queryqB(u, v) which identifies an
Eh node in a treeT and anEp node in a successor treeT ′ of T that have the same address:

qB(u, v) =
⋃

1≤i≤m

q(Bi, u, v). (1)

Note that the sharing of the variablesu andv enforces that ally-branches (resp.,z-branches) end in the same
node, and run through the sameLm node (recall Figure 2); this ensures that we compare all bitsBi of one
address. By the labeling of theE andF -nodes, positive bits find a match atE-nodes and negative bits at the
F -nodes (which carry the inverted address). A matchπ for qB(u, v) in the computation treeI then means
that at theE-predecessors ofπ(u) andπ(v) the same address is encoded; only in this case such a match is
possible.

The queryqZ(u, v) for checking (Q1) and (Q3) is also very simple:

qZ(u, v) =
⋃

Z∈Z

q(Z, u, v). (2)

To see that this query works, recall the labeling ofE nodes and theirF -successors with respect toZ. The
variablesyZ

m+1 andzZ
m+3 are respectively mapped either (i) to theF -successors of anEh and anEp node,

or (ii) directly to anEh and anEP node in successive treesT andT ′. In case (i), this means that bothF
nodes are labeled withZ, and in case (ii) that bothE nodes are labeled withZ. If there is a matchπ for
qZ(u, v), then for the two gadgets containingπ(u) andπ(v), we can find eachZ ∈ Z either at theE-level
of both gadgets, or at theF -level of both gadgets. As discussed in the previous section, the latter holds iff
theZ labels of theEh-node aboveπ(u) and theZ labels of theF node aboveπ(u) (which is below anEp

node) are different; in other words, theEh node and theEp node have different labels fromΣ andQ+, and
thusKh(T) andKP (T) are different.

Finally, we defineqw by joining qB(u, v) andqZ(u, v):

qw = qB(u, v) ∪ qZ(u, v). (3)

The queryqw is graphically shown in Figure 3(II), whereZ = {Z1, . . . , Zn}.

3.3 Entailment of qw from Kw

Given the construction ofKw andqw above, it is not hard to argue that the problem of decidingKw 6|= qw is
equivalent to verifying whetherM acceptsw, i.e., we have defined a proper reduction. Assume an arbitrary
modelI of Kw such thatI 6|= qw. SinceKw has only one individual, by Lemma 2.1, we can w.l.o.g. assume
thatI is tree-shaped. We can further assume thatI is a computation tree (it does not contain any labels that
are not implied by the axioms). Indeed, ifI is a tree-shaped counter model forqw, then each sub-model of
I (each modelJ that is homomorphically embeddable intoI) is also a counter-model forqw. As already
argued, sinceI 6|= qw, I is a proper computation tree, and it encodes an accepting runof M on w. On
the other hand, given an accepting run ofM on w, we can easily define a computation tree for which the
queryqw cannot mapped because the tree does not contain errors (i.e., is proper). Hence, we conclude the
following.MS: rephrased, pls chk

Proposition 3.3 M accepts an input wordw iff Kw 6|= qw.

As easily verified, the knowledge baseKw and the queryqw are computable in polynomial time from
M andw. This proves Theorem 3.1.

12 INFSYS RR 1843-08-09 (Preliminary)

4 Related Work and Conclusion

We have shown that deciding the entailment of CQs in expressive DLs supporting transitive roles and role
hierarchies is 2-EXPTIME-hard, and hence provably harder (by one exponential) than the standard reason-
ing tasks, like satisfiability and instance checking, in a number of DLs for which the latter problems are
EXPTIME-complete.

From our proof, we obtain that CQs are 2-EXPTIME-hard even over KBs that have just a single ABox
assertion, one role inclusion and one transitive role. Furthermore, sinceSH supports efficient TBox inter-
nalization [10], it extends to KBs with empty TBoxes (w.r.t.GCIs), provided that the ABox may contain
complex concepts. It also extends to all expressive DLs thatallow for complex role inclusions of the form
s · o ⊑ o′, without the possibility to express transitivity.6 Our proof can be easily adapted to this setting
(using this inclusion ando ⊑ o′, and by replacing in the queryo by o′). Similarly, it can be adapted to role
conjunction instead of a role hierarchy (by making everyF node ans ⊓ o successor of itsE parent).

However, we point out that the interaction between, on the one hand, transitivity or role composition,
and, on the other hand, role inclusion or role conjunction, is crucial in our proof and for the 2-EXPTIME-
hardness result. Indeed, for expressive DLs with role hierarchies but no transitivity CQ entailment was
shown to be decidable in EXPTIME [6, 9]. Further evidence of the importance of this interaction will be
provided in an extended version of this report that also characterizes the complexity ofS.

In the light of our result, a natural question is under which restrictions answering CQs overSH knowl-
edge bases has lower complexity. ForALCI, it was shown that the problem becomes NEXPTIME-complete
if queries are rooted, i.e., have at least one answer variable [6]. As already remarked in [6], this restric-
tion does not reduce the worst case complexity in the presence of role hierarchies and transitivity. In fact,
the queryqw in the reduction above can be easily rooted, by adding a freshanswer variablex and atoms
o(x, xB1), . . .o(x, xBm), o(x, xZ1), . . .o(x, xZn) that connectx to the roots of all the components ofqw.

In [9], theorder-freeness degree (OFD)was introduced as a measure of the structural complexity of CQs,
which roughly is the maximum number of query variables that reach in the query graph a common sink via
a transitive role, but mutually not each other. As shown in [9], deciding entailment of CQs whose OFD
is bounded by a constant fromSH KBs is feasible in EXPTIME; unsurprisingly,qw has unbounded OFD.
As a simple consequence, all queries with constantly many variables in transitive role atoms are solvable in
EXPTIME. This contrasts a very recent result of [5], which shows thatCQ entailment in the DLSHIQ is
2-EXPTIME-hard even for queries with only two variables.

Finally, the 2-EXPTIME hardness of CQ entailment forSH and forALCI [6] matches the known upper
bounds forunions of CQsoverSHIQ KBs and the even more expressivetwo-way positive regular path
queriesoverALCQIbreg KBs from [1]. This shows that, once either inverse roles or role hierarchies and
transitivity are allowed, one can significantly extend boththe query language and the DL considered without
further increasing the worst case complexity of query answering.

References

[1] D. Calvanese, T. Eiter, and M. Ortiz. Answering regular path queries in expressive description logics:
An automata-theoretic approach. InProc. of the 22nd Nat. Conf. on Artificial Intelligence (AAAI2007),
pages 391–396, 2007.

6E.g. if each role can occur only on the left hand side or only onthe right hand side of inclusions.

INFSYS RR 1843-08-09 (Preliminary) 13

[2] A. K. Chandra, D. C. Kozen, and L. J. Stockmeyer. Alternation. Journal of the ACM, 28(1):114–133,
1981.

[3] B. Glimm, I. Horrocks, C. Lutz, and U. Sattler. Conjunctive query answering for the description logic
SHIQ. In Proc. of the 20th Int. Joint Conf. on Artificial Intelligence(IJCAI 2007), pages 399–404,
2007.

[4] B. Glimm, I. Horrocks, and U. Sattler. Conjunctive queryentailment forSHOQ. In Proc. of the 2007
Description Logic Workshop (DL 2007), volume 250 ofCEUR Electronic Workshop Proceedings,
http://ceur-ws.org/Vol-250/, pages 65–75, 2007.

[5] B. Glimm and Y. Kazakov. Role conjunctions in expressivedescription logics. Technical report,
Oxford University Computing Laboratory, 2008.

[6] C. Lutz. The complexity of conjunctive query answering in expressive description logics. In A. Ar-
mando, P. Baumgartner, and G. Dowek, editors,Proceedings of the 4th International Joint Conference
on Automated Reasoning (IJCAR2008), number 5195 in LNAI, pages 179–193. Springer, 2008.

[7] M. Ortiz, D. Calvanese, and T. Eiter. Data complexity of query answering in expressive de-
scription logics via tableaux.J. of Automated Reasoning, 41(1):61–98, 2008.doi:10.1007/
s10817-008-9102-9. Preliminary version available as Tech.Rep. INFSYS RR-1843-07-07, In-
stitute of Information Systems, TU Vienna, Nov. 2007.

[8] M. Ortiz, M. Šimkus, and T. Eiter. Conjunctive query answering inSH using knots. In F. Baader,
C. Lutz, and B. Motik, editors,Proceedings of the 21st International Workshop on Description Logics
(DL2008), May 13-16, Dresden, Germany, volume 353 ofCEUR Workshop Proceedings. CEUR-
WS.org, 2008.

[9] M. Ortiz, M. Šimkus, and T. Eiter. Worst-case optimal conjunctive queryanswering for an expressive
description logic without inverses. In D. Fox and C. P. Gomes, editors,AAAI, pages 504–510. AAAI
Press, 2008.

[10] K. Schild. A correspondence theory for terminologicallogics: Preliminary report. InProc. of the 12th
Int. Joint Conf. on Artificial Intelligence (IJCAI 1991), pages 466–471, 1991.

[11] S. Tessaris.Questions and Answers: Reasoning and Querying in Description Logic. PhD thesis,
University of Manchester, Department of Computer Science,Apr. 2001.

