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Abstract. Different notions of equivalence, such as the prominent notions of strong and uniform
equivalence, have been studied in Answer-Set Programming, mainly for the purpose of identifying
programs that can serve as substitutes without altering the semantics, for instance in program op-
timization. Such semantic comparisons are usually characterized by various selections of models
in the logic of Here-and-There (HT). For uniform equivalence however, correct characterizations in
terms of HT-models can only be obtained for finite theories, respectively programs. In this article,
we show that a selection of countermodels in HT captures uniform equivalence also for infinite the-
ories. This result is turned into coherent characterizations of the different notions of equivalence
by countermodels, as well as by a mixture of HT-models and countermodels (so-called equivalence
interpretations). Moreover, we generalize the so-called notion of relativized hyperequivalence for
programs to propositional theories, and apply the same methodology in order to obtain a seman-
tic characterization which is amenable to infinite settings. This allows for a lifting of the results
to first-order theories under a very general semantics given in terms of a quantified version of HT.
We thus obtain a general framework for the study of various notions of equivalence for theories
under answer-set semantics. Moreover, we prove an expedient property that allows for a simplified
treatment of extended signatures, and provide further results for non-ground logic programs. In par-
ticular, uniform equivalence coincides under open and ordinary answer-set semantics, and for finite
non-ground programs under these semantics, also the usual characterization of uniform equivalence
in terms of maximal and total HT-models of the grounding is correct, even for infinite domains,
when corresponding ground programs are infinite.
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1 Introduction

Answer-Set Programming (ASP) is a fundamental paradigm for nonmonotonic knowledge representation [1]
that encompasses logic programming under the answer-set semantics. It is distinguished by a purely declar-
ative semantics and efficient solvers, such as, e.g., DLV [23], Smodels [35], clasp [15], GnT [21], and
ASSAT [26]. Initially providing a semantics for rules with default negation in the body, the answer-set
semantics (or stable-model semantics) [16] has been continually extended in terms of expressiveness and
syntactic freedom. Starting with disjunctive rules, allowing for disjunctions in rule heads, negation in rule
heads was considered and the development continued by allowing nested expressions, i.e., implication-free
propositional formulas in the head and the body. Eventually, arbitrary propositional theories were given
a non-classical minimal model semantics as their answer sets, which has recently been lifted to a general
answer-set semantics for first-order theories [12].

In a different line of research, the restriction to Herbrand domains for programs with variables, i.e.,
non-ground programs, has been relaxed in order to cope with open domains [18], which is desirable for
certain applications, e.g., in conceptual modelling and Semantic Web reasoning. The resulting open answer-
set semantics has been further generalized by dropping the unique names assumption [17] for application
settings where it does not apply, for instance, when combining ontologies with nonmontonic rules [5].

As for a logical characterization of the answer-set semantics, the logic of Here-and-There (HT), a non-
classical logic extending intuitionistic logic, served as a basis. Equilibrium Logic selects certain mini-
mal HT-models for characterizing the answer-set semantics for propositional theories and programs. It
has recently been extended to Quantified Equilibrium Logic (QEL) for first-order theories on the basis
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of a quantified version of Here-and-There (QHT) [30, 31]. Equilibrium Logic serves as a viable formal-
ism for the study of semantic comparisons of theories and programs, like different notions of equiva-
lence [7, 24, 38, 10, 11, 19]. The practical relevance of this research originates in program optimization
tasks that rely on modifications that preserve certain properties [6, 25, 22, 20, 34].

In previous work [13], we complemented this line of research by solving an open problem concerning
uniform equivalence of propositional theories and programs. Intuitively, two propositional logic programs
are uniformly equivalent if they have the same answer sets under the addition of an arbitrary set of atoms
to both programs. Former characterizations of uniform equivalence, i.e., selections of HT-models based
on a maximality criterion [8], failed to capture uniform equivalence for infinite propositional programs—
a problem that becomes relevant when turning to the non-ground setting, respectively first-order theories,
where infinite domains, such as the natural numbers, are encountered in many application domains. In [13],
this has been remedied resorting to countermodels in HT.

In this article, we extend the former work beyond the basic notions of strong and uniform equivalence.
So-called relativized notions thereof have been considered in order to capture more fine-grained semantical
comparisons (see e.g., [8, 28]). Intuitively, these notions restrict the alphabet to be considered for poten-
tial additions, i.e., programs or sets of facts, respectively. A further refinement distinguishes the alphabet
for atoms allowed in rule heads of an addition from the alphabet for atoms allowed in rule bodies [38].
The various notions of equivalence that can be formalized this way have recently been called relativized
hyperequivalence [36, 37].

Similarly as for uniform equivalence, semantic characterizations of relativized hyperequivalence have
been obtained by means of a maximality criterion so far, and only for finite propositional settings. We
address this issue and apply the same methods as for uniform equivalence in order to obtain alternative
characterizations. They can be stated without any finiteness restrictions and easily lift to first-order settings
over infinite domains.

The new contributions compared to [13] can be summarized as follows:

• We provide full proofs for the characterizations of uniform equivalence, but also classical equivalence,
answer-set equivalence, and strong equivalence, in terms of countermodels in HT, respectively in
terms of equivalence interpretations, developed in [13].

• We extend these ideas to relativized settings of equivalence and generalize the notion of relativized
hyperequivalence to propositional theories. Abstracting from the notions of rule head and rule body,
we obtain respective notions of relativization for theories. We provide novel semantical characteriza-
tions in terms of equivalence interpretations for this generalized setting, again without any finiteness
restrictions.

• We lift these results to first-order theories by means of QHT, essentially introducing, besides uni-
form equivalence, relativized hyperequivalence for first-order theories under the most general form of
answer-set semantics currently considered.

• We correct an informal claim that has been made in connection with a property which allows for a
simplified treatment of extended signatures and holds for QHT countermodels. Based on an erroneous
example (Example 5 in [13]), it was claimed that this property does not hold for QHT-models, which
is not the case.

• Eventually, we reconsider logic programs and prove, using the established characterization, that uni-
form equivalence coincides for open and ordinary answer-set semantics, as well as other results which
have been stated without proof in [13].
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Our results provide an elegant, uniform model-theoretic framework for the characterization of the dif-
ferent notions of equivalence considered in ASP. They generalize to first-order theories without finiteness
restrictions, and are relevant for practical ASP systems that handle finite non-ground programs over infinite
domains.

In particular the consideration of relativized notions of equivalence is of relevance in practice. For
instance, program composition from modular parts is an issue of increasing interest in ASP [4, 22]. It
usually hinges on semantic properties specified for an interface (input/output for ‘calling’ or connecting
modules), i.e., properties that require compliance on a subset of the underlying language. Our results might
be exploited to provide correctness guarantees for specific compositions.

Another benefit comes with the generalization to first-order theories. It facilitates and simplifies the
study of combinations of ASP with other formalisms, or means for external data access, in a unifying
formalism. Especially the combination of nonmonotonic rules with description logics is a highly relevant
instance of such a combination. Our results can initiate or reduce difficulties in the study of modularity and
optimization for such combined settings. (cf. [14] for preliminary work in this direction).

For the sake of presentation, the technical content is split into two parts, discussing the propositional
case first, and addressing first-order theories and nonground programs in a second part. In particular, the
organization is as follows: Section 2 introduces essential preliminaries for the treatment of the propositional
case. In Section 3, we develop a characterization of uniform equivalence by means of countermodels in HT,
and proceed with an alternative characterization in terms of equivalence interpretations, before we turn to
generalizing and characterizing relativized hyperequivalence for propositional theories. After some intro-
ductory background on quantified HT, Section 4 deals with generalizations of previous results to first-order
theories under generalized answer-set semantics. In Section 5, we apply our characterization of uniform
equivalence to logic programs under various extended semantics in comparison with the traditional seman-
tics over Herbrand domains, before we draw some conclusions in Section 6.

2 Preliminaries

We start with the propositional setting and briefly summarize the necessary background. Corresponding
first-order formalisms will be introduced when discussing first-order theories, respectively non-ground logic
programs.

2.1 Propositional Here-and-There

In the propositional case we consider formulas of a propositional signature L, i.e., a set of propositional
variables, and the connectives ∧, ∨,→, and ⊥ for conjunction, disjunction, implication, and falsity, respec-
tively. Furthermore we make use of the following abbreviations: φ ≡ ψ for (φ → ψ) ∧ (ψ → φ); ¬φ
for φ → ⊥; and > for ⊥ → ⊥. A formula is said to be factual1 if it is built using ∧, ∨, ⊥, and ¬ (i.e.,
implications of the form φ→ ⊥), only. A theory Γ is factual if every formula of Γ has this property.

The logic of here-and-there is an intermediate logic between intuitionistic logic and classical logic. Like
intuitionistic logic it can be semantically characterized by Kripke models, in particular using just two worlds,
namely “here” and “there” (assuming that the here world is ordered before the there world). Accordingly,
interpretations (HT-interpretations) are pairs (X,Y ) of sets of atoms from L, such that X ⊆ Y . An HT-
interpretation is total if X = Y . The intuition is that atoms in X (the here part) are considered to be true,

1When uniform equivalence of theories is considered, then factual theories can be considered instead of facts—hence the
terminology—see also the discussion at the end of this section.
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atoms not in Y (the there part) are considered to be false, while the remaining atoms (from Y \ X) are
undefined.

We denote classical satisfaction of a formula φ by an interpretation X , i.e., a set of atoms, as X |= φ,
whereas satisfaction in the logic of here-and-there (an HT-model), symbolically (X,Y ) |= φ, is defined
recursively:

1. (X,Y ) |= a if a ∈ X , for any atom a,

2. (X,Y ) 6|= ⊥,

3. (X,Y ) |= φ ∧ ψ if (X,Y ) |= φ and (X,Y ) |= ψ,

4. (X,Y ) |= φ ∨ ψ if (X,Y ) |= φ or (X,Y ) |= ψ,

5. (X,Y ) |= φ→ ψ if (i) (X,Y ) 6|= φ or (X,Y ) |= ψ, and (ii) Y |= φ→ ψ2.

An HT-interpretation (X,Y ) satisfies a theory Γ, iff it satisfies all formulas φ ∈ Γ. For an axiomatic
proof system see, e.g., [24].

A total HT-interpretation (Y, Y ) is called an equilibrium model of a theory Γ, iff (Y, Y ) |= Γ and for all
HT-interpretations (X,Y ), such that X ⊂ Y , it holds that (X,Y ) 6|= Γ. An interpretation Y is an answer
set of Γ iff (Y, Y ) is an equilibrium model of Γ.

We will make use of the following simple properties: if (X,Y ) |= Γ then (Y, Y ) |= Γ; and (X,Y ) |= ¬φ
iff Y |= ¬φ; as well as of the following lemma.

Lemma 1 (Lemma 5 in [29]) Let φ be a factual propositional formula. If (X,Y ) |= φ and X ⊆ X ′ ⊆ Y ,
then (X ′, Y ) |= φ.

2.2 Propositional Logic Programming

A (disjunctive) rule r is of the form

a1 ∨ · · · ∨ ak ∨ ¬ak+1 ∨ · · · ∨ ¬al ← b1, . . . , bm,¬bm+1, . . . ,¬bn, (1)

where a1, . . . , al, b1, . . . , bn are atoms of a propositional signature L, such that l ≥ k ≥ 0, n ≥ m ≥ 0, and
l+n > 0. We refer to “¬” as default negation. The head of r is the setH(r) = {a1, . . . , ak,¬ak+1, . . . ,¬al},
and the body of r is denoted by B(r) = {b1, . . . , bm, ¬bm+1, . . . , ¬bn}. Furthermore, we define the
sets H+(r) = {a1, . . . , ak}, H−(r) = {ak+1, . . . , al}, B+(r) = {b1, . . . , bm}, and eventually B−(r) =
{bm+1, . . . , bn}. A program Π (over L) is a set of rules (over L).

An interpretation I , i.e., a set of atoms, satisfies a rule r, symbolically I |= r, iff I ∩ H+(r) 6= ∅ or
H−(r) 6⊆ I if B+(r) ⊆ I and B−(r) ∩ I = ∅. Adapted from [16], the reduct of a program Π with respect
to an interpretation I , symbolically ΠI , is given by the set of rules

a1 ∨ · · · ∨ ak ← b1, . . . , bm,

obtained from rules in Π, such that H−(r) ⊆ I and B−(r) ∩ I = ∅.
An interpretation I is called an answer set of Π iff I |= ΠI and it is subset minimal among the interpre-

tations of L with this property.

2That is, Y satisfies φ→ ψ classically.



6 INFSYS RR 1843-09-05

2.3 Notions of Equivalence

For any two theories, respectively programs, and a potential extension by Γ, we consider the following
notions of equivalence which have been shown to be the only forms of equivalence obtained by varying the
logical form of extensions in the propositional case in [29].

Definition 1 Two theories Γ1,Γ2 over L are called

• classically equivalent, Γ1 ≡c Γ2, if and only if they have the same classical models;

• answer-set equivalent, Γ1 ≡a Γ2, if and only if they have the same answer sets, i.e., equilibrium
models;

• strongly equivalent, Γ1 ≡s Γ2, if and only if, for any theory Γ over L′ ⊇ L, Γ1 ∪ Γ and Γ2 ∪ Γ are
answer-set equivalent;

• uniformly equivalent, Γ1 ≡u Γ2, if and only if, for any factual theory Γ over L′ ⊇ L, Γ1 ∪ Γ and
Γ2 ∪ Γ are answer-set equivalent.

Emanating from a logic programming setting, uniform equivalence is usually understood wrt. sets
of facts (i.e., atoms). Obviously, uniform equivalence wrt. factual theories implies uniform equivalence
wrt. sets of facts. The converse direction has been shown as well for general propositional theories in [29](cf. The-
orem 2). Therefore, in general there is no difference whether uniform equivalence is considered wrt. sets
of facts or factual theories. The latter may be regarded as facts, i.e., rules with an empty body, of so-called
nested logic program rules. One might also consider sets of disjunctions of atomic formulas and their nega-
tions (i.e., clauses), accounting for facts according to the definition of program rules in this article. Note that
clauses constitute factual formulas and the classical transformation of clauses into implications is not valid
under answer set semantics (respectively in HT).

3 Equivalence of Propositional Theories by HT-Countermodels

Uniform equivalence is usually characterized by so-called UE-models, i.e., total and maximal non-total
HT-models, which fail to capture uniform equivalence for infinite propositional theories.

Example 1 ([8]) Let Γ1 and Γ2 over L = {ai | i ≥ 1} be the following propositional theories

Γ1 = {ai | i ≥ 1}, and Γ2 = {¬ai → ai, ai+1 → ai | i ≥ 1}.

Both, Γ1 and Γ2, have the single total HT-model (L,L). Furthermore, Γ1 has no non-total HT-model
(X,L), i.e, such that X ⊂ L, while Γ2 has the non-total HT-models (Xi,L), where Xi = {a1, . . . , ai} for
i ≥ 0. Both theories have the same total and maximal non-total (namely none) HT-models. But they are not
uniformly equivalent as witnessed by the fact that (L,L) is an equilibrium model of Γ1 but not of Γ2. 2

The reason for this failure is the inability of the concept of maximality to capture differences exhibited
by an infinite number of HT-models.
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3.1 HT-Countermodels

The above problem can be avoided by taking HT-countermodels that satisfy a closure condition instead of
the maximality criterion.

Definition 2 An HT-interpretation (X,Y ) is an HT-countermodel of a theory Γ if (X,Y ) 6|= Γ. The set of
HT-countermodels of a theory Γ is denoted by Cs(Γ).

Intuitively, an HT-interpretation fails to be an HT-model of a theory Γ when the theory is not satisfied at
one of the worlds (here or there). Note that satisfaction at the there world amounts to classical satisfaction
of the theory by Y . A simple consequence is that if Y 6|= Γ, then (X,Y ) is an HT countermodel of Γ
for any X ⊆ Y . At the here world, classical satisfaction is a sufficient condition but not necessary. For
logic programs, satisfaction at the here world is precisely captured by the reduct of the program Π wrt. the
interpretation at the there world, i.e., if X |= ΠY .

Definition 3 A total HT-interpretation (Y, Y ) is total-closed in a set S of HT-interpretations if (X,Y ) ∈ S
for every X ⊆ Y . We say that an HT-interpretation (X,Y ) is

• closed in a set S of HT-interpretations if (X ′, Y ) ∈ S for every X ⊆ X ′ ⊆ Y .

• there-closed in a set S of HT-interpretations if (Y, Y ) 6∈ S and (X ′, Y ) ∈ S for every X ⊆ X ′ ⊂ Y .

A set S of HT-interpretations is total-closed, if every total HT-interpretation (Y, Y ) ∈ S is total-closed in
S. By the remarks on the satisfaction at the there world above, it is obvious that every total HT-countermodel
of a theory is also total-closed in Cs(Γ). Consequently, Cs(Γ) is a total-closed set for any theory Γ. By
the same argument, if (X,Y ) is an HT-countermodel such that X ⊂ Y and Y 6|= Γ, then (X,Y ) is closed
in Cs(Γ). The more relevant cases concerning the characterization of equivalence are HT-countermodels
(X,Y ) such that Y |= Γ.

Example 2 Consider the theory Γ1 in Example 1 and a non-total HT-interpretation (X,L). Since (X,L)
is non-total, X ⊂ L holds, and therefore (X,L) 6|= ai, for some ai ∈ L. Thus, we have identified a HT-
countermodel of Γ1. Moreover the same argument holds for any non-total HT-interpretation of the from
(X ′,L) (in particular such that X ⊆ X ′ ⊂ Y ). Therefore, (X,L) is there-closed in Cs(Γ1). 2

The intuition that, essentially, there-closed countermodels can be used instead of maximal non-total HT-
models for characterizing uniform equivalence draws from the following observation. If (X,Y ) is a maximal
non-total HT-model, then every (X ′, Y ), such that X ⊂ X ′ ⊂ Y , is a there-closed HT-countermodel.
However, there-closed HT-countermodels are not sensitive to the problems that infinite chains cause for
maximality.

Given a theory Γ, let Cu(Γ) denote the set of there-closed HT-interpretations in Cs(Γ).

Theorem 1 Two propositional theories Γ1, Γ2 are uniformly equivalent iff they have the same sets of there-
closed HT-countermodels, in symbols Γ1 ≡u Γ2 iff Cu(Γ1) = Cu(Γ2).

Proof. For the only-if direction, assume that two theories, Γ1 and Γ2, are uniformly equivalent. Then
they are classically equivalent, i.e., they coincide on total HT-models, and therefore also on total HT-
countermodels. Since a total HT-interpretation (Y, Y ) is there-closed in Cs(Γ) if (Y, Y ) 6∈ Cs(Γ), i.e.,
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if (Y, Y ) is an HT-model of Γ, this proves that Γ1 and Γ2 coincide on total HT-interpretations that are
there-closed in Cs(Γ1), respectively in Cs(Γ2).

To prove our claim, it remains to show that Γ1 and Γ2 coincide on non-total there-closed HT-countermodels
(X,Y ), i.e., such that (Y, Y ) is an HT-model of both theories. Consider such a there-closed HT-countermodel
of Γ1. Then, (Y, Y ) is a total HT-model of Γ1 ∪ X and no X ′ ⊂ Y exists such that (X ′, Y ) |= Γ1 ∪ X ,
either because it is an HT-countermodel of Γ1 (in case X ⊆ X ′ ⊂ Y ) or of X (in case X ′ ⊂ X). Thus, Y
is an answer set of Γ1 ∪ X and, by hypothesis since X is factual, it is also an answer set of Γ2 ∪ X . The
latter implies for all X ⊆ X ′ ⊂ Y that (X ′, Y ) 6|= Γ2 ∪ X . All these HT-interpretations are HT-models
of X . Therefore we conclude that they all are HT-countermodels of Γ2 and hence (X,Y ) is a there-closed
HT-countermodel of Γ2. Again by symmetric arguments, we establish the same for any there-closed HT
countermodel (X,Y ) of Γ2 such that (Y, Y ) is a common total HT-model. This proves that Γ1 and Γ2 have
the same sets of there-closed HT countermodels.

For the if direction, assume that two theories, Γ1 and Γ2, have the same sets of there-closed HT-
countermodels. This implies that they have the same total HT-models (since these are there-closed). Con-
sider any factual theory Γ′ such that Y is an answer set of Γ1 ∪ Γ′. We show that Y is an answer set of
Γ2 ∪ Γ′ as well. Clearly, (Y, Y ) |= Γ1 ∪ Γ′ implies (Y, Y ) |= Γ′ and therefore (Y, Y ) |= Γ2 ∪ Γ′. Con-
sider any X ⊂ Y . Since Y is an answer set of Γ1 ∪ Γ′, it holds that (X,Y ) 6|= Γ1 ∪ Γ′. We show that
(X,Y ) 6|= Γ2 ∪ Γ′. If (X,Y ) 6|= Γ′ this is trivial, and in particular the case if (X,Y ) |= Γ1. So let us
consider the case where (X,Y ) 6|= Γ1 and (X,Y ) |= Γ′. By Lemma 1 we conclude from the latter that,
for any X ⊆ X ′ ⊂ Y , (X ′, Y ) |= Γ′. Therefore, (X ′, Y ) 6|= Γ1, as well. This implies that (X,Y ) is a
there-closed HT-countermodel of Γ1. By hypothesis, (X,Y ) is a there-closed HT-countermodel of Γ2, i.e.,
(X,Y ) 6|= Γ2. Consequently, (X,Y ) 6|= Γ2 ∪ Γ′. Since this argument applies to any X ⊂ Y , (Y, Y ) is an
equilibrium model of Γ2∪Γ′, i.e., Y is an answer set of Γ2∪Γ′. The argument with Γ1 and Γ2 interchanged,
proves that Y is an answer set of Γ1 ∪ Γ′ if it is an answer set of Γ2 ∪ Γ′. Therefore, the answer sets of
Γ1 ∪ Γ′ and Γ2 ∪ Γ′ coincide for any factual Γ′, i.e., Γ1 and Γ2 are uniformly equivalent. 2

Example 3 Reconsider the theories in Example 1. Every non-total HT-interpretation (Xi,L) is an HT-
countermodel of Γ1, and thus, each of them is there-closed in Cs(Γ1). On the other hand, none of these
HT-interpretations is an HT-countermodel of Γ2. Therefore, Γ1 and Γ2 are not uniformly equivalent. 2

Countermodels have the drawback however, that they cannot be characterized directly in HT itself, i.e.,
as the HT-models of a ‘dual’ theory. The usage of “dual” here is non-standard compared to its application to
particular calculi or consequence relations, but it likewise conveys the idea of a dual concept. In this sense
HT therefore is non-dual:

Proposition 1 Given a theory Γ, in general there is no theory Γ′ such that (X,Y ) is an HT-countermodel
of Γ iff it is a HT-model of Γ′, for any HT-interpretation (X,Y ).

Proof. As observed in [2], any theory has a total-closed set of countermodels. Consider the theory Γ = {a}
and suppose there exists a theory Γ′, such that (X,Y ) is an HT-countermodel of Γ iff it is an HT-model of
Γ′. Then, vice versa, (X,Y ) is an HT-countermodel of Γ′ iff it is an HT-model of Γ. Since for Y = {a},
(Y, Y ) is an HT-model of Γ, we conclude that (Y, Y ) is an HT-countermodel of Γ′. Because any theory has
a total-closed set of countermodels, it follows that (∅, Y ) is an HT-countermodel of Γ′, hence, an HT-model
of Γ. Contradiction. 2
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3.2 Characterizing Equivalence by means of Equivalence Interpretations

The characterization of countermodels by a theory in HT essentially fails due to total HT-countermodels.
However, total HT-countermodels of a theory are not necessary for characterizing equivalence, in the sense
that they can be replaced by total HT-models of the theory for this purpose.

Definition 4 An HT-countermodel (X,Y ) of a theory Γ is called a here-countermodel of Γ if Y |= Γ.

Definition 5 An HT-interpretation is an equivalence interpretation of a theory Γ if it is a total HT-model of
Γ or a here-countermodel of Γ. The set of equivalence interpretations of a theory Γ is denoted by Es(Γ).

Theorem 2 Two theories Γ1 and Γ2 coincide on their HT-countermodels iff they have the same equivalence
interpretations, symbolically Cs(Γ1) = Cs(Γ2) iff Es(Γ1) = Es(Γ2).

Proof. For the only-if direction, assume that two theories, Γ1 and Γ2, have the same sets of HT-countermodels.
This implies that they have the same here-countermodels. Furthermore, since the total HT-countermodels
are equal, they also coincide on total HT-models. Consequently, Γ1 and Γ2 have the same equivalence
interpretations.

For the if direction, assume that two theories, Γ1 and Γ2, coincide on their equivalence interpretations.
Then they have the same total HT-models and hence the same total HT-countermodels. Since total HT-
countermodels of every theory are total-closed in the set of HT-countermodels, the sets of HT-countermodels
coincide on all HT-interpretations (X,Y ) such that (Y, Y ) is a (total) HT countermodel. All remaining HT-
countermodels are here-countermodels and therefore coincide by hypothesis and the definition of equiva-
lence interpretations. This proves the claim. 2

As a consequence of this result, and the usual relationships on HT-models, we can characterize equiva-
lences of propositional theories also by selections of equivalence interpretations, i.e., a mixture of non-total
here-countermodels and total HT-models, such that the characterizations, in particular for uniform equiva-
lence, are also correct for infinite theories.

Definition 6 Given a theory Γ, we denote by

• Cc(Γ), respectively Ec(Γ), the restriction to total HT-interpretations in Cs(Γ), respectively in Es(Γ);

• Ca(Γ) the set of there-closed HT-interpretations of the form (∅, Y ) in Cs(Γ), and by Ea(Γ) the set of
total-closed HT-interpretations in Es(Γ) (i.e., equilibrium models);

• Eu(Γ) the set of closed HT-interpretations in Es(Γ).

By means of the above sets of HT-countermodels, respectively equivalence interpretations, equivalences
of propositional theories can be characterized as follows.

Corollary 1 Given two propositional theories Γ1 and Γ2, the following propositions are equivalent for
e ∈ {c, a, s, u}:

(1) Γ1 ≡e Γ2; (2) Ce(Γ1) = Ce(Γ2); (3) Ee(Γ1) = Ee(Γ2).

Example 4 In our running example, Cu(Γ1) 6= Cu(Γ2), as well as Eu(Γ1) 6= Eu(Γ2), by the remarks on
non-total HT-interpretations in Example 3. 2
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Since equivalence interpretations do not encompass total HT-countermodels, we attempt a direct char-
acterization in HT.

Lemma 2 For any HT-interpretation (X,Y ) of signature L and τε = {¬¬a → a | a ∈ L}, it holds that
(X,Y ) |= τε iff X = Y .

Proof. (X,Y ) |= τε for all a ∈ L iff (X,Y ) |= ¬¬a → a for all a ∈ L iff, for every a ∈ L, it holds
that (X,Y ) 6|= ¬¬a or (X,Y ) |= a, and Y |= ¬¬a → a. The latter is a tautology, and (X,Y ) 6|= ¬¬a iff
a 6∈ Y . We conclude that (X,Y ) |= τε iff (X,Y ) |= a for all a ∈ Y , i.e., iff X = Y . 2

By means of this lemma, we can use formulas of the form ¬¬a→ a to ensure for a given formula φ of
Γ that if (X,Y ) |= φ then X = Y , i.e., that the HT-interpretation is total.

Proposition 2 Let M be an HT-interpretation over L. Then, M ∈ Es(Γ) for a theory Γ iff M |= Γφ for
some φ ∈ Γ, where Γφ = {¬¬ψ | ψ ∈ Γ} ∪ {φ→ (¬¬a→ a) | a ∈ L}.

Proof. For the only-if direction, assume (X,Y ) is an equivalence interpretation of Γ. Then Y |= ψ for
all ψ ∈ Γ and therefore (X,Y ) |= ¬¬ψ for all ψ ∈ Γ. If X = Y , then by Lemma 2, (X,Y ) also satisfies
¬¬a→ a for all a ∈ L. In this case, (X,Y ) |= Γφ for all φ ∈ Γ. We continue with the case where X ⊂ Y .
Then, (X,Y ) is a here-countermodel of Γ, i.e., there exists φ ∈ Γ such that (X,Y ) 6|= φ. This implies that
(X,Y ) |= φ→ (¬¬a→ a) for all a ∈ L, i.e., (X,Y ) |= Γφ. This proves the claim for X ⊂ Y .

For the if direction, assume that (X,Y ) |= Γφ for some φ ∈ Γ. Then, (X,Y ) |= ¬¬ψ for all ψ ∈ Γ,
which implies Y |= ψ for all ψ ∈ Γ. Consequently, (X,Y ) is an equivalence interpretation of Γ if X = Y .
If X ⊂ Y , we conclude that (X,Y ) does not satisfy ¬¬a → a for some a ∈ L by Lemma 2. However,
(X,Y ) |= Γφ for some φ ∈ Γ, hence (X,Y ) |= φ → (¬¬a → a) for all a ∈ L. Therefore, (X,Y ) 6|= φ
must hold for some φ ∈ Γ. This proves, since X ⊂ Y , that (X,Y ) is a here-countermodel of Γ, i.e., an
equivalence interpretation of Γ. 2

For infinite propositional theories, we thus end up with a characterization of equivalence interpretations
as the union of the HT-models of an infinite number of (infinite) theories. At least for finite theories,
however, a characterization in terms of a (finite) theory is obtained (even for a potentially extended infinite
signature).

If L′ ⊃ L and M = (X,Y ) is an HT-interpretation over L′, then M |L denotes the restriction of M to
L: M |L = (X|L, Y |L). The restriction is totality preserving, if X ⊂ Y implies X|L ⊂ Y |L.

Proposition 3 Let Γ be a theory over L, let L′ ⊃ L, and let M an HT-interpretation over L′ such that M |L
is totality preserving. Then, M ∈ Cs(Γ) implies M |L ∈ Cs(Γ).

Proof. LetM = (X ′, Y ′),M |L = (X,Y ), and assumeM 6|= Γ. First, supposeM is total, hence, Y ′ 6|= Γ.
Then, Y 6|= Γ, because otherwise Y ′ |= Γ would hold, since Γ is over L. This proves the claim for total
HT-countermodels, and since HT countermodels are total-closed, for any HT-countermodel M = (X ′, Y ′),
such that Y ′ 6|= Γ.

We continue with the case that Y ′ |= Γ. Then X ′ ⊂ Y ′ holds, which means that M is an equivalence
interpretation of Γ. Therefore, M 6|= φ for some φ ∈ Γ. Additionally, M |= ¬¬ψ for all ψ ∈ Γ (recall that
Y ′ |= Γ). This implies M |= Γφ, where Γφ = {¬¬ψ | ψ ∈ Γ} ∪ {φ → (¬¬a → a) | a ∈ L}. Therefore,
M |L |= Γφ, i.e., M |L is an equivalence interpretation of Γ. Since the restriction is totality preserving, M |L
is non-total. This proves M |L 6|= Γ. 2

This eventually enables the characterization of the HT-countermodels of a finite theory by another finite
theory, as stated in the next result.
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Theorem 3 Let Γ be a finite theory over L, and let M be an HT-interpretation. Then, M ∈ Es(Γ) iff
M |L |=

∨
φ∈Γ

∧
ψ∈Γφ

ψ, and M |L is totality preserving.

Proof. For the only-if direction let M ∈ Es(Γ). If M is total then M |L is total and M |= Γ implies
M |L |= Γ. Hence, M |L ∈ Es(Γ) and M |L |=

∨
φ∈Γ

∧
ψ∈Γφ

ψ. So let M be non-total. We show that M |L
is totality-preserving. Towards a contradiction assume the contrary. Then, M |L is total. From Y |= Γ we
conclude Y |L |= Γ and the same for X|L by X|L = Y |L. Because Γ is over L, X |= Γ follows, hence
M |= Γ, which is a contradiction. Thus, M |L is totality-preserving. Then M |L is also non-total and in
Cs(Γ). Therefore M |L ∈ Es(Γ), which implies M |L |=

∨
φ∈Γ

∧
ψ∈Γφ

ψ.
For the if direction, consider any HT-interpretationM such thatM |L satisfies the theory

∨
φ∈Γ

∧
ψ∈Γφ

ψ

and M |L is totality preserving. If M is total then M |L is total and M |L |= Γ, which implies M |= Γ, since
Γ is over L. If M is non-total then M |L is non-total and M |L 6|= Γ, which implies M 6|= Γ. 2

Example 5 Let Γ = {a} over L = {a} and recall what the proof of Proposition 1 established: There
is no theory Γ′ such that (X,Y ) is an HT-model of Γ′ iff it is an HT-countermodel of Γ. According to
Theorem 3 however, we can characterize Es(Γ) by means of totality-preserving HT-models of the theory
Γ′ = {¬¬ a∧(a→ (¬¬a→ a))}. Consider any HT-interpretation (X,Y ) over L′ ⊃ L. It is easily verified
that (X,Y ) |= Γ′ iff a ∈ Y . If additionally a ∈ X and X ⊂ Y , then (X|L, Y |L) is not totality preserving.
Thus, (X,Y ) is a totality-preserving HT-model of Γ′ iff a ∈ Y and either X = Y or a 6∈ X . These
interpretations respectively correspond to the total models and the here-countermodels, i.e., the equivalence
interpretations of Γ over L′. 2

3.3 Relativized Hyperequivalence for Propositional Theories

We now turn to the notion of relativized hyperequivalence. The term ‘hyperequivalence’ has been coined
in the context of ASP, as a general expression for different forms of equivalence, which guarantee that the
semantics is preserved under the addition of arbitrary programs (called contexts) from a particular class of
programs [36]. Relativized hyperequivalence emanates from the study of relativized notions of equivalence
by restricting contexts to particular alphabets (see e.g., [8, 28]). It has been generalized to the setting, where
possibly different alphabets are used to restrict the head atoms and the body atoms allowed to appear in
context rules [38].

While up to now relativized hyperequivalence has only been studied for finite programs, we aim at
a generalization of relativized hyperequivalence for propositional theories under the answer-set semantics,
without any finiteness restrictions. For this purpose, we first generalize the notions of ‘head atom’ and ‘body
atom’ for theories.

The occurrence of an atom a in a formula φ is called positive if φ is implication free, if a occurs in
the consequent of an implication in φ, or if φ is of the form (φ1 → φ2) → φ3 and a occors in φ1. An
occurrence of a is called negative if a occurs in the antecedent of an implication. The notion of positive
and negative occurrence is extended to (sub-)formulas in the obvious way. Note that any occurrence under
negation therefore is a negative occurrence, and that the occurrence of an atom or subformula may be both
positive and negative, for instance the occurrence of b in a→ (b→ ⊥), viz. a→ ¬b.

A propositional theory Γ overA+∪A−, whereA+ andA− are sets of propositional variables, is called an
A+-A−-theory if every formula in Γ has positive occurrences of atoms from A+, and negative occurrences
of atoms from A−, only. Note that ⊥ is always allowed to appear both, positively and negatively. An
A+-A−-theory is called extended, if additionally factual formulas over A+ are permitted.
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By means of these notions, relativized hyperequivalence for propositional theories can be expressed as
follows, which is a proper generalization of the logic programming setting.

Definition 7 Two propositional theories Γ1,Γ2 over L are called relativized hyperequivalent wrt. A+ and
A−, symbolically Γ1

A+

A−≡ Γ2, iff for any A+-A−-theory Γ over L′ ⊇ L, Γ1 ∪ Γ and Γ2 ∪ Γ are answer-set
equivalent.

Towards a characterization of relativized hyperequivalence, our goal is to follow the same methodology
that we used to characterize uniform equivalence, i.e., resorting to HT-countermodels and respective closure
conditions. However, while in the logic programming setting such closure conditions may be obtained from
certain monotonicity properties of the program reduct, we first have to establish corresponding properties
for theories. A first property in this respect is the following. Note that although the next result is stated
for extended A+-A−-theories (for reasons which will become clear later), it trivially also holds for any
(non-extended) A+-A−-theory.

Proposition 4 Consider an extended propositional A+-A−-theory Γ, and an HT-interpretation (X,Y ).
Then, (X,Y ) |= Γ implies (X ′, Y ) |= Γ, for all X ′ ⊆ Y such that X|A+ ⊆ X ′|A+ and X ′|A− ⊆ X|A− .

Proof. Consider any A+-A−-formula φ in Γ, i.e., any formula that has positive occurrences of atoms from
A+, and negative occurrences of atoms from A−, only. We show by induction on the formula structure of
φ, that for all X ′ ⊆ Y such that X|A+ ⊆ X ′|A+ and X ′|A− ⊆ X|A− :

(a) (X,Y ) |= φ implies (X ′, Y ) |= φ if φ is a positive occurrence; and

(b) (X,Y ) 6|= φ implies (X ′, Y ) |= φ if φ is a negative occurrence.

For the base case, consider any atomic formula φ, and suppose first that (a) the occurrence of φ is a
positive occurrence. Then, (X,Y ) |= φ implies that φ is not ⊥, and thus is an atom a from A+ such
that a ∈ X . Since X|A+ ⊆ X ′|A+ for all X ′ under consideration, we conclude that a ∈ X ′. Hence,
(X ′, Y ) |= φ. Suppose (b) φ is a negative occurrence. If (X,Y ) 6|= φ, then either φ is ⊥, and (X ′, Y ) 6|= φ
follows trivially. Otherwise, φ is an atom b from A−, such that b 6∈ X|A− . Since X ′|A− ⊆ X|A− for all
X ′ under consideration, we conclude that b 6∈ X ′, i.e., (X ′, Y ) 6|= φ. This proves (a) and (b) for atomic
formulas.

For the induction step, assume that (a) and (b) hold for any A+-A−-formula of connective nesting depth
n−1, and let φ be a formula of connective nesting depth n. Consider the case where φ is of the form φ1∧φ2,
respectively φ1 ∨ φ2. If φ is a positive occurrence (a), then so are φ1 and φ2, both of connective nesting
depth depth n − 1. From (X,Y ) |= φ we conclude (X,Y ) |= φ1 and (or) (X,Y ) |= φ2. The induction
hypothesis applies, proving (X ′, Y ) |= φ1 and (or) (X ′, Y ) |= φ2, for all X ′ ⊆ Y such that X|A+ ⊆ X ′|A+

and X ′|A− = X|A− i.e., (X ′, Y ) |= φ for all X ′ under consideration. In case φ is a negative occurrence (b),
then so are φ1 and φ2, both of connective nesting depth n− 1. Then, (X,Y ) 6|= φ implies (X,Y ) 6|= φ1 or
(and) (X,Y ) 6|= φ2, and the same holds for any (X ′, Y ) under consideration by induction hypothesis. This
proves (X,Y ) 6|= φ implies (X ′, Y ) |= φ.

Finally, let φ be of the form φ1 → φ2. Then, independent of whether φ occurs positively or negatively,
φ1 is a negative occurrence and φ2 is a positive occurrence, both of connective nesting depth n − 1. First,
suppose that φ is a positive occurrence (a), as well as that (X,Y ) |= φ. Towards a contradiction assume
that there exists X ′ ⊆ Y such that X|A+ ⊆ X ′|A+ , X ′|A− ⊆ X|A− , and (X ′, Y ) 6|= φ. Since (X,Y ) |= φ
implies that Y |= φ, we conclude that both, (X ′, Y ) |= φ1 and (X ′, Y ) 6|= φ2, hold. From the latter, since
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φ2 is a positive occurrence of connective nesting depth n − 1, it follows that (X,Y ) 6|= φ2 (otherwise by
induction hypothesis (a) (X ′, Y ) |= φ2). This implies (X,Y ) 6|= φ1 since (X,Y ) |= φ. However, φ1 is a
negative occurrence of connective nesting depth n − 1, thus by induction hypothesis (b) we conclude that
(X ′, Y ) 6|= φ1, a contradiction. Therefore, (X ′, Y ) |= φ for all X ′ under consideration, which proves (a).
For (b), let φ be a negative occurrence and suppose (X,Y ) 6|= φ. If Y 6|= φ, then also (X ′, Y ) 6|= φ for
all X ′ under consideration. In case Y |= φ, we conclude that (X,Y ) |= φ1 and (X,Y ) 6|= φ2. Since φ
is a negative occurrence, not only φ1 but also φ2 is a negative occurrence, both of connective nesting depth
n− 1. Therefore, by induction hypothesis (b) we conclude that (X ′, Y ) 6|= φ2. Moreover, also because φ is
a negative occurrence, φ1 is a positive occurrence as well. Hence, by induction hypothesis (a) we conclude
(X ′, Y ) |= φ1 from (X,Y ) |= φ1, viz. (X ′, Y ) 6|= φ, for all X ′ under consideration. This concludes the
inductive argument and proves (a) and (b) for A+-A−-formulas of arbitrary connective nesting.

Next, we turn to factual formulas ψ in Γ, and prove by induction on the formula structure of ψ, that

(c) (X,Y ) |= ψ implies (X ′, Y ) |= ψ, for all X ′ ⊆ Y such that X|A+ ⊆ X ′|A+ and X ′|A− ⊆ X|A− ; and

(d) (Y, Y ) 6|= ψ implies (X ′, Y ) 6|= ψ, for all X ′ ⊆ Y .

For the base case, consider any atomic formula ψ, and suppose first that (c) (X,Y ) |= ψ. Then, ψ is not
⊥, but an atom a from A+ such that a ∈ X . Since X|A+ ⊆ X ′|A+ for all X ′ such that X|A+ ⊆ X ′|A+ and
X ′|A− ⊆ X|A− , we conclude that a ∈ X ′. Hence, (X ′, Y ) |= ψ. For (d), assume (Y, Y ) 6|= ψ. Then ψ
is ⊥ or ψ is a an atom not in Y . In the former case, (X ′, Y ) 6|= ψ follows trivially for all X ′ ⊆ Y . In the
latter case, the atom also cannot be a member of any X ′ such that X ′ ⊆ Y . Therefore, (X ′, Y ) 6|= ψ, for all
X ′ ⊆ Y . This proves (c) and (d) for atomic formulas.

For the induction step, assume that (c) and (d) hold for any factual formula of connective nesting depth
n − 1, and let ψ be a factual formula of connective nesting depth n. Consider the case where ψ is of the
form ψ1 ∧ ψ2, respectively ψ1 ∨ ψ2. Since ψ is factual, so are ψ1 and ψ2, both of connective nesting depth
depth n−1. In case (c), from (X,Y ) |= ψ we conclude (X,Y ) |= ψ1 and (or) (X,Y ) |= ψ2. The induction
hypothesis applies, proving (X ′, Y ) |= ψ1 and (or) (X ′, Y ) |= ψ2, for allX ′ ⊆ Y such thatX|A+ ⊆ X ′|A+

and X ′|A− ⊆ X|A− , i.e., (X ′, Y ) |= ψ for all X ′ under consideration. Assume (d), i.e., (Y, Y ) 6|= ψ. As a
consequence, (Y, Y ) 6|= ψ1 or (and) (Y, Y ) 6|= ψ2, hence by induction hypothesis, for all X ′ ⊆ Y , it holds
that (X ′, Y ) 6|= ψ1 or (and) (X ′, Y ) 6|= ψ2. Therefore, (X ′, Y ) 6|= ψ, for all X ′ ⊆ Y .

Finally, let ψ be of the form ψ1 → ⊥. Then, ψ1 is factual and of connective nesting depth depth n− 1.
In case (c), if (X,Y ) |= ψ, then Y |= ψ, hence Y 6|= ψ1, i.e., (Y, Y ) 6|= ψ1 and by induction hypothesis (d),
the same holds for any (X ′, Y ) such that X ′ ⊆ Y . Thus, in particular for X ′ ⊆ Y such that X|A+ ⊆ X ′|A+

and X ′|A− ⊆ X|A− , it follows that (X ′, Y ) 6|= ψ1. Moreover, Y |= ψ, and therefore (X ′, Y ) |= ψ → ⊥,
for all X ′ ⊆ Y such that X|A+ ⊆ X ′|A+ and X ′|A− ⊆ X|A− . For (d), assume (Y, Y ) 6|= ψ. Consequently
Y 6|= ψ, and this implies (X ′, Y ) 6|= ψ, for all X ′ ⊆ Y . This concludes the inductive argument and proves
(c) and (d) for factual formulas over A+ of arbitrary connective nesting.

Concerning the claim of the proposition, since (X,Y ) |= Γ implies (X,Y ) |= φ and (X,Y ) |= ψ,
for every A+-A−-formula φ in Γ and every factual formula ψ in Γ, we conclude that (X ′, Y ) |= φ and
(X ′, Y ) |= ψ, for all X ′ ⊆ Y such that X|A+ ⊆ X ′|A+ and X ′|A− ⊆ X|A− . This proves (X ′, Y ) |= Γ, for
all X ′ under consideration. 2

Complementary to this result, given a total HT-model of an (extended) A+-A−-theory, we can infer its
satisfaction for the following class of non-total HT-interpretations.

Proposition 5 Consider an extended propositional A+-A−-theory Γ, and a total HT-interpretation (Y, Y ).
Then, (Y, Y ) |= Γ implies (X ′, Y ) |= Γ, for all X ′ ⊆ Y such that X ′|A+ = Y |A+ .
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Proof. Consider any A+-A−-formula φ in Γ, i.e., any formula that has positive occurrences of atoms from
A+, and negative occurrences of atoms from A−, only. We show by induction on the formula structure of
φ, that for all X ′ ⊆ Y such that X ′|A+ = Y |A+ :

(a) (Y, Y ) |= φ implies (X ′, Y ) |= φ if φ is a positive occurrence; and

(b) (Y, Y ) 6|= φ implies (X ′, Y ) 6|= φ if φ is a negative occurrence.

For the base case, consider any atomic formula φ, and suppose first (a) that φ is a positive occurrence
such that (Y, Y ) |= φ. Then φ is not ⊥, and thus is an atom a from A+ such that a ∈ Y . Since X ′|A+ =
Y |A+ for all X ′ under consideration, we conclude that a ∈ X ′. Hence, (X ′, Y ) |= φ. Suppose (b) φ
is a negative occurrence. If (Y, Y ) 6|= φ, then φ is either ⊥, or an atom b from A−, such that b 6∈ Y .
Since X ′ ⊆ Y implies X ′|A− ⊆ Y |A− for all X ′ under consideration, we conclude that b 6∈ X ′. Hence,
(X ′, Y ) 6|= φ.

For the induction step, assume that (a) and (b) hold for any A+-A−-formula of connective nesting depth
n−1, and let φ be a formula of connective nesting depth n. Consider the case where φ is of the form φ1∧φ2,
respectively φ1 ∨ φ2. If φ is a positive occurrence (a), then so are φ1 and φ2, both of connective nesting
depth depth n − 1. From (Y, Y ) |= φ we conclude (Y, Y ) |= φ1 and (or) (Y, Y ) |= φ2. The induction
hypothesis applies, proving (X ′, Y ) |= φ1 and (or) (X ′, Y ) |= φ2, for allX ′ ⊆ Y such thatX ′|A+ = Y |A+ ,
i.e., (X ′, Y ) |= φ for all X ′ under consideration. In case φ is a negative occurrence (b), then so are φ1 and
φ2, both of connective nesting depth n− 1. Then, (Y, Y ) 6|= φ implies (Y, Y ) 6|= φ1 or (and) (Y, Y ) 6|= φ2,
and the same holds for any (X ′, Y ) under consideration by induction hypothesis. This proves (X ′, Y ) 6|= φ.
Finally, let φ be of the form φ1 → φ2. Then, independent of whether φ occurs positively or negatively,
φ1 is a negative occurrence and φ2 is a positive occurrence, both of connective nesting depth n − 1. First,
suppose (Y, Y ) |= φ. Towards a contradiction assume that there exists X ′ ⊆ Y such that X ′|A+ = Y |A+

and (X ′, Y ) 6|= φ. Since (Y, Y ) |= φ implies that Y |= φ, we conclude that both, (X ′, Y ) |= φ1 and
(X ′, Y ) 6|= φ2, hold. From the latter, since φ2 is a positive occurrence of connective nesting depth n− 1, it
follows that (Y, Y ) 6|= φ2 (otherwise by induction hypothesis (a) (X ′, Y ) |= φ2). This implies (Y, Y ) 6|= φ1

since (Y, Y ) |= φ. However, φ1 is a negative occurrence of connective nesting depth n−1, thus by induction
hypothesis (b) we conclude that (X ′, Y ) 6|= φ1, a contradiction. Therefore, (X ′, Y ) |= φ for all X ′ under
consideration, which proves (a). For (b), let φ be a negative occurrence and suppose (Y, Y ) 6|= φ. Then
Y 6|= φ, hence also (X ′, Y ) 6|= φ for all X ′ under consideration. This concludes the inductive argument and
proves (a) and (b) for A+-A−-formulas of arbitrary connective nesting.

Next, we turn to factual formulas ψ in Γ, and prove by induction on the formula structure of ψ, that
(Y, Y ) |= ψ implies (X ′, Y ) |= ψ, for all X ′ ⊆ Y such that X ′|A+ = Y |A+ .

For the base case, consider any atomic formula ψ, and suppose that (Y, Y ) |= ψ. Then, ψ is not ⊥, but
an atom a from A+ such that a ∈ Y . Since X ′|A+ = Y |A+ for all X ′ under consideration, we conclude that
a ∈ X ′. Hence, (X ′, Y ) |= ψ, for all X ′ ⊆ Y such that X ′|A+ = Y |A+ .

For the induction step, assume that the claim holds for any factual formula of connective nesting depth
n − 1, and let ψ be a factual formula of connective nesting depth n. Consider the case where ψ is of the
form ψ1 ∧ ψ2, respectively ψ1 ∨ ψ2. Since ψ is factual, so are ψ1 and ψ2, both of connective nesting depth
depth n− 1. From (Y, Y ) |= ψ we conclude (Y, Y ) |= ψ1 and (or) (Y, Y ) |= ψ2. The induction hypothesis
applies, proving (X ′, Y ) |= ψ1 and (or) (X ′, Y ) |= ψ2, for all X ′ ⊆ Y such that X ′|A+ = Y |A+ , i.e.,
(X ′, Y ) |= ψ for all X ′ under consideration. Finally, let ψ be of the form ψ1 → ⊥. Then, ψ1 is factual and
of connective nesting depth depth n − 1. If (Y, Y ) |= ψ, then Y |= ψ, hence Y 6|= ψ1, i.e., (Y, Y ) 6|= ψ1

and by Case (d) in the proof of Proposition 4, the same holds for any (X ′, Y ) such that X ′ ⊆ Y . Thus,
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in particular for X ′ ⊆ Y such that X ′|A+ = Y |A+ , it follows that (X ′, Y ) 6|= ψ1. Moreover, Y |= ψ,
and therefore (X ′, Y ) |= ψ → ⊥, for all X ′ ⊆ Y such that X ′|A+ = Y |A+ . This concludes the inductive
argument and proves the claim for factual formulas over A+ of arbitrary connective nesting.

Concerning the claim of the proposition, since (Y, Y ) |= Γ implies (Y, Y ) |= φ and (Y, Y ) |= ψ,
for every A+-A−-formula φ in Γ and every factual formula ψ in Γ, we conclude that (X ′, Y ) |= φ and
(X ′, Y ) |= ψ, for all X ′ ⊆ Y such that X ′|A+ = Y |A+ . This proves (X ′, Y ) |= Γ, for all X ′ under
consideration. 2

Having established these properties of A+-A−-theories, we can state respective closure conditions for
HT-interpretations referring to countermodels, or which we consider more convenient here, referring to
equivalence interpretations.

Definition 8 Given a propositional theory Γ over L, sets of propositional variables A+ ⊆ L′, A− ⊆ L′,
L′ ⊇ L, and an HT-interpretation (X,Y ), we say that

• (Y, Y ) is A+-total iff (Y |A+ , Y ) is closed in Es(Γ);

• (X,Y ) is A+-closed in Es(Γ) iff (X ′, Y ) ∈ Es(Γ), for all X ′ ⊆ Y such that X|A+ ⊆ X ′|A+ and
X ′|A− ⊆ X|A− .

With these concepts, a semantic characterization of relativized hyperequivalence for propositional theo-
ries can be established by means of the following characteristic equivalence interpretations.

Definition 9 An HT-interpretation (X,Y ) is an HT-hyperequivalence interpretation wrt. A+ and A− of
a propositional theory Γ iff (Y, Y ) is A+-total and there exists an HT-interpretation (X ′, Y ) such that
X = X ′|A+∪A− and (X ′, Y ) is A+-closed in Es(Γ).
The set of HT-hyperequivalence interpretations wrt. A+ and A− of a propositional theory Γ is denoted by
EA

+

A− (Γ).

This definition intuitively generalizes the characterization of [38] for the logic programming setting to
propositional theories. Note however, that rather than resorting to HT-models and a maximality criterion,
the above definition refers to equivalence interpretations (i.e., HT-countermodels in case of non-totality)
and respective closure conditions. As in the case of uniform equivalence, this not only simplifies the defi-
nition, but also avoids difficulties in infinite settings. The next result establishes that HT-hyperequivalence
interpretations precisely characterize relativized hyperequivalence.

Theorem 4 Two propositional theories Γ1,Γ2 are relativized hyperequivalent wrt. A+ and A− if and only
if they coincide on their HT-hyperequivalence interpretations wrt. A+ and A−, symbolically Γ1

A+

A−≡ Γ2 iff
EA

+

A− (Γ1) = EA
+

A− (Γ2).

Proof. In the following, we will use the following notational simplification: For any set of atoms X , we
write X+ for X|A+ , and X− for X|A− .

For the only-if direction suppose Γ1
A+

A−≡ Γ2 and towards a contradiction assume that EA
+

A− (Γ1) 6=
EA

+

A− (Γ2). W.l.o.g. let (X,Y ) ∈ EA
+

A− (Γ1) and (X,Y ) 6∈ EA
+

A− (Γ2) (the other case is symmetric). Note
that (X,Y ) ∈ EA+

A− (Γ1) implies that (Y, Y ) is A+-total, i.e., (Y+, Y ) is closed in Es(Γ1). This implies that
(Y+, Y ) is in EA

+

A− (Γ1). Suppose (Y+, Y ) is not in EA
+

A− (Γ2). Then, either (Y, Y ) 6|= Γ2, or there exists
Y+ ⊆ X ′ ⊂ Y such that (X ′, Y ) |= Γ2. Let Γ = Y+ and observe that in both cases Y is not an answer set
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of Γ2∪Γ. In the former case because (Y, Y ) 6|= Γ2∪Γ, in the latter because X ′ ⊂ Y and (X ′, Y ) |= Γ2∪Γ
(note that (X ′, Y ) |= Γ by Proposition 5). However, Y is an answer set of Γ1∪Γ. Indeed, (Y+, Y ) is closed
in Es(Γ1). And for any X ′ ⊂ Y such that Y+ 6⊆ X ′

+, obviously (X ′, Y ) is a non-total HT-countermodel
of Γ. Consequently (Y, Y ) is total-closed in Es(Γ1 ∪ Γ). Because Γ is an A+-A−-theory, this contradicts
Γ1

A+

A−≡ Γ2. Thus, we conclude that (Y+, Y ) ∈ EA+

A− (Γ2). Note that therefore (Y, Y ) is A+-total for Γ2,
which implies that (Y |A, Y ) is in EA

+

A− (Γ2), hence X ⊂ Y |A and X+ ⊂ Y+. Consider the following theory
Γ = X+ ∪ {α→ β | α ∈ Y− \X−, β ∈ Y+ \X+}. We show that Y is an answer set of Γ1 ∪ Γ. Obviously,
Y |= Γ because X+ ⊂ Y+ and β ∈ Y for every β ∈ Y+ \ X+. Therefore, (Y, Y ) |= Γ1 ∪ Γ. Towards
a contradiction, assume that there exists X ′ ⊂ Y such that (X ′, Y ) |= Γ1 ∪ Γ. From (X ′, Y ) |= Γ, we
conclude that either X ′

+ = Y+, or that X+ ⊆ X ′
+ ⊂ Y+ and X ′

− ⊆ X−. In both cases, (X ′, Y ) 6|= Γ1.
In the former case because (Y, Y ) is A+-total, i.e., (Y+, Y ) is closed in Es(Γ1). In the latter case, it
is a consequence of the fact that (X,Y ) ∈ EA+

A− (Γ1), which implies (X ′, Y ) 6|= Γ1 by A+-closure. This
contradicts our assumption concerning the existence ofX ′ ⊂ Y such that (X ′, Y ) |= Γ1∪Γ, and proves that
Y is an answer set of Γ1 ∪Γ. However, Y is not an answer set of Γ2 ∪Γ. To wit, since (X,Y ) 6∈ EA+

A− (Γ2),
there exists X ′ ⊂ Y such that X+ ⊆ X ′

+, X ′
− ⊆ X−, and (X ′, Y ) |= Γ2. Moreover, (X ′, Y ) is an HT-

model of Γ. Observe that X ′
− ⊆ X− implies that (X ′, Y ) is an HT-model of every formula of the form

α→ β in Γ. Hence, (X ′, Y ) |= Γ2 ∪ Γ, and since X ′ ⊂ Y , it follows that Y is not an answer set of Γ2 ∪ Γ.
Note that Γ is an A+-A−-theory, which contradicts Γ1

A+

A−≡ Γ2. This proves EA
+

A− (Γ1) = EA
+

A− (Γ2).
For the if direction, supposeEA

+

A− (Γ1) = EA
+

A− (Γ2) and towards a contradiction assume that Γ1
A+

A− 6≡ Γ2.
W.l.o.g. let Y be an answer set of Γ1 ∪ Γ for some A+-A−-theory Γ, such that Y is not an answer set of
Γ2 ∪ Γ (the other case is symmetric). Then, (Y, Y ) is an equivalence interpretation of both, Γ1 and Γ, and
(Y+, Y ) is closed in Es(Γ1 ∪ Γ), which implies (taking Proposition 5 into account) that (Y, Y ) is A+-total
for Γ1 and (Y |A, Y ) is in EA

+

A− (Γ1). Therefore, (Y |A, Y ) is also in EA
+

A− (Γ2), with the consequence that
(Y, Y ) is in Es(Γ2), and thus (Y, Y ) ∈ Es(Γ2 ∪ Γ). Since by assumption Y is not an answer set of Γ2 ∪ Γ,
there exists X ⊂ Y such that (X,Y ) 6∈ Es(Γ2 ∪ Γ), i.e., (X,Y ) |= Γ2 ∪ Γ. Since (Y |A, Y ) ∈ EA+

A− (Γ2),
it holds that X|A ⊂ Y |A. Moreover, X+ ⊂ Y+ due to A+-totality of (Y, Y ). Clearly, (X|A, Y ) is not
in EA

+

A− (Γ2) as witnessed by (X,Y ) |= Γ2, and thus (X|A, Y ) 6∈ EA+

A− (Γ1) since EA
+

A− (Γ1) = EA
+

A− (Γ2).
From (X|A, Y ) 6∈ EA+

A− (Γ1), we conclude that there exists X ′ ⊆ Y , such that X+ ⊆ X ′
+, X ′

− ⊆ X−, and
(X ′, Y ) 6∈ Es(Γ1), i.e., X ′ ⊂ Y and (X ′, Y ) |= Γ1. By Proposition 4, (X,Y ) |= Γ implies (X ′, Y ) |= Γ.
Consequently, (X ′, Y ) |= Γ1 ∪ Γ, and since X ′ ⊂ Y , this contradicts our assumption that Y is an answer
set of Γ1 ∪ Γ, and proves Γ1

A+

A−≡ Γ2. 2

Like in the logic programming setting, the framework obtained by the consideration of relativized hy-
perequivalence interpretations provides a general unified characterization of semantic characterizations of
equivalence notions. In other words, the notions of equivalence considered in the previous subsection are ob-
tained as special cases. For this purpose, one needs to refer to the universal alphabet (respectively signature),
denoted by A, explicitely. Then, by definition, setting A+ = A− = ∅ amounts to answer-set equivalence,
A+ = A− = A yields strong equivalence, and A+ = A, A− = ∅ characterizes uniform equivalence. The
latter is not by definition but follows from two simple observations: every set of facts overA is aA-∅-theory,
and every A-∅-theory is a factual theory modulo formulas of the form ⊥ → φ, which are tautologies in HT.

Corollary 2 Given two propositional theories Γ1 and Γ2 over L ⊆ A, the following propositions are
equivalent for e ∈ {a, s, u}, A+(a) = A−(a) = ∅, A+(s) = A−(s) = A, A+(u) = A, and A−(u) = ∅:

(1) Γ1 ≡e Γ2; (2) Γ1
A+(e)
A−(e)

≡ Γ2.
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In these particular cases, relativized hyperequivalence interpretations coincide with the respective char-
acteristic sets of equivalence interpretations.

Proposition 6 Let Γ be a propositional theory over L ⊆ A, and let e ∈ {a, s, u}, A+(a) = A−(a) = ∅,
A+(s) = A−(s) = A, A+(u) = A, and A−(u) = ∅. Then,

Ee(Γ) = E
A+(e)
A−(e)

(Γ).

Proof. First consider answer-set equivalence, i.e., e = a and A+ = A− = ∅. Then for any HT-
interpretation (X,Y ), it holds that (X,Y ) ∈ EA

+

A− (Γ) = E
A+(e)
A−(e)

(Γ) iff (∅, Y ) is there-closed in Es(Γ)
and X = ∅. The former follows from the first condition in Definition 9 since Y |A+ = ∅, and the latter
from the second condition in Definition 9, i.e., from the existence of an X ′ such that X = X ′|A+ (since
X ′|∅ = ∅ for any X ′). Note that X = ∅ and (∅, Y ) there-closed in Es(Γ) are exactly the requirements for
(X,Y ) ∈ Ea(Γ). This proves (X,Y ) ∈ EA+

A− (Γ) iff (X,Y ) ∈ Ea(Γ).
Turning to strong equivalence, let e = s and A+ = A− = A. Then for any HT-interpretation (X,Y )

overA, it holds that (X,Y ) ∈ EA+

A− (Γ) = E
A+(e)
A−(e)

(Γ) iff (Y, Y ) in Es(Γ) and (X,Y ) in Es(Γ). The former
follows from the first condition in Definition 9 since Y |A = Y , and the latter from the second condition in
Definition 9, i.e., from the existence of anX ′ such thatX = X ′|A (which impliesX ′ = X sinceX ′|A = X ′

for any X ′) and such that X ′′ ∈ Es(Γ) for all X ′′ ⊆ Y where X ′|A = X ′′|A (i.e., for X ′′ = X ′ = X).
Note that (X,Y ) ∈ Es(Γ) implies (Y, Y ) ∈ Es(Γ). Consequently, it holds that (X,Y ) ∈ EA

+

A− (Γ) iff
(X,Y ) ∈ Es(Γ).

Eventually consider uniform equivalence, i.e., e = u, A+ = A, and A− = ∅. In this case, (X,Y ) ∈
EA

+

A− (Γ) = E
A+(e)
A−(e)

(Γ), for any HT-interpretation (X,Y ) over A, iff (Y, Y ) in Es(Γ) and (X ′, Y ) in Es(Γ)
for all X ⊆ X ′′ ⊆ Y . The former follows from the first condition in Definition 9 since Y |A = Y , and
the latter from the second condition in Definition 9, i.e., from the existence of an X ′ such that X = X ′|A
(which implies X ′ = X since X ′|A = X ′ for any X ′) and such that X ′′ ∈ Es(Γ) for all X ′′ ⊆ Y where
X ′|A ⊆ X ′′|A (i.e., for X ′ = X ⊆ X ′′ ⊆ Y ). Note that this are exactly the requirements for (X,Y )
being closed in Es(Γ), thus for (X,Y ) ∈ Eu(Γ). Therefore, (X,Y ) ∈ EA+

A− (Γ) iff (X,Y ) ∈ Eu(Γ), which
proves the claim. 2

Moreover, a setting where A+ = A− is termed relativized strong equivalence, and A− = ∅ denotes
relativized uniform equivalence. A further remark is in place, however. While we proved for uniform
equivalence of propositional theories, that it is indifferent to whether we restrict additions (contexts) to
sets of atoms or whether we allow for factual theories, A-∅-theories syntactically do not encompass factual
theories, since negation, i.e., formulas of the form a→ ⊥, are not permitted. One question that this raises is:
would allowing factual theories as contexts make a difference for relativized notions of uniform equivalence?

The answer is by inspection of the proof of Theorem 4 in connection with Proposition 4 and Proposi-
tion 5. Recall that the propositions have been stated for extended A+-A−-theories. Therefore, the only-if
direction of Theorem 4 also holds for extended A+-A−-theories. Since the if direction just referred to
A+-A−-theories (which, trivially, are extended A+-A−-theories too), we obtain the following.

Corollary 3 Two propositional theories Γ1,Γ2 are relativized hyperequivalent wrt. extendedA+-A−-theories
if and only if they coincide on their HT-hyperequivalence interpretations wrt. A+ and A−.

Thus, also relativized uniform equivalence is independent of whether sets of atoms or factual theories are
permitted as contexts. More generally, for any notion of relativized hyperequivalence, factual theories over
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A+ can be allowed in the context without altering the notion of equivalence captured. This holds essentially
due to Proposition 4, which generalizes Lemma 1 (Lemma 5 in [29]) in this respect.

A final result establishes, that the notion of relativized hyperequivalence which has been introduced in
this section is a proper generalization of the respective logic programming version to the more general case
of propositional theories under answer-set semantics. It is a straight forward consequence of Theorem 4,
since the A+-A−-theories in the proof of the if direction consist of formulas corresponding to rules with
heads restricted to positive atoms from A+ and body atoms from A−. Let us say that two propositional
programs Π1 and Π2 are relativized hyperequivalent wrt. A+ and A− in the logic programming sense, in
symbols Π1

A+

A−≡ lp Π2, if and only if Π1 ∪ Π ≡a Π2 ∪ Π for any program Π, such that H−(r) = ∅,
H+(r) ⊆ A+, and B(r) ⊆ A−, for all r ∈ Π.

Corollary 4 Given two programs Π1 and Π2, let A+ and A− be sets of propositional variables. Then,
Π1

A+

A−≡ lp Π2 if and only if Π1
A+

A−≡ Π2.

4 Generalization to First-Order Theories

Since the characterizations, in particular of uniform equivalence, presented in the previous section capture
also infinite theories, they pave the way for generalizing this notion of equivalence to non-ground settings
without any finiteness restrictions. In this section we study first-order theories.

As first-order theories we consider sets of sentences (closed formulas) of a first-order signature L =
〈F ,P〉 in the sense of classical first-order logic. Hence, F and P are pairwise disjoint sets of function
symbols and predicate symbols with an associated arity, respectively. Elements of F with arity 0 are called
object constants. A 0-ary predicate symbol is a propositional constant. Formulas are constructed as usual
and variable-free formulas or theories are called ground. A sentence is said to be factual if it is built using
connectives ∧, ∨, ∃, ∀, and ¬ (i.e., implications of the form φ → ⊥), only. A theory Γ is factual if every
sentence of Γ has this property. The abbreviations introduced for propositional formulas carry over: φ ≡ ψ
for (φ→ ψ) ∧ (ψ → φ); ¬φ for φ→ ⊥; and > for ⊥ → ⊥.

4.1 Static Quantified Logic of Here-and-There

Semantically we refer to the static quantified version of here-and-there with decidable equality as captured
axiomatically by the system QHTs

= [30, 24, 31]. It is characterized by Kripke models of two worlds with
a common universe (hence static) that interpret function symbols in the same way.

More formally, consider a first-order interpretation I of a first-order signature L on a universe U . We
denote by LI the extension of L obtained by adding pairwise distinct names cε as object constants for the
objects in the universe, i.e., for each ε ∈ U . We write CU for the set {cε | ε ∈ U} and identify I with its
extension to LI given by I(cε) = ε. Furthermore, let tI denote the value assigned by I to a ground term t (of
signature LI ), and let LF denote the restriction of L to function symbols (thus including object constants).
By BP,CU we denote the set of atomic formulas built using predicates from P and constants CU .

We represent a first-order interpretation I of L on U as a pair 〈I|LF , I|CU 〉,3 where I|LF is the restriction
of I on function symbols, and I|CU is the set of atomic formulas from BP,CU which are satisfied in I .
Correspondingly, classical satisfaction of a sentence φ by a first-order interpretation 〈I|LF , I|CU 〉 is denoted
by 〈I|LF , I|CU 〉 |= φ. We also define a subset relation for first-order interpretations I1, I2 of L on U (ie.,
over the same domain) by I1 ⊆ I2 if I1|LF = I2|LF and I1|CU ⊆ I2|CU .

3We use angle brackets to distinguish from HT-interpretations.
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A QHT-interpretation of L is a triple 〈I, J,K〉, such that (i) I is an interpretation of LF on U , and (ii)
J ⊆ K ⊆ BP,CU .

The satisfaction of a sentence φ of signature LI by a QHT-interpretationM = 〈I, J,K〉 (a QHT-model)
is defined as:

1. M |= p(t1, . . . , tn) if p(ctI1 , . . . , ctIn) ∈ J ;

2. M |= t1 = t2 if tI1 = tI2;

3. M 6|= ⊥;

4. M |= φ ∧ ψ if M |= φ and M |= ψ,

5. M |= φ ∨ ψ, if M |= φ or M |= ψ,

6. M |= φ→ ψ if (i) M 6|= φ or M |= ψ, and (ii) 〈I,K〉 |= φ→ ψ4;

7. M |= ∀xφ(x) if M |= φ(cε) and 〈I,K〉 |= φ(cε) for all ε ∈ U ;

8. M |= ∃xφ(x) if M |= φ(cε) for some ε ∈ U ;.

A QHT-interpretation M = 〈I, J,K〉 is called a QHT-countermodel of a theory Γ iff M 6|= Γ; it is
called total if J = K. A total QHT-interpretation M = 〈I,K,K〉 is called a quantified equilibrium model
(QEL-model) of a theory Γ, iff M |= Γ and M ′ 6|= Γ, for all QHT-interpretations M ′ = 〈I, J,K〉 such that
J ⊂ K. A first-order interpretation 〈I,K〉 is an answer set of Γ iff M = 〈I,K,K〉 is a QEL-model of a
theory Γ.

In analogy to the propositional case, we will use the following simple properties.

Lemma 3 If 〈I, J,K〉 |= φ then 〈I,K,K〉 |= φ.

Lemma 4 〈I, J,K〉 |= ¬φ iff 〈I,K〉 |= ¬φ.

4.2 Characterizing Equivalence by QHT-countermodels

We aim at generalizing uniform equivalence for first-order theories, in its most liberal form, which means
wrt. factual theories. For this purpose, we first lift Lemma 1.

Lemma 5 Let φ be a factual sentence. If 〈I, J,K〉 |= φ and J ⊆ J ′ ⊆ K, then 〈I, J ′,K〉 |= φ.

Proof. The proof is by induction on the formula structure of φ. Let M = 〈I, J,K〉, M |= φ, and
M ′ = 〈I, J ′,K〉 for some J ⊆ J ′ ⊆ K. For the base case, consider an atomic sentence φ. If φ is of the
form p(t1, . . . , tn), then p(ctI1 , . . . , ctIn) ∈ J because M |= φ. By the fact that J ′ ⊇ J we conclude that
p(ctI1 , . . . , ctIn) ∈ J ′ and hence M ′ |= φ. If φ is of the form t1 = t2 then M |= φ implies tI1 = tI2, and thus
M ′ |= φ. Note also that M |= φ implies φ 6= ⊥. This proves the claim for atomic formulas.

For the induction step, assume that M |= φ implies M ′ |= φ, for any sentence of depth n − 1, and
let φ be a sentence of depth n. We show that M |= φ implies M ′ |= φ. Suppose φ is the conjunction or
disjunction of two sentences φ1 and φ2. Then φ1 and φ2 are sentences of depth n − 1. Hence, M |= φ1

4That is, 〈I,K〉 satisfies φ→ ψ classically.
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implies M ′ |= φ1, and the same for φ2. Therefore, if M models both or one of the sentences then so does
M ′, which implies M |= φ implies M ′ |= φ if φ is the conjunction or disjunction of two sentences. As
for implication, since φ is factual we just need to consider the case where φ is of the form φ1 → ⊥, i.e.,
¬φ1. By Lemma 4, M |= ¬φ1 iff 〈I,K〉 |= ¬φ1 iff M ′ |= ¬φ1. This proves M |= φ implies M ′ |= φ if
φ is an implication with ⊥ as its consequence. Eventually, consider a quantified sentence φ, i.e., φ is of the
form ∀xφ1(x) or ∃xφ1(x). In this case, M |= φ implies M |= φ1(cε) and 〈I,K〉 |= φ1(cε), for all ε ∈ U ,
respectively M |= φ1(cε), for some ε ∈ U , in case of existential quantification. Since each of the sentences
φ1(cε) is of depth n − 1, the same is true for M ′ by assumption, i.e., M ′ |= φ1(cε) and 〈I,K〉 |= φ1(cε),
for all ε ∈ U , respectively M ′ |= φ1(cε), for some ε ∈ U . It follows that M |= φ implies M ′ |= φ also for
quantified sentences φ of depth n, and therefore, for any sentence φ of depth n. This proves the claim. 2

The different notions of closure naturally extend to (sets of) QHT-interpretations. In particular, a total
QHT-interpretation M = 〈I,K,K〉 is called total-closed in a set S of QHT-interpretations if 〈I, J,K〉 ∈ S
for every J ⊆ K. A QHT-interpretation 〈I, J,K〉 is closed in a set S of QHT-interpretations if 〈I, J ′,K〉 ∈
S for every J ⊆ J ′ ⊆ K, and it is there-closed in S if 〈I,K,K〉 6∈ S and 〈I, J ′,K〉 ∈ S for every
J ⊆ J ′ ⊂ K.

The first main result lifts the characterization of uniform equivalence for theories by HT-countermodels
to the first-order case.

Theorem 5 Two first-order theories are uniformly equivalent iff they have the same sets of there-closed
QHT-countermodels.

Proof. For the only-if direction, assume that two theories, Γ1 and Γ2, are uniformly equivalent. We first
show that they coincide on total QHT-models. Let 〈I,K,K〉 be a total QHT-model of Γ1 then it is also a
total QHT-model of Γ1∪K over L′ = 〈F ∪UC ,P〉. Furthermore, for any proper subset J ofK, it holds that
〈I, J,K〉 6|= K, since there exists some ground atomic formula p(c1, . . . , cn) ∈ K, ci ∈ UC for 1 ≤ i ≤ n,
such that p(c1, . . . , cn) 6∈ J . Therefore, 〈I, J,K〉 6|= Γ1 ∪ K, and 〈I,K,K〉 is a QEL-model of Γ1 ∪ K.
Consequently, 〈I,K〉 is an answer set of Γ1∪K. By the hypothesis that the theories are uniformly equivalent
and since K is factual, we infer that 〈I,K〉 is an answer set of Γ2 ∪K, i.e., 〈I,K,K〉 is a QEL-model of
Γ2 ∪K. Thus, 〈I,K,K〉 is a total QHT-model of Γ2. The same argument can be symmetrically applied to
any total QHT-model of Γ2. This proves that both theories coincide on total models, and therefore also on
total QHT-countermodels.

Since a total QHT-interpretation 〈I,K,K〉 is there-closed in Cs(Γ) if 〈I,K,K〉 6∈ Cs(Γ), i.e., if
〈I,K,K〉 is a QHT-model of Γ, this proves that Γ1 and Γ2 coincide on total QHT-interpretations that
are there-closed in Cs(Γ1), respectively in Cs(Γ2).

To prove our claim, it remains to show that Γ1 and Γ2 coincide on non-total there-closed QHT-countermodels
〈I, J,K〉, i.e., such that 〈I,K,K〉 is a QHT-model of both theories. Consider such a there-closed QHT-
countermodel of Γ1. Then, 〈I,K,K〉 is a total QHT-model of Γ1 ∪ J over L′ = 〈F ∪ UC ,P〉, and no
J ′ ⊂ K exists such that 〈I, J ′,K〉 |= Γ1 ∪ J , either because it is a QHT-countermodel of Γ1 (in case
J ⊆ J ′ ⊂ K) or of J (in case J ′ ⊂ J). Thus, 〈I,K〉 is an answer set of Γ1 ∪ J and, by hypothesis since J
is factual, it is also an answer set of Γ2 ∪J . The latter implies for all J ⊆ J ′ ⊂ K that 〈I, J ′,K〉 6|= Γ2 ∪J .
All these QHT-interpretations are obviously QHT-models of J . Therefore we conclude that they all are
QHT-countermodels of Γ2. For this reason, 〈I, J,K〉 is a there-closed QHT-countermodel of Γ2. Again by
symmetric arguments, we establish the same for any there-closed QHT-countermodel 〈I, J,K〉 of Γ2, such
that 〈I,K,K〉 is a common total QHT-model. This proves that Γ1 and Γ2 have the same sets of there-closed
QHT-countermodels.
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For the if direction, assume that two theories, Γ1 and Γ2, have the same sets of there-closed QHT-
countermodels. This implies that they have the same total QHT-models (because they are there-closed).
Consider any factual theory Γ′ such that 〈I,K〉 is an answer set of Γ1∪Γ′. We show that 〈I,K〉 is an answer
set of Γ2 ∪ Γ′ as well. Clearly, 〈I,K,K〉 |= Γ1 ∪ Γ′ implies 〈I,K,K〉 |= Γ′ and therefore 〈I,K,K〉 |=
Γ2 ∪ Γ′. Consider any J ⊂ K. Since 〈I,K〉 is an answer set of Γ1 ∪ Γ′, it holds that 〈I, J,K〉 6|= Γ1 ∪ Γ′.
We show that 〈I, J,K〉 6|= Γ2 ∪ Γ′ follows. If 〈I, J,K〉 6|= Γ′ this is trivial. In particular this is the
case if 〈I, J,K〉 |= Γ1. So let us consider the case where 〈I, J,K〉 6|= Γ1 and 〈I, J,K〉 |= Γ′. By
Lemma 5 we conclude from the latter that, for any J ⊆ J ′ ⊂ K, it holds that 〈I, J ′,K〉 |= Γ′. Therefore,
〈I, J ′,K〉 6|= Γ1, has to hold as well. This implies that 〈I, J,K〉 is a there-closed QHT-countermodel
of Γ1. By hypothesis, 〈I, J,K〉 also is a there-closed QHT-countermodel of Γ2, i.e., 〈I, J,K〉 6|= Γ2.
Consequently, 〈I, J,K〉 6|= Γ2 ∪ Γ′. Since this argument applies to any J ⊂ K, 〈I,K,K〉 is a QEL-model
of Γ2 ∪Γ′, i.e., 〈I,K〉 is an answer set of Γ2 ∪Γ′. The same argument with Γ1 and Γ2 interchanged, proves
that 〈I,K〉 is an answer set of Γ1 ∪ Γ′ if it is an answer set of Γ2 ∪ Γ′. Therfore, the answer sets of Γ1 ∪ Γ′

and Γ2 ∪ Γ′ coincide for any factual theory Γ′, i.e., Γ1 and Γ2 are uniformly equivalent. 2

We next turn to an alternative characterization by a mixture of QHT-models and QHT-countermodels as
in the propositional case. A QHT-countermodel 〈I, J,K〉 of a theory Γ is called QHT here-countermodel
of Γ if 〈I,K〉 |= Γ. A QHT-interpretation 〈I, J,K〉 is an QHT equivalence-interpretation of a theory Γ, if
it is a total QHT-model of Γ or a QHT here-countermodel of Γ. In slight abuse of notation, we reuse the
notation Se, S ∈ {C,E} and e ∈ {c, a, s, u}, for respective sets of QHT-interpretations, and arrive at the
following formal result:

Theorem 6 Two theories coincide on their QHT-countermodels iff they have the same QHT equivalence-
interpretations, in symbols Cs(Γ1) = Cs(Γ2) iff Es(Γ1) = Es(Γ2).

Proof. For the only-if direction, assume that two theories Γ1, Γ2 have the same sets of QHT-countermodels.
This implies that they have the same QHT here-countermodels. Furthermore, since the total QHT-countermodels
are equal, they also coincide on total QHT-models. Consequently, Γ1 and Γ2 have the same QHT equivalence-
interpretations.

For the if direction, assume that two theories, Γ1 and Γ2, coincide on their QHT equivalence-interpretations.
Then they have the same total QHT-models and hence the same total QHT-countermodels. Since the
total QHT-countermodels of every theory are total-closed in the set of QHT-countermodels, the sets of
QHT-countermodels coincide on all QHT-interpretations 〈I, J,K〉 such that 〈I,K,K〉 is a (total) QHT-
countermodel. All remaining QHT-countermodels are QHT here-countermodels and therefore coincide by
hypothesis and the definition of QHT equivalence-interpretations. This proves the claim. 2

As a consequence of these two main results, we obtain an elegant, unified formal characterization of the
different notions of equivalence for first-order theories under generalized answer-set semantics.

Corollary 5 Given two first-order theories Γ1 and Γ2, the following propositions are equivalent for e ∈
{c, a, s, u}: Γ1 ≡e Γ2; Ce(Γ1) = Ce(Γ2); Ee(Γ1) = Ee(Γ2).

Moreover, lifting the characterization of HT-countermodels provided in Proposition 2 to the first-order
setting, allows us to prove a property, which simplifies the treatment of extended signatures.

Proposition 7 Let M be a QHT-interpretation over L on U . Then, M ∈ Es(Γ) for a theory Γ iff M |=
Γφ(M) for some φ ∈ Γ, where Γφ(M) = {¬¬ψ | ψ ∈ Γ} ∪ {φ→ (¬¬a→ a) | a ∈ BP,CU}.
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Proof. We first show that for a QHT-interpretation M = 〈I, J,K〉 over U and M |= {¬¬a → a | a ∈
BP,CU} iff J = K. M |= ¬¬a → a for all a ∈ BP,CU iff, for every a ∈ BP,CU , M 6|= ¬¬a or M |= a, and
〈I,K〉 |= ¬¬a→ a. The latter is a tautology, and M 6|= ¬¬a iff a 6∈ K. We conclude that M |= ¬¬a→ a
iff M |= a for all a ∈ K, i.e., iff J = K.

For the only-if direction, assume that M |= Γφ(M) for some φ ∈ Γ. Then, M |= ¬¬ψ for all ψ ∈ Γ,
which implies 〈I,K〉 |= ψ for all ψ ∈ Γ. Consequently, M is a QHT equivalence-interpretation of Γ if
J = K. If J ⊂ K, we conclude that M does not satisfy ¬¬a → a for some a ∈ BP,CU as shown above.
However, M |= Γφ(M) for some φ ∈ Γ, hence M |= φ → (¬¬a → a) for all a ∈ BP,CU . Therefore,
M 6|= φ holds for some φ ∈ Γ. This proves, since J ⊂ K, that M is a QHT here-countermodel of Γ, and
thus a QHT equivalence-interpretation of Γ.

For the if direction, assume M is a QHT equivalence-interpretation of Γ. Then 〈I,K〉 |= ψ for all
ψ ∈ Γ and therefore M |= ¬¬ψ for all ψ ∈ Γ. If J = K, then as shown above, M also satisfies ¬¬a→ a
for all a ∈ BP,CU . In this case, M |= Γφ(M) for all φ ∈ Γ. We continue with the case where J ⊂ K.
Then, M is a QHT here-countermodel of Γ, i.e., there exists φ ∈ Γ such that M 6|= φ. This implies that
M |= φ→ (¬¬a→ a) for all a ∈ BP,CU , i.e., M |= Γφ(M). This proves the claim for J ⊂ K. 2

For QHT-models it is known that M |= Γ implies M |L |= Γ (cf. e.g., Proposition 3 in [5]), hence
M |L 6|= Γ implies M 6|= Γ, i.e., M |L ∈ Cs(Γ) implies M ∈ Cs(Γ). The converse direction holds for
totality preserving restrictions.

Theorem 7 Let Γ be a theory over L, let L′ ⊃ L, and let M a QHT-interpretation over L′ such that M |L
is totality preserving. Then, M ∈ Cs(Γ) implies M |L ∈ Cs(Γ).

Proof. Let M = 〈I ′, J ′,K ′〉, M |L = 〈I, J,K〉, and assume M 6|= Γ. First, suppose 〈I ′,K ′,K ′〉 6|= Γ,
i.e., there exists a sentence φ ∈ Γ, such that 〈I ′,K ′,K ′〉 6|= φ. We show that 〈I,K,K〉 6|= φ by induction
on the formula structure of φ.

Let us denote 〈I,K,K〉 by N and 〈I ′,K ′,K ′〉 by N ′. For the base case, consider an atomic sentence
φ. If φ is of the form p(t1, . . . , tn), then p(c

tI
′

1
, . . . , ctI′n

) 6∈ K ′ because N ′ 6|= φ. Since t1, . . . , tn are terms
in L, it holds that p(c

tI
′

1
, . . . , ctI′n

) = p(ctI1 , . . . , ctIn), and by the fact fact that K ⊆ K ′ we conclude that

p(ctI1 , . . . , ctIn) 6∈ K and hence N 6|= φ. If φ is of the form t1 = t2 then N ′ 6|= φ implies tI
′

1 6= tI
′

2 , and since
t1, t2 are terms in L, it follows that tI1 6= tI2 and thus N 6|= φ. If φ is ⊥ then N ′ 6|= φ and N 6|= φ. This
proves the claim for atomic formulas.

For the induction step, assume thatN ′ 6|= φ impliesN 6|= φ, for any sentence of depth n−1, and let φ be
a sentence of depth n. We show that M |L |= φ implies M |= φ. Suppose φ is the conjunction or disjunction
of two sentences φ1 and φ2. Then φ1 and φ2 are sentences of depth n−1. Hence,N ′ 6|= φ1 impliesN 6|= φ1,
and the same for φ2. Therefore, if N ′ is a QHT-countermodel of one or both of the sentences then so is
N , which implies N ′ 6|= φ implies N 6|= φ if φ is the conjunction or disjunction of two sentences. As for
implication, let φ be of the form φ1 → φ2. In this case, N ′ 6|= φ implies N ′ |= φ1 and N ′ 6|= φ2. Therefore,
N |= φ1 by the usual sub-model property for QHT-models, and N 6|= φ2 by assumption. Hence, N 6|= φ.
Eventually, consider a quantified sentence φ, i.e., φ is of the form ∀xφ1(x) or ∃xφ1(x). In this case,N ′ 6|= φ
implies N ′ 6|= φ1(cε) for some, respectively all, ε ∈ U . (Note that 〈I ′,K ′〉 6|= φ1(cε) iff N ′ 6|= φ1(cε).)
Since each of the sentences φ1(cε) is of depth n − 1, the same is true for N by assumption. It follows that
N ′ 6|= φ implies N 6|= φ also for quantified sentences φ of depth n, and therefore, for any sentence φ of
depth n. This concludes the inductive argument and proves the claim for total QHT-countermodels.

Moreover, because QHT-countermodels are total-closed, this proves the claim for any QHT-countermodel
M = 〈I ′, J ′,K ′〉, such that 〈I ′,K ′,K ′〉 6|= Γ.
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We continue with the case that 〈I ′,K ′,K ′〉 |= Γ. Then J ′ ⊂ K ′ holds, which means that M is a QHT
equivalence-interpretation of Γ. Therefore, M 6|= φ for some φ ∈ Γ. Additionally, M |= ¬¬ψ for all
ψ ∈ Γ (recall that 〈I ′,K ′,K ′〉 |= Γ, thus 〈I ′,K ′〉 |= Γ). By construction this implies M |= Γφ(M |L).
Therefore, M |L |= Γφ(M |L), i.e., M |L is a QHT equivalence-interpretation of Γ. Since the restriction is
totality preserving, M |L is non-total. This proves M |L 6|= Γ. 2

Note that this property carries over to QHT-models, i.e., M |L |= Γ implies M |= Γ, if M |L is the
restriction of M to L and this restriction is totality preserving. Otherwise, by the above result M 6|= Γ
would imply M |L 6|= Γ. We remark that in [13] it is erroneously stated informally that this property does
not hold for QHT-models, however the counter-example given there is flawed (Example 5 in [13]).

4.3 Relativized Hyperequivalence for First-Order Theories

In this section we extend the notion of relativized hyperequivalence to first-order theories. For this purpose,
we distinguish positive and negative occurrences of predicates in sentences. More precisely, the occurrence
of a predicate p in a sentence φ is called positive if φ is implication free, if p occurs in the consequent of an
implication in φ, or if φ is of the form (φ1 → φ2) → φ3 and p occurs in φ1. An occurrence of p is called
negative if p occurs in the antecedent of an implication. The notion of positive and negative occurrence is
again extended to (sub-)sentences in the obvious way.

Let Γ be a first-order theory over L = 〈F , L+ ∪ L−〉, where L+ and L− are sets of predicate symbols
with an associated arity, such that if a predicate symbol p occurs in both L+ and L−, then it is also associated
the same arity. We say that Γ is an L+-L−-theory if its sentences have positive occurrences of predicates
from L+, and negative occurrences of predicates from L−, only. As in the propositional case, ⊥ is allowed
to appear positively and negatively, and the same holds for equality in the first-order case. Moreover, an
L+-L−-theory is called extended, if additionally factual formulas over L+ are permitted.

Definition 10 Two first-order theories Γ1,Γ2 over L are called relativized hyperequivalent wrt. L+ and
L−, symbolically Γ1

L+

L−≡ Γ2, iff for any L+-L−-theory Γ over L′ ⊇ L, Γ1 ∪ Γ and Γ2 ∪ Γ are answer-set
equivalent.

The properties proven for HT-interpretations and extended A+-A−-theories in the propositional case,
carry over to QHT-interpretations and extended L+-L−-theories in a straight forward manner.

Proposition 8 Consider an extended first-order L+-L−-theory Γ, and a QHT-interpretation 〈I, J,K〉.
Then, 〈I, J,K〉 |= Γ implies 〈I, J ′,K〉 |= Γ, for all J ′ ⊆ K such that J |L+ ⊆ J ′|L+ and J ′|L− ⊆ J |L− .

Proof. Consider any L+-L−-sentence φ in Γ, i.e., any sentence that has positive occurrences of atoms
from L+, and negative occurrences of atoms from L−, only. We show by induction on the formula structure
of φ, that for all J ′ ⊆ K such that J |L+ ⊆ J ′|L+ and J ′|L− ⊆ J |L− :

(a) 〈I, J,K〉 |= φ implies 〈I, J ′,K〉 |= φ if φ is a positive occurrence; and

(b) 〈I, J,K〉 6|= φ implies 〈I, J ′,K〉 6|= φ if φ is a negative occurrence.

For the base case, consider any atomic sentence φ, and suppose first that (a) the occurrence of φ is a
positive occurrence. Then, 〈I, J,K〉 |= φ implies that φ is not ⊥, and thus φ is either of the form t1 = t2,
or of the form p(t1, . . . , tn) such that p ∈ L+ and p(ctI1 , . . . , ctIn) ∈ J . If φ is of the form t1 = t2, then
〈I, J,K〉 |= φ implies tI1 = tI2, hence 〈I, J ′,K〉 |= φ, for any J ′ under consideration. If φ is of the form
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p(t1, . . . , tn), since J |L+ ⊆ J ′|L+ for all J ′ under consideration, we conclude that p(ctI1 , . . . , ctIn) ∈ J ′.
Hence, 〈I, J ′,K〉 |= φ. Suppose (b) φ is a negative occurrence. If 〈I, J,K〉 6|= φ, then either φ is ⊥, and
〈I, J ′,K〉 6|= φ follows trivially. Otherwise, φ is either of the form t1 = t2, or of the form p(t1, . . . , tn)
such that p ∈ L− and p(ctI1 , . . . , ctIn) 6∈ J . If φ is of the form t1 = t2, then 〈I, J,K〉 6|= φ implies tI1 6= tI2,
hence 〈I, J ′,K〉 6|= φ, for any J ′ under consideration. If φ is of the form p(t1, . . . , tn), since J ′|L− ⊆ J |L−
for all J ′ under consideration, we conclude that p(ctI1 , . . . , ctIn) 6∈ J ′, i.e., 〈I, J ′,K〉 6|= φ. This proves (a)
and (b) for atomic sentences.

For the induction step, assume that (a) and (b) hold for any L+-L−-sentence of connective nesting depth
n − 1, and let φ be a sentence of connective nesting depth n. Consider the case where φ is of the form
φ1 ∧ φ2, respectively φ1 ∨ φ2. If φ is a positive occurrence (a), then so are φ1 and φ2, both of connective
nesting depth depth n − 1. From 〈I, J,K〉 |= φ we conclude 〈I, J,K〉 |= φ1 and (or) 〈I, J,K〉 |= φ2.
The induction hypothesis applies, proving 〈I, J ′,K〉 |= φ1 and (or) 〈I, J ′,K〉 |= φ2, for all J ′ ⊆ K such
that J |L+ ⊆ J ′|L+ and J ′|L− ⊆ J |L− , i.e., 〈I, J ′,K〉 |= φ for all J ′ under consideration. In case φ is a
negative occurrence (b), then so are φ1 and φ2, both of connective nesting depth n−1. Then, 〈I, J,K〉 6|= φ
implies 〈I, J,K〉 |= φ1 or (and) 〈I, J,K〉 |= φ2, and the same holds for any 〈I, J ′,K〉 under consideration
by induction hypothesis. This proves 〈I, J,K〉 6|= φ implies 〈I, J ′,K〉 |= φ.

Next, let φ be of the form φ1 → φ2. Then, independent of whether φ occurs positively or negatively,
φ1 is a negative occurrence and φ2 is a positive occurrence, both of connective nesting depth n − 1. First,
suppose that φ is a positive occurrence (a), as well as that 〈I, J,K〉 |= φ. Towards a contradiction assume
that there exists J ′ ⊆ K such that J |L+ ⊆ J ′|L+ , J ′|L− ⊆ J |L− , and 〈I, J ′,K〉 6|= φ. Since 〈I, J,K〉 |= φ
implies that 〈I,K〉 |= φ, we conclude that both, 〈I, J ′,K〉 |= φ1 and 〈I, J ′,K〉 6|= φ2, hold. From the
latter, since φ2 is a positive occurrence of connective nesting depth n − 1, it follows that 〈I, J,K〉 6|= φ2

(otherwise by induction hypothesis (a) 〈I, J ′,K〉 |= φ2). This implies 〈I, J,K〉 6|= φ1 since 〈I, J,K〉 |= φ.
However, φ1 is a negative occurrence of connective nesting depth n−1, thus by induction hypothesis (b) we
conclude that 〈I, J ′,K〉 6|= φ1, a contradiction. Therefore, 〈I, J ′,K〉 |= φ for all J ′ under consideration,
which proves (a). For (b), let φ be a negative occurrence and suppose 〈I, J,K〉 6|= φ. If 〈I,K〉 6|= φ, then
also 〈I, J ′,K〉 6|= φ for all J ′ under consideration. In case 〈I,K〉 |= φ, we conclude that 〈I, J,K〉 |= φ1

and 〈I, J,K〉 6|= φ2. Since φ is a negative occurrence, not only φ1 but also φ2 is a negative occurrence, both
of of connective nesting depth n− 1.

Therefore, by induction hypothesis (b) we conclude that 〈I, J ′,K〉 6|= φ2. Moreover, also because φ is
a negative occurrence, φ1 is a positive occurrence as well. Hence, by induction hypothesis (a) we conclude
〈I, J ′,K〉 |= φ1 from 〈I, J,K〉 |= φ1, viz. 〈I, J ′,K〉 6|= φ, for all J ′ under consideration.

Eventually, consider a quantified sentence φ, i.e., φ is of the form ∀xφ1(x) or ∃xφ1(x). If φ is a
positive occurrence (a), then so are the sentences φ1(cε), for all ε ∈ U , which are of connective nesting
depth n − 1. Then, 〈I, J,K〉 |= φ implies 〈I, J,K〉 |= φ1(cε) and 〈I,K〉 |= φ1(cε), for all ε ∈ U ,
respectively 〈I, J,K〉 |= φ1(cε), for some ε ∈ U . The induction hypothesis applies, proving for all J ′ under
consideration, that 〈I, J ′,K〉 |= φ1(cε) and 〈I,K〉 |= φ1(cε), for all ε ∈ U , respectively that 〈I, J ′,K〉 |=
φ1(cε), for some ε ∈ U . Therefore, 〈I, J ′,K〉 |= φ for all J ′ ⊆ K such that J |L+ ⊆ J ′|L+ and J ′|L− ⊆
J |L− . If φ is a negative occurrence (b), then so are the sentences φ1(cε), for all ε ∈ U , which are of
connective nesting depth n − 1. Assume 〈I, J,K〉 6|= φ. Then, 〈I, J,K〉 6|= φ1(cε) or 〈I,K〉 6|= φ1(cε),
for some ε ∈ U , respectively 〈I, J,K〉 6|= φ1(cε), for all ε ∈ U . The induction hypothesis applies, proving
for all J ′ under consideration, that 〈I, J ′,K〉 6|= φ1(cε) or 〈I,K〉 6|= φ1(cε), for some ε ∈ U , respectively
that 〈I, J ′,K〉 6|= φ1(cε), for all ε ∈ U . Therefore, 〈I, J ′,K〉 6|= φ for all J ′ ⊆ K such that J |L+ ⊆ J ′|L+

and J ′|L− ⊆ J |L− . This concludes the inductive argument and proves (a) and (b) for L+-L−-sentences of
arbitrary connective nesting.
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Next, we turn to factual sentences ψ in Γ, and prove by induction on the formula structure of ψ, that

(c) 〈I, J,K〉 |= ψ implies 〈I, J ′,K〉 |= ψ, for all J ′ ⊆ K such that J |L+ ⊆ J ′|L+ and J ′|L− ⊆ J |L− ; and

(d) 〈I,K,K〉 6|= ψ implies 〈I, J ′,K〉 6|= ψ, for all J ′ ⊆ K.

For the base case, consider any atomic sentence ψ, and suppose first that (c) 〈I, J,K〉 |= ψ. Then, ψ is
not ⊥, but either of the form t1 = t2, or of the form p(t1, . . . , tn) such that p ∈ L+ and p(ctI1 , . . . , ctIn) ∈ J .
If ψ is of the form t1 = t2, then 〈I, J,K〉 |= ψ implies tI1 = tI2, hence 〈I, J ′,K〉 |= ψ, for any J ′ under
consideration. If ψ is of the form p(t1, . . . , tn), since J |L+ ⊆ J ′|L+ for all J ′ such that J |L+ ⊆ J ′|L+

and J ′|L− ⊆ J |L− , we conclude that p(ctI1 , . . . , ctIn) ∈ J ′. Hence, 〈I, J ′,K〉 |= ψ. For (d), assume
〈I,K,K〉 6|= ψ. Then ψ is ⊥ or ψ is either of the form t1 = t2, or of the form p(t1, . . . , tn) such that
p ∈ L+ and p(ctI1 , . . . , ctIn) 6∈ J . In the first case, 〈I, J ′,K〉 6|= ψ follows trivially for all J ′ ⊆ K. If ψ is of
the form t1 = t2, then 〈I,K,K〉 6|= ψ implies tI1 6= tI2, hence 〈I, J ′,K〉 6|= ψ, for all J ′ ⊆ K. If ψ is of the
form p(t1, . . . , tn), then p(ctI1 , . . . , ctIn) also cannot be a member of any J ′ such that J ′ ⊆ K. Therefore,
〈I, J ′,K〉 6|= ψ, for all J ′ ⊆ K. This proves (c) and (d) for atomic sentences.

For the induction step, assume that (c) and (d) hold for any factual sentence of connective nesting depth
n − 1, and let ψ be a factual sentence of connective nesting depth n. Consider the case where ψ is of the
form ψ1 ∧ ψ2, respectively ψ1 ∨ ψ2. Since ψ is factual, so are ψ1 and ψ2, both of connective nesting depth
depth n − 1. In case (c), from 〈I, J,K〉 |= ψ we conclude 〈I, J,K〉 |= ψ1 and (or) 〈I, J,K〉 |= ψ2. The
induction hypothesis applies, proving 〈I, J ′,K〉 |= ψ1 and (or) 〈I, J ′,K〉 |= ψ2, for all J ′ ⊆ K such
that J |L+ ⊆ J ′|L+ and J ′|L− ⊆ J |L− , i.e., 〈I, J ′,K〉 |= ψ for all J ′ under consideration. Assume (d),
i.e., 〈I,K,K〉 6|= ψ. As a consequence, 〈I,K,K〉 6|= ψ1 or (and) 〈I,K,K〉 6|= ψ2, hence by induction
hypothesis, for all J ′ ⊆ K, it holds that 〈I, J ′,K〉 6|= ψ1 or (and) 〈I, J ′,K〉 6|= ψ2. Therefore, 〈I, J ′,K〉 6|=
ψ, for all J ′ ⊆ K.

Next, let ψ be of the form ψ1 → ⊥. Then, ψ1 is factual and of connective nesting depth depth n − 1.
In case (c), if 〈I, J,K〉 |= ψ, then 〈I,K〉 |= ψ, hence 〈I,K〉 6|= ψ1, i.e., 〈I,K,K〉 6|= ψ1 and by induction
hypothesis (d), the same holds for any 〈I, J ′,K〉 such that J ′ ⊆ K. Thus, in particular for J ′ ⊆ K such
that J |L+ ⊆ J ′|L+ and J ′|L− ⊆ J |L− , it follows that 〈I, J ′,K〉 6|= ψ1. Moreover, 〈I,K〉 |= ψ, and
therefore 〈I, J ′,K〉 |= ψ → ⊥, for all J ′ ⊆ K such that J |L+ ⊆ J ′|L+ and J ′|L− ⊆ J |L− . For (d), assume
〈I,K,K〉 6|= ψ. Consequently 〈I,K〉 6|= ψ, and this implies 〈I, J ′,K〉 6|= ψ, for all J ′ ⊆ K.

Eventually, consider a quantified sentence ψ, i.e., ψ is of the form ∀xψ1(x) or ∃xψ1(x). Since ψ is
factual, so are the sentences ψ1(cε), for all ε ∈ U , which are of connective nesting depth n − 1. Suppose
(c) 〈I, J,K〉 |= ψ. Then, 〈I, J,K〉 |= ψ1(cε) and 〈I,K〉 |= ψ1(cε), for all ε ∈ U , respectively 〈I, J,K〉 |=
ψ1(cε), for some ε ∈ U . The induction hypothesis applies, proving for all J ′ under consideration, that
〈I, J ′,K〉 |= ψ1(cε) and 〈I,K〉 |= ψ1(cε), for all ε ∈ U , respectively that 〈I, J ′,K〉 |= φ1(cε), for some
ε ∈ U . Therefore, 〈I, J ′,K〉 |= ψ for all J ′ ⊆ K such that J |L+ ⊆ J ′|L+ and J ′|L− ⊆ J |L− . Assume (d)
〈I,K,K〉 6|= ψ. Then, 〈I,K,K〉 6|= ψ1(cε) (i.e., 〈I,K〉 6|= ψ1(cε)), for some (all) ε ∈ U . The induction
hypothesis applies, proving for all J ′ ⊆ K, that 〈I, J ′,K〉 6|= ψ1(cε), for some (all) ε ∈ U . Therefore,
〈I, J ′,K〉 6|= ψ for all J ′ ⊆ K. This concludes the inductive argument and proves (c) and (d) for factual
sentences over L+ of arbitrary connective nesting.

Concerning the claim of the proposition, since 〈I, J,K〉 |= Γ implies 〈I, J,K〉 |= φ and 〈I, J,K〉 |= ψ,
for every L+-L−-sentence φ in Γ and every factual sentence ψ in Γ, we conclude that 〈I, J ′,K〉 |= φ and
〈I, J ′,K〉 |= ψ, for all J ′ ⊆ K such that J |L+ ⊆ J ′|L+ and J ′|L− ⊆ J |L− . This proves 〈I, J ′,K〉 |= Γ,
for all J ′ under consideration. 2
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The main differences to the propositional case concern the treatment of equality of terms and that quan-
tification has to be taken into account. The former depends solely on the interpretation part I , which is the
same for the QHT-interpretations under consideration, and thus has no further influence on the argument.
The latter, is a further case to be considered in the inductive argument, however one that reduces easily to
the respective induction hypotheses. The remainder simply mirrors the propositional case, with the polarity
being considered on the predicate level, rather than for propositional variables. The same holds for the proof
of the following result.

Proposition 9 Consider an extended first-orderL+-L−-theory Γ, and a total QHT-interpretation 〈I,K,K〉.
Then, 〈I,K,K〉 |= Γ implies 〈I, J ′,K〉 |= Γ, for all J ′ ⊆ K such that J ′|L+ = K|L+ .

Proof. Consider any L+-L−-sentence φ in Γ, i.e., any sentence that has positive occurrences of atoms
from L+, and negative occurrences of atoms from L−, only. We show by induction on the formula structure
of φ, that for all J ′ ⊆ K such that J ′|L+ = K|L+ :

(a) 〈I,K,K〉 |= φ implies 〈I, J ′,K〉 |= φ if φ is a positive occurrence; and

(b) 〈I,K,K〉 6|= φ implies 〈I, J ′,K〉 6|= φ if φ is a negative occurrence.

For the base case, consider any atomic sentence φ, and suppose first (a) that φ is a positive occurrence
such that 〈I,K,K〉 |= φ. Then φ is not ⊥, and thus it is either of the form t1 = t2, or of the form
p(t1, . . . , tn) such that p ∈ L+ and p(ctI1 , . . . , ctIn) ∈ K. If φ is of the form t1 = t2, then 〈I,K,K〉 |= φ

implies tI1 = tI2, hence 〈I, J ′,K〉 |= ψ, for any J ′ under consideration. If φ is of the form p(t1, . . . , tn), since
J ′|L+ = K|L+ for all J ′ under consideration, we conclude that p(ctI1 , . . . , ctIn) ∈ J ′. Hence, 〈I, J ′,K〉 |= φ.
Suppose (b) φ is a negative occurrence. If 〈I,K,K〉 6|= φ, then φ is ⊥, or of the form t1 = t2, or of the
form p(t1, . . . , tn) such that p ∈ L− and p(ctI1 , . . . , ctIn) 6∈ K. In the first case, 〈I, J ′,K〉 6|= φ follows
trivially for all J ′ under consideration. If φ is of the form t1 = t2, then 〈I,K,K〉 6|= φ implies tI1 6= tI2,
hence 〈I, J ′,K〉 6|= φ, for all J ′ under consideration. If φ is of the form p(t1, . . . , tn), since J ′ ⊆ K implies
J ′|L− ⊆ K|L− for all J ′ under consideration, we conclude that p(ctI1 , . . . , ctIn) 6∈ J ′. Hence, 〈I, J ′,K〉 6|= φ.

For the induction step, assume that (a) and (b) hold for any L+-L−-sentence of connective nesting depth
n − 1, and let φ be a sentence of connective nesting depth n. Consider the case where φ is of the form
φ1 ∧ φ2, respectively φ1 ∨ φ2. If φ is a positive occurrence (a), then so are φ1 and φ2, both of connective
nesting depth depth n−1. From 〈I,K,K〉 |= φwe conclude 〈I,K,K〉 |= φ1 and (or) 〈I,K,K〉 |= φ2. The
induction hypothesis applies, proving 〈I, J ′,K〉 |= φ1 and (or) 〈I, J ′,K〉 |= φ2, for all J ′ ⊆ K such that
J ′|L+ = K|L+ , i.e., 〈I, J ′,K〉 |= φ for all J ′ under consideration. In case φ is a negative occurrence (b),
then so are φ1 and φ2, both of connective nesting depth n−1. Then, 〈I,K,K〉 6|= φ implies 〈I,K,K〉 6|= φ1

or (and) 〈I,K,K〉 6|= φ2, and the same holds for any 〈I, J ′,K〉 under consideration by induction hypothesis.
This proves 〈I, J ′,K〉 6|= φ.

Next, let φ be of the form φ1 → φ2. Then, independent of whether φ occurs positively or negatively,
φ1 is a negative occurrence and φ2 is a positive occurrence, both of connective nesting depth n − 1. First,
suppose 〈I,K,K〉 |= φ. Towards a contradiction assume that there exists J ′ ⊆ K such that J ′|L+ = K|L+

and 〈I, J ′,K〉 6|= φ. Since 〈I,K,K〉 |= φ implies that 〈I,K〉 |= φ, we conclude that both, 〈I, J ′,K〉 |= φ1

and 〈I, J ′,K〉 6|= φ2, hold. From the latter, since φ2 is a positive occurrence of connective nesting depth
n−1, it follows that 〈I,K,K〉 6|= φ2 (otherwise by induction hypothesis (a) 〈I, J ′,K〉 |= φ2). This implies
〈I,K,K〉 6|= φ1 since 〈I,K,K〉 |= φ. However, φ1 is a negative occurrence of connective nesting depth
n − 1, thus by induction hypothesis (b) we conclude that 〈I, J ′,K〉 6|= φ1, a contradiction. Therefore,
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〈I, J ′,K〉 |= φ for all J ′ under consideration, which proves (a). For (b), let φ be a negative occurrence and
suppose 〈I,K,K〉 6|= φ. Then 〈I,K〉 6|= φ, hence also 〈I, J ′,K〉 6|= φ for all J ′ under consideration.

Eventually, consider a quantified sentence φ, i.e., φ is of the form ∀xφ1(x) or ∃xφ1(x). If φ is a positive
occurrence (a), then so are the sentences φ1(cε), for all ε ∈ U , which are of connective nesting depth n− 1.
Then, 〈I,K,K〉 |= φ implies 〈I,K,K〉 |= φ1(cε) (i.e., 〈I,K〉 |= φ1(cε)), for all (some) ε ∈ U . The
induction hypothesis applies, proving for all J ′ under consideration, that 〈I, J ′,K〉 |= φ1(cε) and 〈I,K〉 |=
φ1(cε), for all ε ∈ U , respectively that 〈I, J ′,K〉 |= φ1(cε), for some ε ∈ U . Therefore, 〈I, J ′,K〉 |= φ
for all J ′ ⊆ K such that J ′|L+ = K|L+ . If φ is a negative occurrence (b), then so are the sentences
φ1(cε), for all ε ∈ U , which are of connective nesting depth n− 1. From 〈I,K,K〉 6|= φ, we conclude that
〈I,K,K〉 6|= φ1(cε), for some (all) ε ∈ U . (Note that 〈I,K〉 6|= φ1(cε) also implies 〈I,K,K〉 6|= φ1(cε).)
The induction hypothesis applies, proving for all J ′ under consideration, that 〈I, J ′,K〉 6|= φ1(cε), for some
(all) ε ∈ U . Therefore, 〈I, J ′,K〉 6|= φ for all J ′ ⊆ K such that J ′|L+ = K|L+ . This concludes the
inductive argument and proves (a) and (b) for L+-L−-sentences of arbitrary connective nesting.

Next, we turn to factual sentences ψ in Γ, and prove by induction on the formula structure of ψ, that
〈I,K,K〉 |= ψ implies 〈I, J ′,K〉 |= ψ, for all J ′ ⊆ K such that J ′|L+ = K|L+ .

For the base case, consider any atomic sentence ψ, and suppose that 〈I,K,K〉 |= ψ. Then, ψ is not ⊥,
but either of the form t1 = t2, or of the form p(t1, . . . , tn) such that p ∈ L+ and p(ctI1 , . . . , ctIn) ∈ K. If
ψ is of the form t1 = t2, then 〈I,K,K〉 |= ψ implies tI1 = tI2, hence 〈I, J ′,K〉 |= ψ, for any J ′ under
consideration. If ψ is of the form p(t1, . . . , tn), since J ′|L+ = K|L+ for all J ′ under consideration, we
conclude that p(ctI1 , . . . , ctIn) ∈ J ′. Hence, 〈I, J ′,K〉 |= ψ, for all J ′ ⊆ K such that J ′|L+ = K|L+ .

For the induction step, assume that the claim holds for any factual sentence of connective nesting depth
n − 1, and let ψ be a factual sentence of connective nesting depth n. Consider the case where ψ is of
the form ψ1 ∧ ψ2, respectively ψ1 ∨ ψ2. Since ψ is factual, so are ψ1 and ψ2, both of connective nesting
depth depth n − 1. From 〈I,K,K〉 |= ψ we conclude 〈I,K,K〉 |= ψ1 and (or) 〈I,K,K〉 |= ψ2. The
induction hypothesis applies, proving 〈I, J ′,K〉 |= ψ1 and (or) 〈I, J ′,K〉 |= ψ2, for all J ′ ⊆ K such that
J ′|L+ = K|L+ , i.e., 〈I, J ′,K〉 |= ψ for all J ′ under consideration.

Next, let ψ be of the form ψ1 → ⊥. Then, ψ1 is factual and of connective nesting depth depth n− 1. If
〈I,K,K〉 |= ψ, then 〈I,K〉 |= ψ, hence 〈I,K〉 6|= ψ1, i.e., 〈I,K,K〉 6|= ψ1 and by Case (d) in the proof of
Proposition 8, the same holds for any 〈I, J ′,K〉 such that J ′ ⊆ K. Thus, in particular for J ′ ⊆ K such that
J ′|L+ = K|L+ , it follows that 〈I, J ′,K〉 6|= ψ1. Moreover, 〈I,K〉 |= ψ, and therefore 〈I, J ′,K〉 |= ψ → ⊥,
for all J ′ ⊆ K such that J ′|L+ = K|L+ .

Eventually, consider a quantified sentence ψ, i.e., ψ is of the form ∀xψ1(x) or ∃xψ1(x). Since ψ is
factual, so are the sentences ψ1(cε), for all ε ∈ U , which are of connective nesting depth n − 1. Then,
〈I,K,K〉 |= ψ implies 〈I,K,K〉 |= ψ1(cε) (as well as 〈I,K〉 |= ψ1(cε)), for all (some) ε ∈ U . The
induction hypothesis applies, proving for all J ′ under consideration, that 〈I, J ′,K〉 |= ψ1(cε) and 〈I,K〉 |=
ψ1(cε), for all ε ∈ U , respectively that 〈I, J ′,K〉 |= ψ1(cε), for some ε ∈ U . Therefore, 〈I, J ′,K〉 |= ψ
for all J ′ ⊆ K such that J ′|L+ = K|L+ . This concludes the inductive argument and proves the claim for
factual sentences over L+ of arbitrary connective nesting.

Concerning the claim of the proposition, since 〈I,K,K〉 |= Γ implies 〈I,K,K〉 |= φ and 〈I,K,K〉 |=
ψ, for every L+-L−-sentence φ in Γ and every factual sentence ψ in Γ, we conclude that 〈I, J ′,K〉 |= φ
and 〈I, J ′,K〉 |= ψ, for all J ′ ⊆ K such that J ′|L+ = K|L+ . This proves 〈I, J ′,K〉 |= Γ, for all J ′ under
consideration. 2

Having lifted the essential properties to the case of L+-L−-theories, it comes at no surprise that we end
up with respective closure conditions for QHT-equivalence interpretations.
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Definition 11 Given a first-order theory Γ over L, sets of predicate symbols L+ ⊆ L′, L− ⊆ L′, L′ ⊇ L,
and a QHT-interpretation M = 〈I, J,K〉, we say that

• 〈I,K,K〉 is L+-total iff 〈I,K|L+ ,K〉 is closed in Es(Γ);

• M is L+-closed in Es(Γ) iff 〈I, J ′,K〉 ∈ Es(Γ), for all J ′ ⊆ K such that J |L+ ⊆ J ′|L+ and
J ′|L− ⊆ J |L− .

Also the characteristic structures for a semantic characterization are defined in straight-forward analogy.

Definition 12 A QHT-interpretation M = 〈I, J,K〉 is a QHT-hyperequivalence interpretation wrt. L+ and
L− of a first-order theory Γ iff 〈I,K,K〉 is L+-total and there exists a QHT-interpretation 〈I, J ′,K〉 such
that J = J ′|L+∪L− and 〈I, J ′,K〉 is L+-closed in Es(Γ).
The set of QHT-hyperequivalence interpretations wrt. L+ and L− of a first-order theory Γ is denoted by
EL

+

L− (Γ).

Eventually, we arrive at a characterization of relativized hyperequivalence for general first-order theories
under answer-set semantics, where contexts are restricted on the predicate level.

Theorem 8 Two first-order theories Γ1,Γ2 are relativized hyperequivalent wrt. L+ and L− if and only if
they coincide on their QHT-hyperequivalence interpretations wrt. L+ and L−, symbolically Γ1

L+

L−≡ Γ2 iff
EL

+

L− (Γ1) = EL
+

L− (Γ2).

Proof. In the following, we will use the following notational simplification: For any set of ground atoms
J , we write J+ for J |L+ , and J− for J |L− .

For the only-if direction suppose Γ1
L+

L− ≡ Γ2 and towards a contradiction assume that EL
+

L− (Γ1) 6=
EL

+

L− (Γ2). W.l.o.g. let 〈I, J,K〉 ∈ EL+

L− (Γ1) and 〈I, J,K〉 6∈ EL+

L− (Γ2) (the other case is symmetric). Note
that 〈I, J,K〉 ∈ EL

+

L− (Γ1) implies that 〈I,K,K〉 is L+-total, i.e., 〈I,K+,K〉 is closed in Es(Γ1). This
implies that 〈I,K+,K〉 is in EL

+

L− (Γ1). Suppose 〈I,K+,K〉 is not in EL
+

L− (Γ2). Then, either 〈I,K,K〉 6|=
Γ2, or there exists K+ ⊆ J ′ ⊂ K such that 〈I, J ′,K〉 |= Γ2. Let Γ = K+ over L′ = 〈F ∪ UC ,P〉. and
observe that in both cases 〈I,K〉 is not an answer set of Γ2 ∪ Γ. In the former case because 〈I,K,K〉 6|=
Γ2 ∪ Γ, in the latter because J ′ ⊂ K and 〈I, J ′,K〉 |= Γ2 ∪ Γ (note that 〈I, J ′,K〉 |= Γ by Proposition 9).
However, 〈I,K〉 is an answer set of Γ1 ∪ Γ. Indeed, 〈I,K+,K〉 is closed in Es(Γ1). And for any J ′ ⊂ K
such that K+ 6⊆ J ′+, obviously 〈I, J ′,K〉 is a non-total QHT-countermodel of Γ. Consequently 〈I,K,K〉
is total-closed in Es(Γ1 ∪ Γ). Because Γ is an L+-L−-theory, this contradicts Γ1

L+

L− ≡ Γ2. Thus, we
conclude that 〈I,K+,K〉 ∈ EL

+

L− (Γ2). Note that therefore 〈I,K,K〉 is L+-total for Γ2, which implies
that 〈I,K|A,K〉 is in EL

+

L− (Γ2), hence J ⊂ K|A and J+ ⊂ K+. Consider the following theory over
L′ = 〈F ∪ UC ,P〉: Γ = J+ ∪ {α → β | α ∈ K− \ J−, β ∈ K+ \ J+}. We show that 〈I,K〉 is an
answer set of Γ1 ∪ Γ. Obviously, 〈I,K,K〉 |= Γ because J+ ⊂ K+ and β ∈ K for every β ∈ K+ \ J+.
Therefore, 〈I,K,K〉 |= Γ1 ∪ Γ. Towards a contradiction, assume that there exists J ′ ⊂ K such that
〈I, J ′,K〉 |= Γ1 ∪ Γ. From 〈I, J ′,K〉 |= Γ, we conclude that either J ′+ = K+, or that J+ ⊆ J ′+ ⊂ K+

and J ′− ⊆ J−. In both cases, 〈I, J ′,K〉 6|= Γ1. In the former case because 〈I,K,K〉 is L+-total, i.e.,
〈I,K+,K〉 is closed in Es(Γ1). In the latter case it is a consequence of the fact that 〈I, J,K〉 ∈ EL+

L− (Γ1),
which implies 〈I, J ′,K〉 6|= Γ1 by L+-closure. This contradicts our assumption concerning the existence of
J ′ ⊂ K such that 〈I, J ′,K〉 |= Γ1 ∪ Γ, and proves that 〈I,K〉 is an answer set of Γ1 ∪ Γ. However, 〈I,K〉
is not an answer set of Γ2 ∪ Γ. To wit, since 〈I, J,K〉 6∈ EL+

L− (Γ2), there exists J ′ ⊂ K such that J+ ⊆ J ′+,
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J ′− ⊆ J−, and 〈I, J ′,K〉 |= Γ2. Moreover, 〈I, J ′,K〉 is a QHT-model of Γ. Observe that J ′− ⊆ J− implies
that 〈I, J ′,K〉 is a QHT-model of every sentence of the form α→ β in Γ. Hence, 〈I, J ′,K〉 |= Γ2 ∪Γ, and
since J ′ ⊂ K, it follows that 〈I,K〉 is not an answer set of Γ2 ∪ Γ. Note that Γ is an L+-L−-theory, which
contradicts Γ1

L+

L−≡ Γ2. This proves EL
+

L− (Γ1) = EL
+

L− (Γ2).
For the if direction, suppose EL

+

L− (Γ1) = EL
+

L− (Γ2) and towards a contradiction assume that Γ1
L+

L− 6≡ Γ2.
W.l.o.g. let 〈I,K〉 be an answer set of Γ1 ∪ Γ for some L+-L−-theory Γ, such that 〈I,K〉 is not an answer
set of Γ2 ∪Γ (the other case is symmetric). Then, 〈I,K,K〉 is an equivalence interpretation of both, Γ1 and
Γ, and 〈I,K+,K〉 is closed in Es(Γ1∪Γ), which implies (taking Proposition 9 into account) that 〈I,K,K〉
is L+-total for Γ1 and 〈I,K|A,K〉 is in EL

+

L− (Γ1). Therefore, 〈I,K|A,K〉 is also in EL
+

L− (Γ2), with the
consequence that 〈I,K,K〉 is in Es(Γ2), and thus 〈I,K,K〉 ∈ Es(Γ2 ∪ Γ). Since by assumption 〈I,K〉
is not an answer set of Γ2 ∪ Γ, there exists J ⊂ K such that 〈I, J,K〉 6∈ Es(Γ2 ∪ Γ), i.e., 〈I, J,K〉 |=
Γ2 ∪ Γ. Since 〈I,K|A,K〉 ∈ EL

+

L− (Γ2), it holds that J |A ⊂ K|A. Moreover, J+ ⊂ K+ due to L+-
totality of 〈I,K,K〉. Clearly, 〈I, J |A,K〉 is not in EL

+

L− (Γ2) as witnessed by 〈I, J,K〉 |= Γ2, and thus
〈I, J |A,K〉 6∈ EL

+

L− (Γ1) sinceEL
+

L− (Γ1) = EL
+

L− (Γ2). From 〈I, J |A,K〉 6∈ EL
+

L− (Γ1), we conclude that there
exists J ′ ⊆ K, such that J+ ⊆ J ′+, J ′− ⊆ J−, and 〈I, J ′,K〉 6∈ Es(Γ1), i.e., J ′ ⊂ K and 〈I, J ′,K〉 |= Γ1.
By Proposition 8, 〈I, J,K〉 |= Γ implies 〈I, J ′,K〉 |= Γ. Consequently, 〈I, J ′,K〉 |= Γ1 ∪ Γ, and since
J ′ ⊂ K, this contradicts our assumption that 〈I,K〉 is an answer set of Γ1 ∪ Γ, and proves Γ1

L+

L−≡ Γ2. 2

In the same way as for propositional theories, the prominent notions of equivalence are obtained as
special cases, and the framework gives rise to relativized notions of strong and uniform equivalence for
general first-order theories under answer-set semantics. Also in analogy, the role of factual theories is
governed by Proposition 8, yielding the following:

Corollary 6 Two first-order theories Γ1,Γ2 are relativized hyperequivalent wrt. extended L+-L−-theories
if and only if they coincide on their QHT-hyperequivalence interpretations wrt. L+ and L−.

5 Non-ground Logic Programs

In this section we apply the characterizations obtained for first-order theories to non-ground logic programs
under various extended semantics—compared to the traditional semantics in terms of Herbrand interpreta-
tions. For a proper treatment of these issues, further background is required and introduced (succinctly, but
at sufficient detail) below.

In non-ground logic programming, we restrict to a function-free first-order signature L = 〈F ,P〉 (i.e.,
F contains object constants only) without equality. A program Π (over L) is a set of rules (over L) of the
form (1). A rule r is safe if each variable occurring in H(r) ∪ B−(r) also occurs in B+(r); a rule r is
ground, if all atoms occurring in it are ground. A program is safe, respectively ground, if all of its rules
enjoy this property.

Given Π over L and a universe U , let LU be the extension of L as before. The grounding of Π wrt. U
and an interpretation I|LF of LF on U is defined as the set grdU (Π, I|LF ) of ground rules obtained from
r ∈ Π by (i) replacing any constant c in r by cε such that I|LF (c) = ε, and (ii) all possible substitutions of
elements in CU for the variables in r.

Adapted from [16], the reduct of a program Π with respect to a first-order interpretation I = 〈I|LF , I|CU 〉
on universe U , in symbols grdU (Π, I|LF )I , is given by the set of rules

a1 ∨ · · · ∨ ak ← b1, . . . , bm,
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obtained from rules in grdU (Π, I|LF ) of the form (1), such that I |= ai for all k < i ≤ l and I 6|= bj for all
m < j ≤ n.

A first-order interpretation I satisfies a rule r, I |= r, iff I |= Γr, where Γr = ∀~x(βr → αr), ~x are the
free variables in r, αr is the disjunction of H(r), and βr is the conjunction of B(r). It satisfies a program
Π, symbolically I |= Π, iff it satisfies every r ∈ Π, i.e., if I |= ΓΠ, where ΓΠ =

⋃
r∈Π Γr.

A first-order interpretation I is called a generalized answer set of Π iff it satisfies grdU (Π, I|LF )I and
it is subset minimal among the interpretations of L on U with this property.

Traditionally, only Herbrand interpretations are considered as the answer sets of a logic program. The
set of all (object) constants occurring in Π is called the Herbrand universe of Π, symbolicallyH. If no con-
stant appears in Π, thenH = {c}, for an arbitrary constant c. A Herbrand interpretation is any interpretation
I of LH = 〈H,P〉 onH interpreting object constants by identity, id , i.e., I(c) = id(c) = c for all c ∈ H. A
Herbrand interpretation I is an ordinary answer set of Π iff it is subset minimal among the interpretations
of LH onH satisfying grdH(Π, id)I .

Furthermore, an extended Herbrand interpretation is an interpretation ofL on U ⊇ F interpreting object
constants by identity. An extended Herbrand interpretation I is an open answer set [18] of Π iff it is subset
minimal among the interpretations of L on U satisfying grdU (Π, id)I .

Note that since we consider programs without equality, we semantically resort to the logic QHTs,
which results from QHTs

= by dropping the axioms for equality. Concerning Kripke models, however,
in slight abuse of notation, we reuse QHT-models as defined for the general case. A QHT-interpretation
M = 〈I, J,K〉 is called an (extended) QHT Herbrand interpretation, if 〈I,K〉 is an (extended) Herbrand
interpretation. Given a program Π, 〈I,K〉 is a generalized answer set of Π iff 〈I,K,K〉 is a QEL-model
of ΓΠ, and 〈I,K〉 is an open, respectively ordinary, answer set of Π iff 〈I,K,K〉 is an extended Herbrand,
respectively Herbrand, QEL-model of ΓΠ. Notice that the static interpretation of constants introduced by
Item (i) of the grounding process is essential for this correspondences in terms of QHTs. In slight abuse of
notation, we further on identify Π and ΓΠ.

As already mentioned for propositional programs, uniform equivalence is usually understood wrt. sets
of ground facts (i.e., ground atoms). Obviously, uniform equivalence wrt. factual theories implies uniform
equivalence wrt. ground atoms. We show the converse direction (lifting Theorem 2 in [29]).

Proposition 10 Given two programs Π1,Π2, then Π1 ≡u Π2 iff (Π1 ∪ A) ≡a (Π2 ∪ A), for any set of
ground atoms A.

Proof. The only-if direction is trivial since any set of ground atoms constitutes a factual theory.
For the if direction, let (Π1∪A) ≡a (Π2∪A), for any set of ground atomsA and towards a contradiction

assume that Π1 6≡u Π2. Then, there exists a factual theory Γ and a QHT-interpretation M = 〈I,K,K〉,
such that w.l.o.g., M is in Ea(Π1 ∪ Γ), but M 6∈ Ea(Π2 ∪ Γ). From the hypothesis, we conclude that
M |= Π2 (otherwise (Π1 ∪K) 6≡a (Π2 ∪K), where K is a set of ground facts over L′ = 〈F ∪ UC ,P〉).
Hence, there exists M ′ = 〈I, J,K〉, J ⊂ K, such that M ′ |= Π2 ∪ Γ whereas M ′ 6|= Π1 ∪ Γ. This
implies that M ′ |= Γ, and thus, M ′ 6|= Π1. Moreover, for any J ⊆ J ′ ⊂ K, 〈I, J ′,K〉 |= φ for any
sentence φ ∈ Γ by Lemma 5, i.e., 〈I, J ′,K〉 |= Γ. Therefore, by the assumption that M ∈ Ea(Π1 ∪ Γ),
we conclude that, for any J ⊆ J ′ ⊂ K, 〈I, J ′,K〉 6|= Π1, which implies that M is in Ea(Π1 ∪ J). On the
other hand, M 6∈ Ea(Π2 ∪ J), since M ′ ⊂ M and M ′ |= Π2 ∪ J . Note that J is a set of ground facts over
L′ = 〈F ∪ UC ,P〉, and because (Π1 ∪ J) 6≡a (Π2 ∪ J) follows, we arrive at a contradiction. 2

Thus, there is no difference whether we consider uniform equivalence wrt. sets of ground facts or factual
theories. Since one can also consider sets of clauses, i.e. disjunctions of atomic formulas and their negations,
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which is a more suitable representation of facts according to the definition of program rules in this article,
we adopt the following terminology. A rule r is called a fact if B(r) = ∅, and a factual program is a set of
facts. Then, by our result Π1 ≡u Π2 holds for programs Π1,Π2 iff (Π1 ∪ Π) ≡a (Π2 ∪ Π), for any factual
program Π.

5.1 Uniform Equivalence under Herbrand Interpretations

The results in the previous section generalize the notion of uniform equivalence to programs under gener-
alized open answer-set semantics and provide alternative characterizations for other notions of equivalence.
They apply to programs under open answer-set semantics and ordinary answer-set semantics, when QHT-
interpretations are restricted to extended Herbrand interpretations and Herbrand interpretations, respectively.
In order to capture strong and uniform equivalence under ordinary answer-set semantics correctly, interpre-
tations under the Standard Name Assumption (SNA) have to be considered, accounting for the potential
extensions. For programs Π1 and Π2 and e ∈ {c, a, s, u}, we use Π1 ≡Ee Π2 and Π1 ≡He Π2 to denote (clas-
sical, answer-set, strong, or uniform) equivalence under open answer-set semantics and ordinary answer-set
semantics, respectively.

Corollary 7 Given two programs Π1 and Π2, it holds that

• Π1 ≡Ee Π2, CEe (Π1) = CEe (Π2), and EE
e (Π1) = EE

e (Π2) are equivalent; and

• Π1 ≡He Π2, CHe (Π1) = CHe (Π2), and EH
e (Π1) = EH

e (Π2) are equivalent;

where e ∈ {c, a, s, u}, superscript E denotes the restriction to extended Herbrand interpretations, and
superscript H denotes the restriction to Herbrand interpretations for e ∈ {c, a}, respectively to SNA inter-
pretations for e ∈ {s, u}.

For safe programs the notion of open answer set and the notion of ordinary answer set coincide [5]. Note
that a fact is safe if it is ground. We obtain that uniform equivalence coincides under the two semantics even
for programs that are not safe. Intuitively, the potential addition of arbitrary facts accounts for the difference
in the semantics since it requires to consider larger domains than the Herbrand universe.5

Theorem 9 Let Π1,Π2 be programs over L. Then, Π1 ≡Eu Π2 iff Π1 ≡Hu Π2.

Proof. The only-if direction is trivial. For the if direction, towards a contradiction assume that Π1 ≡Hu Π2

and Π1 6≡Eu Π2. Let Π be a factual program such that M = 〈id ,K,K〉 is an extended Herbrand QHT-
interpretation over L′ ⊇ L on U ′, such that M is in EE

a (Π1 ∪ Π), but M 6∈ EE
a (Π2 ∪ Π). Consider the

signature LU ′ = 〈U ′,L′P ∪ {d}〉, where L′P are the predicate symbols of L′, and d 6∈ L′P is a fresh unary
predicate symbol. Clearly, LU ′ ⊃ L′. Furthermore let Π′

1 = Π1 ∪ Π ∪ {d(X)}, Π′
2 = Π2 ∪ Π ∪ {d(X)},

and K ′ = K ∪ {d(c) | c ∈ U ′}. We show that M ′ = 〈id ,K ′,K ′〉 is in EH
a (Π′

1), but M ′ 6∈ EH
a (Π′

2).
Since M |= Π1 ∪ Π and no sentence in Π1 ∪ Π involves d, we conclude M ′ |= Π1 ∪ Π. By construction,
M ′ is also a QHT-model of d(X), hence M ′ |= Π′

1. Moreover, 〈id , J,K〉 6|= Π1 ∪ Π, for every J ⊂ K.
Therefore, for every J ′ = J ∪ {d(c) | c ∈ U ′} such that J ⊂ K, 〈id , J ′,K ′〉 6|= Π′

1. So let us consider
proper subsets J ′ of K ′ such that K ⊆ J , i.e., J ′ ⊂ {d(c) | c ∈ U ′}. In this case 〈id , J ′,K ′〉 6|= d(X),
and again 〈id , J ′,K ′〉 6|= Π′

1. This proves that M ′ is in EH
a (Π′

1). On the other hand, if M 6|= Π2 ∪ Π,
then M 6|= Π2, and since no sentence in Π2 involves d, we conclude M ′ 6|= Π2, thus M ′ 6|= Π′

2. If

5Note that this observation also holds for QHTs
= with functions and the result could be strengthened accordingly.
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M |= Π2 ∪ Π, then 〈id , J,K〉 |= Π2 ∪ Π for some J ⊂ K. Consider J ′ = J ∪ {d(c) | c ∈ U ′}. Since
J ⊂ K, it holds that J ′ ⊂ K ′, and since no sentence in Π2 ∪ Π involves d, 〈id , J ′,K ′〉 |= Π2 ∪ Π.
Moroever, 〈id , J ′,K ′〉 |= {d(X)} by construction, hence 〈id , J ′,K ′〉 |= Π′

2. This proves M ′ 6∈ EH
a (Π′

2).
By observing that Π ∪ {d(X)} is a factual program, we arrive at a contradiction to Π1 ≡Hu Π2. 2

Finally, we turn to the practically relevant setting of finite, possibly unsafe, programs under Herbrand
interpretations, i.e., ordinary (and open) answer-set semantics. For finite programs, uniform equivalence can
be characterized by HT-models of the grounding, also for infinite domains. In other words, the problems of
“infinite chains” as in Example 1 cannot be generated by the process of grounding. Note that the restriction
to finite programs also applies to the programs considered to be potentially added.

Theorem 10 Let Π1,Π2 be finite programs over L. Then, Π1 ≡Hu Π2 iff Π1 and Π2 have the same (i) total
and (ii) maximal, non-total extended Herbrand QHT-models.

Proof. The only-if direction is obvious. If Π1 ≡Hu Π2 then also Π1 ≡Eu Π2 by Theorem 9. This means
that Π1 and Π2 have (i) the same total extended Herbrand QHT-models, as well as the same sets of closed
extended Herbrand QHT equivalence interpretations, and thus (ii) the same maximal, non-total extended
Herbrand QHT-models.

For the if direction, assume that Π1 and Π2 have the same total and the same maximal, non-total extended
Herbrand QHT-models but, towards a contradiction, that Π1 6≡Hu Π2. Then, there exists a finite factual
program Π, such that (Π1 ∪Π) 6≡Ha (Π2 ∪Π). W.l.o.g. let M = 〈I,K,K〉 over L′ ⊇ L be in EH

a (Π1 ∪Π)
and M 6∈ EH

a (Π2 ∪ Π). Let H denote the Herbrand universe of Π1 ∪ Π. Since Π1 and Π are finite, H is
finite and so is grdH(Π1 ∪Π, id). Therefore, by minimality, K is finite as well. Note also, that M is a total
extended Herbrand QHT-model of Π1. By hypothesis (i), Π1 and Π2 have the same total extended Herbrand
QHT-models. Thus, M is also a total extended Herbrand QHT-model of Π2. Moreover, there exists a QHT-
interpretation M ′ = 〈I, J,K〉, such that J ⊂ K and M ′ |= (Π2 ∪ Π), hence M ′ |= Π2. Since K is finite,
we conclude that Π2 has a maximal, non-total QHT-model M ′′ = 〈I, J ′′,K〉, such that J ′ ⊆ J ′′ ⊂ K. We
show that this is not the case for Π1. M ′ |= (Π2 ∪ Π) implies M ′ |= Π. Since Π is a factual program, by
Lemma 5 we conclude thatM ′′ |= Π. HoweverM ′′ 6|= Π1∪Π, becauseM ∈ EH

a (Π1∪Π). Taken together,
M ′′ |= Π and M ′′ 6|= Π1 ∪Π implies M ′′ 6|= Π1. Therefore, M ′′ is not a maximal, non-total QHT-model of
Π1. Observing that M ′′ is an Herbrand QHT-model over L′ and L′ ⊇ L, we conclude that M ′′ is a maximal
non-total extended Herbrand QHT-model of Π2, but not of Π1. Contradiction. 2

6 Conclusion

Countermodels in equilibrium logic have recently been used in [2] to show that propositional disjunctive
logic programs with negation in the head are strongly equivalent to propositional theories, and in [3] to
generate a minimal logic program for a given propositional theory.

By means of Quantified Equilibrium Logic, in [24], the notion of strong equivalence has been extended
to first-order theories with equality, under the generalized notion of answer set we have adopted. QEL has
also been shown to capture open answer-sets [18] and generalized open answer-sets [17], and is a promising
framework to study hybrid knowledge bases providing a unified semantics, since it encompasses classical
logic as well as disjunctive logic programs under the answer-set semantics [5].

Our results extend these foundations for the research of semantic properties in these generalized set-
tings. First, they complete the picture concerning the prominent notions of equivalence by making uniform
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equivalence, which so far has only been dealt with for finite programs under ordinary answer-set semantics,
amenable to these generalized settings without any finiteness restrictions, in particular on the domain. In ad-
dition, the developed notion of relativized hyperequivalence interpretation provides a means for the study of
more specific semantic relationships under generalized answer-set semantics. Thus, a general and uniform
model-theoretic framework is achieved for the characterization of various notions of equivalence studied in
ASP. We have also shown that for finite programs, i.e., those programs solvers are able to deal with, infinite
domains do not cause the problems observed for infinite propositional programs, when dealing with uniform
equivalence in terms of HT-models of the grounding.

An intersting theoretical problem for further work in this direction is to consider equivalences and cor-
respondence under projections of answer sets [9, 27, 33, 32]. It is not difficult to apply existing techniques
to our characterizations in order to obtain characterizations for projective versions of uniform and strong
equivalence, as well as for relativized notions thereof, i.e., as long as the same alphabet is permitted for
positive and negative occurrences in the context. However, it is not trivial to characterize projective ver-
sions of relativized hyperequivalence in the general case, something which also has not been considered for
propositional logic programs so far.

Concerning the application of our results, there is ongoing work in the context of combining ontologies
and nonmonotonic rules, which is an important issue in knowledge representation and reasoning for the
Semantic Web. The study of equivalences and correspondences under an appropriate (unifying) semantics,
such as the generalizations of answer-set semantics characterized by QEL, constitute a highly relevant topic
for research in this application domain [14]. Like for Datalog, uniform equivalence may serve investigations
on query equivalence and query containment in these hybrid settings, and due to the combination of two for-
malisms, more specific notions of equivalence are needed to obtain the intended notions of correspondence.
While our characterizations serve as a basis for these investigations, in particular the simplified treatment of
extended signatures for (equivalence) interpretations is expected to be of avail, when considering separate
alphabets.

On the foundational level, our results raise the interesting question whether extensions of intuitionistic
logics that allow for a direct characterization of countermodels or equivalence interpretations, would provide
a more suitable logical foundation of these structures and a more suitable formal apparatus for the study of
(at least notions of uniform) equivalences in ASP.
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