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Abstract. We study a wide class of graph editing problems that ask whether a given graph
can be modified to satisfy certain degree constraints, using a limited number of vertex dele-
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1 Introduction

The problem of finding a regular subgraph in a given graph and related problems have a long
history [2, 3, 4, 5, 6, 8, 9, 21, 22, 28, 29, 30, 31, 32, 34, 36, 37]. It is often of relevance how much
the regular subgraph differs from the given graph. For instance, if an interconnection network is
regular, then one can use identical switches for its nodes to save costs [12]; if it is not regular,
then the question arises whether we can make it regular with a small editing cost. Indeed, Moser
and Thilikos [25] studied the problem of whether it is possible to obtain from the given graph
an r-regular subgraph by deleting at most k vertices. They showed that this problem is tractable
if k and r are considered small; more precisely they showed that the problem is fixed-parameter
tractable for parameter k + r which means that for fixed k + r the problem can be solved in
polynomial time where the order of the polynomial is independent of k + r (more background on
parameterized complexity is given in Section 2.2). In this paper we extend this study to a more
general setting as follows:

• We consider several editing operations including edge addition, so that in some cases the
obtained graph is not a subgraph of the given graph. In particular we consider the editing
operations vertex deletion (denoted v), edge deletion (denoted e), and edge addition (de-
noted a).

• Each vertex v of the given graph has assigned a list δ(v) of numbers; after the editing process
the degree of the vertex must belong to its list. For example, by assigning all vertices the list
{r} we can force the target graph to be r-regular. By allowing arbitrary lists we can express
variants of the GENERAL FACTOR problem introduced and studied by Lovász [19, 20].

• Vertices and edges can have positive integer weights, giving each edit operation a certain
cost.

Now, for each non-empty subset S ⊆ {v,e,a} we consider the general problem WEIGHTED

DEGREE CONSTRAINT EDITING(S), or WDCE(S) for short:

WDCE(S)

Instance: A graph G = (V,E), two integers k and r, a weight function ρ : V ∪ E →
{1, 2, . . . }, and a degree list function δ : V → 2{0,...,r}.

Question: Can we obtain from G a graph G′ = (V ′, E ′) using editing operations from
S only, such that for all v ∈ V ′ we have

∑
uv∈E′ ρ(uv) ∈ δ(v), with total editing cost

at most k?

Our main result is the classification of the parameterized complexity of WDCE(S) for all
choices of S and where the parameter is either just the total editing cost k or the combination k+ r
of the total editing cost and the upper bound on the desired degrees:
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Theorem 1.1 (Classification Theorem). For all non-empty subsets S of {v,e,a} the problem
WDCE(S) is fixed-parameter tractable for parameter k + r, and W[1]-hard for parameter k.
If v ∈ S then WDCE(S) remains W[1]-hard for parameter k even when all degree lists are re-
stricted to {r} and all vertices and edges have unit weight 1.

The W[1]-hardness of a parameterized problem provides strong evidence that the problem is
not fixed-parameter tractable, similar to NP-hardness providing strong evidence that a problem is
not polynomial-time tractable (see Section 2.2).

We write WDCE1(S) to indicate that the given graph is unweighted, and we write WDCE∗(S)
if all degree lists are singletons; if all singletons are {r} then we write WDCEr(S). Furthermore,
we write∞WDCE(S) to indicate that the editing cost is not restricted (or set to a value that exceeds
the sum of weights of all vertices and edges). We omit set braces whenever the context allows, and
write, for example, WDCE(v) instead of WDCE({v}).

Related Work Next we review some known problems and results and indicate how they map
into our general problem WDCE(S).

The problem CUBIC SUBGRAPH = ∞WDCE3
1(v,e) was shown NP-complete by Chvátal [17].

Stewart has shown that the problem r-REGULAR SUBGRAPH = ∞WDCEr1(v,e) remains NP-com-
plete for any r ≥ 3, even for graphs with maximum degree 7, and planar graphs with maximum
degree 4 [30, 31]. With WDCEr1(v) we can express the problem of finding an induced r-regular
subgraph of largest order which includes several known NP-complete problems: MAXIMUM IN-
DEPENDENT SET = WDCE0

1(v) [17], MAXIMUM INDUCED MATCHING = WDCE1
1(v) [4, 34],

and MAXIMUM INDUCED r-REGULAR SUBGRAPH = WDCEr1(v) [5, 25].
The problem r-FACTOR = ∞WDCEr1(e) asks whether a given graph has a spanning r-regular

subgraph; this problem is well known to be solvable in polynomial time as it can be reduced to
the problem PERFECT MATCHING = ∞WDCE1

1(e) as shown by Tutte [35]. In fact Tutte’s result
holds for the more general problems f -FACTOR = ∞WDCE∗1(e) and PERFECT b-MATCHING =

∞WDCE∗(e) [18]. Lovász [19, 20] considered the generalization of this problem, GENERAL

FACTOR = ∞WDCE1(e), where each vertex is given a list of possible degrees. By a result of
Cornuéjols [9], GENERAL FACTOR is NP-complete, apart from certain trivial cases, if the lists
may contain gaps of length > 1, such as in {2, 3, 6, 7}, but is otherwise polynomially solvable.

Moser and Thilikos [25] have established the fixed-parameter tractability of k-ALMOST r-
REGULAR GRAPH = WDCEr1(v) with combined parameter k + r but left the parameterized
complexity of the same problem with parameter k as an open question. Our Classification Theorem
shows that the latter is W[1]-hard, being a special case of WDCE(v).

Organization, Approach, and Further Results After giving further preliminaries and back-
ground information in Section 2, we establish in Section 3 the W[1]-hardness part of the Classifi-
cation Theorem. We proceed by reducing the parameterized CLIQUE problem. In particular, we
use a special variant of CLIQUE which asks whether a given graph, vertex colored with k colors,
contains a properly colored k-clique. This W[1]-complete problem has recently proven very useful
for several W[1]-hardness results.
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In Section 4 we establish the fixed-parameter tractability part of the Classification Theorem.
We take a logic approach and apply (after preprocessing) the algorithmic meta-theorem of Frick
and Grohe [16]. The meta-theorem allows a quick and elegant classification of the parameterized
complexity of problems but does not provide practical algorithms since the hidden constants are
large. Therefore we develop more practical algorithms for some of the fixed-parameter tractable
cases.

In Section 5 we show that the problems WDCE∗(S) and WDCE∗1(S) for ∅ 6= S ⊆ {e,a}
are in fact solvable in polynomial time. Ultimately we make use of Edmond’s minimum weight
perfect matching algorithm [13, 22].

In Section 6 we use kernelization, an algorithmic technique that transforms in polynomial time
a problem instance into an equivalent instance of size bounded by a function of the parameter (the
reduced instance is called a problem kernel). In particular, we develop efficient kernelizations for
the problems WDCE∗(v,e) and WDCE∗(v) which also apply to WDCEr1(v), obtaining a kernel
of size O(kr(k + r)), improving upon the O(kr(k + r)2) kernel of Moser and Thilikos [25].
An interesting feature of our approach is that we can achieve smaller kernels for the unweighted
versions of the editing problems by considering them as special cases of the weighted version. This
was initially our motivation for considering weighted versions of the editing problems. Further
discussion of weights (or annotations) with respect to kernelization can be found in Abu-Khzam
and Fernau’s paper [1].

It appears that our kernelization approach cannot be extended to all fixed-parameter tractable
cases of the Classification Theorem, in particular not to cases that include both vertex deletion and
edge addition: we show that our approach applied to WDCE∗(v,a) involves an NP-hard task.

2 Preliminaries

2.1 Graph theoretic terminology
All graphs considered are finite, simple, and undirected. We denote a graph G with vertex set V
and edge set E by G = (V,E) and write V (G) = V and E(G) = E. The edge between two
vertices u and v is denoted uv or equivalently vu. The degree of a vertex u in a graph G is denoted
dG(u); when the context allows, we omit the subscript. A graph H = (V ′, E ′) is a subgraph of
a graph G = (V,E) if V ′ ⊆ V and E ′ ⊆ E. The subgraph H is induced by V ′ if every edge
uv ∈ E with u, v ∈ V ′ also belongs to E ′. We consider graph editing operations that alter a graph
G = (V,E) into a new graph G′ = (V ′, E ′).

Applying the operation of edge deletion e to an edge uv removes that edge from the graph (i.e.,
E ′ = E \ {uv}, and V ′ = V ). Applying the operation of edge addition a to a pair of vertices
u, v inserts an edge between u and v (i.e., E ′ = E ∪ {uv}, V ′ = V ). In the unweighted case,
edge addition is only possible if the edge uv is not already present in E. Applying the operation
of vertex deletion v to a vertex u removes u and all edges incident with u (i.e., V ′ = V \ {u},
E ′ = E \ {uv | v ∈ V }); we also write G′ = G− v. Each of these operations has unit cost 1.

We also consider weighted graphs where each vertex and edge x is given with an integral pos-
itive weight ρ(x). The weights have two purposes: firstly, the weight of an edge contributes to the



INFSYS RR 1843-12-01 5

weighted degree of the incident vertices, and secondly, the weight of a vertex or edge determines
the cost of deleting that vertex or edge; more precise definitions follow.

The weighted degree of a vertex v ∈ V is given by dρG(v) =
∑

uv∈E ρ(uv). Thus an edge uv of
weight j can be thought as representing j “parallel edges” between u and v.

Applying the operation e to a weighted edge e either reduces the weight of e by 1 if ρ(e) > 1,
or removes e if ρ(e) = 1. Similarly, applying the operation a to a pair of distinct vertices u, v
either increases the weight of the edge e = uv by 1 if e is already present, or adds the edge e
with weight 1 if the edge is not present; thus, for edge addition we need to consider weighted and
unweighted graphs separately, as the latter is not just a special case of the former. Applying the
operation v to a vertex u either removes the vertex (and all incident edges) if ρ(u) = 1 or decreases
ρ(u) by 1 if ρ(u) > 1. Again, each of these operations has unit cost 1. Hence the total cost of
deleting a vertex or edge of a weighted graph is the weight of that vertex or edge.

2.2 Basic Parameterized Complexity

Here we introduce the relevant concepts of parameterized complexity theory. For a more in-depth
coverage we refer to the books of Downey and Fellows [11], Flum and Grohe [15] and Nieder-
meier [26].

When considering the complexity of a problem in a traditional P vs. NP setting, the only mea-
sure available is n, the instance size (or some function thereof). Parameterized complexity adds
a second measure, that of a parameter k, which is given as a special part of the input. If a (deci-
sion) problem has an algorithm that runs in time O(f(k)p(n)), where p is a polynomial and f is a
computable function of k, then the problem is fixed-parameter tractable, or in the class FPT. Con-
versely, the demonstration of hardness for the class W[t] for some t ≥ 1 provides strong evidence
that the problem is unlikely to be fixed-parameter tractable. This is analogous to a problem being
NP-hard in the traditional framework.

Reduction to a problem kernel, or kernelization, is one of the fundamental techniques for
demonstrating fixed-parameter tractability. Kernelization is a polynomial-time transformation that
replaces an instance (I, k) of a parameterized problem (where I is the input and k the parameter)
by an instance (I ′, k′) where |I ′| ≤ g(k′) and k′ ≤ h(k) for computable functions g and h, such
that (I, k) is a yes-instance if and only if (I ′, k′) is a yes-instance. It is known that a parameterized
problem admits a kernelization if and only if it is fixed-parameter tractable [10].

To demonstrate W[t]-hardness we use FPT reductions. Given two parameterized problems Π1

and Π2, an FPT reduction from Π1 to Π2 maps an instance (I, k) of Π1 to an instance (I ′, k′) of Π2

such that

1. k′ = h(k) for some computable function h,

2. (I, k) is a yes-instance of Π1 if and only if (I ′, k′) is a yes-instance of Π2, and

3. the mapping can be computed in time O(f(k)p(n)), where f is some computable function
of the parameter k and p is a polynomial of the instance size n.
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An FPT reduction is a polynomial-time FPT reduction if the function f is a polynomial.
The classes W[t], t = 1, 2, . . ., are defined as the classes of parameterized problems that can be

reduced to certain weighted satisfiability problems via FPT reductions (see [11, 15]). The classes
form a chain FPT ⊆ W[1] ⊆ W[2] ⊆ · · · where all inclusions are believed to be strict. The
class M[1] sits between FPT and W[1], and is believed to at least be distinct from FPT under a
parameterized version of the Exponential Time Hypothesis.

Assume there is an FPT reduction from Π1 to Π2. If Π2 is in FPT then so is Π1, and if Π1 is
W[t]-hard then so is Π2. If the reduction is a polynomial-time FPT reduction and Π1 is NP-hard,
then clearly Π2 is NP-hard as well.

2.3 A Useful Construction: The Fixing Gadget
Here we introduce a construction that we will later use in several proofs. For any r ≥ 2, this
construction produces an almost r-regular graph G, where all vertices have degree r except two
with degree r − 1. We will refer to an instance of Gr as a fixing gadget. The vertex set of Gr

consists of the vertices xj, yji , z
j
i for 1 ≤ j ≤ 2 and 1 ≤ i ≤ r. The edge set consists of all edges

xjyji and yji z
j
i′ for 1 ≤ j ≤ 2 and 1 ≤ i, i′ ≤ r, i 6= i′, and all edges z1i z

2
i for 1 ≤ i ≤ r − 1.

Thus each vertex has degree r, except z1r and z2r which have degree r − 1. The two vertices of
degree r − 1 will be used as attachment points.

3 W[1]-Hardness of WDCE for Parameter k
We now turn to the hardness part of the Classification Theorem.

Ultimately, all our reductions are from the CLIQUE problem, parameterized by the number of
vertices that form the clique, a fundamental W[1]-complete problem [11].

CLIQUE

Instance: A graph G = (V,E) and an integer k.

Question: Does G contain a k-clique (i.e., a complete subgraph on k vertices)?

Without parameterization, CLIQUE is NP-complete [17], and all our reductions are in fact
polynomial-time FPT reductions. Therefore, all problems that we show to be W[1]-hard are
NP-hard if considered without parameterization. This holds in particular for the problem con-
sidered in the next lemma; we shall use its NP-hardness part explicitly at the end of Section 6.

First we show that REGULAR CLIQUE (the problem CLIQUE restricted to regular graphs) is
W[1]-complete.

Lemma 3.1. The problem REGULAR CLIQUE is NP-complete and W[1]-complete for parame-
ter k.

Proof. Membership in NP of the non-parameterized version and membership in W[1] for the pa-
rameterized version of the problem follow immediately as the problem is a special case of CLIQUE.
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To prove hardness we devise a polynomial-time FPT reduction from CLIQUE. Let (G, k) be an in-
stance of CLIQUE. We construct an instance (G′, k) of REGULAR CLIQUE by modifying G as
follows. Let ∆ be the maximum degree of G, and let r = ∆ + (∆ mod 2). We will now demon-
strate how to make the graph r-regular. We use fixing gadgets (see Section 2.3) to increase the
degree of each vertex by attaching as many fixing gadgets as necessary by the two attachment ver-
tices. This attachment is made between a vertex v and an instance of the fixing gadget by adding
the edges between each attachment vertex and v (or perhaps only one of these edges, as below). If
the degree of v is initially even, then we use an integral number of fixing gadgets; if the degree of v
is initially odd, then will reach degree r−1 by this method, and we will have to take another degree
r − 1 vertex and attach one fixing gadget attachment vertex to the first, and the other attachment
vertex to the second. There is always some pairing of such vertices as necessary as every graph
contains an even number of vertices of odd degree, and so there is an even number of vertices
requiring an odd increase of degree.

The fixing gadgets added to create G′ contain no non-trivial cliques and do not introduce any
new non-trivial cliques since the two attachment vertices in a fixing gadget are not adjacent. Thus
G and G′ have exactly the same non-trivial cliques. Clearly G′ can be constructed from G in
polynomial time, and since the parameter remains the same we have a polynomial-time FPT re-
duction.

The reduction for several of our hardness results will be from the following variant of REGU-
LAR CLIQUE.

STRONGLY REGULAR MULTI-COLORED CLIQUE (or SRMCC)

Instance: A graph G = (V,E), vertex-colored with k colors, where each vertex has
exactly d neighbors in each of the k color classes (thus G is kd-regular and each color
class has the same size).

Question: Does G contain a properly colored k-clique (i.e., a k-clique whose vertices
have all different colors)?

The proof of the next lemma follows closely the W[1]-completeness proof of the problems
MULTI-COLORED CLIQUE and PARTITIONED CLIQUE in [14, 27], respectively.

Lemma 3.2. The problem SRMCC is W[1]-complete for parameter k.

Proof. Again W[1] membership follows as the problem is a special case of CLIQUE. We reduce
from REGULAR CLIQUE. Given an instance (G, k) of REGULAR CLIQUE where G is d-regular,
we let G′ be the union of k vertex disjoint copies G1, . . . , Gk of G, assigning the vertices of Gi the
color i. Then for every pair of vertices u, v in G, if uv is an edge, we add the edges uivj , for all
i, j, where ai denotes the vertex in Gi which corresponds to vertex a in G. Clearly every vertex of
G′ has exactly d neighbors in each color class, and there is a k-clique in G if and only if there is a
properly colored k-clique in G′.
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We note that the reductions used for Lemmas 3.1 and 3.2 are computable in polynomial time
and the parameter dependence is linear (in fact in both cases the parameter remains unchanged)
and hence are “serf -reductions” [15]. This observation allows us to obtain the following lower
bound: The problems REGULAR CLIQUE and SRMCC have no algorithm running in time no(k)

(omitting polynomial factors) unless FPT = M[1]. Here n is the number of vertices of the input
graph and k is size of the clique sought. The lower bound follows from a similar lower bound for
CLIQUE [7] and the equivalence of a parameterized version of the Exponential Time Hypothesis
and the assumption FPT 6= M[1] [15]. We cannot obtain a similar lower bound for the problems
considered in Theorem 3.3 as the parameter transformation in the proof is not linear.

Theorem 3.3. The problem WDCEr1(S) is W[1]-hard for parameter k and {v} ⊆ S ⊆ {v,e,a},

Proof. Consider an instance (G, k) of SRMCC. Let G = (V,E) be kd-regular, thus each vertex
has exactly d neighbors in each color class. We denote the set of vertices of color i by Vi (1 ≤ i ≤
k). Then V =

⋃k
i=1 Vi forms a partition of V . Let |Vi| = s for all 1 ≤ i ≤ k.

We construct an instance (G′, k′) of WDCEr1(S), G′ = (V ′, E ′), by first defining k sets V ′i
(1 ≤ i ≤ k) such that for each vertex v ∈ Vi we add a vertex v′ to V ′i . We add all possible edges
between pairs of vertices in the same set V ′i . We call each of these k subgraphs induced by V ′i a
(color) class gadget.

For each edge uv in G where u ∈ Vi and v ∈ Vj with i 6= j, we add to G′ two vertices u′v′ and
v′u′ , with the edges u′u′v′ , u

′
v′v
′
u′ and v′u′v

′. For each pair V ′i and V ′j (where i 6= j) of class gadgets,
we denote the set of these new vertices and edges as Pij . We denote by P i

ij the set of all vertices
u′v′ ∈ Pij where u′ ∈ V ′i . Furthermore, for each pair of vertices uv and u′v′ in the same P i

ij we add
the edge uvu′v′ to P i

ij if u and u′ belong to the same class gadget and u 6= u′. We call each such
Pij a connection gadget, and each P i

ij a side of the connection gadget. There are
(
k
2

)
connection

gadgets in total. Fig. 1 gives a sketch of the structure of a connection gadget.

Vi P i
i,j P j

i,j Vj

u vuv vu

Figure 1: An illustration of the gadget construction in the proof of Theorem 3.3.

At this point we have k class gadgets corresponding to the k color classes in the original graph,
each with s vertices of degree (s − 1) + d(k − 1), and

(
k
2

)
connection gadgets corresponding to

the “inter-color-class” edges, each with 2sd vertices of degree 2 + (s − 1)d (sd vertices in each
half). Now we choose r for the instance such that r ≥ max((s− 1) + d(k− 1), 2 + (s− 1)d), and
r ≡ s + 1 modulo 2 (i.e., r is of opposite parity to s). In particular we may choose the smallest r
such that this is true.
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Now we add for each class gadget V ′i a gadget V ′′i that contains r + 1 − ((s − 1) + d(k − 1))
vertices with s edges per vertex, such that each vertex in V ′′i is adjacent to every vertex in the class
gadget V ′i . We refer to V ′′i as a degree gadget. We then add a further set of fixing gadgets as before
to complete the degree of each vertex in the degree gadget to r+1. Note that by choosing r to have
opposite parity to s, we guarantee that this is possible (if s is odd, r will be even and each vertex
will require r + 1 − s additional edges, which is even, and thus achievable; if s is even, r will be
odd, then r + 1 − s is again even, and we can complete the construction). Thus each vertex in
each class gadget and degree gadget has degree one too many, but the vertices in the fixing gadgets
attached to each degree gadget have the correct degree.

We similarly adjust the connection gadgets by adding two degree gadgets, each with r + 1 −
2+(s−1)d vertices, one for each side of the connection gadget. Every vertex in the degree gadget
is connected to every vertex in its associated side of the connection gadget. Again we complete the
degree of vertices in the degree gadgets to r + 1 by adding fixing gadgets, and as before, by the
choice of r we can guarantee that this can be done (if s is even, r is odd and r + 1− sd is even, if
s is odd, r is even and r + 1− sd is even). Thus each vertex in the connection gadgets has degree
r + 1, as does each vertex in the degree gadgets. Each vertex in each fixing gadget has degree r.

We can construct G′ from G in polynomial time, as we are adding only (4r+ 3)(2r+ 2s− s−
sd− dk + 1) vertices, where r, s, d ≤ n. Thus, by the following claim we have a polynomial-time
FPT reduction from SRMCC to WDCEr1(S), and the result follows.

We set k′ = k + 2
(
k
2

)
.

Claim 3.4. The following statements are equivalent:

1. (G, k) is a yes-instance of SRMCC.

2. (G′, k′) is a yes-instance of WDCEr1(v).

3. (G′, k′) is a yes-instance of WDCEr1(v,e).

4. (G′, k′) is a yes-instance of WDCEr1(v,e,a).

(1⇒ 2) Assume that (G, k) is a yes-instance of SRMCC. Then there exist k vertices v1, . . . , vk,
one from each color class, that form a properly colored clique. Assume without loss of generality
that vi ∈ Vi. Then we can delete from G′ the corresponding vertices v′i from V ′i , and the pairs of
vertices (v′i)v′j and (v′j)v′i from Pij that correspond to the edges in the clique. Then each remaining
vertex in each class gadget has had precisely one incident edge removed from it, as have the
vertices in each degree gadget associated with the class gadget. So the components corresponding
to the color classes and their immediate extension are now r-regular. Similarly each vertex in
every connection gadget and their associated connection gadgets has had exactly one incident edge
removed, either by the vertex removed from the connection gadget, or from the parent vertex in the
class gadget (but never both). Now each vertex in these gadgets has degree precisely r. We have
chosen one vertex from each V ′i , and two vertices from each Pij , giving a total of k′ = k + 2

(
k
2

)
vertices, thus (G′, k′) is also a yes-instance of WDCEr1(v).

(2⇒ 3, 3⇒ 4) These implications are trivial.
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(4⇒ 1) Assume that (G′, k′) is a yes-instance of WDCEr1(v,e,a). Then there are k′ = k+2
(
k
2

)
deletions that can be made to make G′ r-regular. Obviously we cannot delete any vertices from
the fixing gadgets in the graph. Further we cannot delete any vertices from the degree gadgets, as
this would reduce the degree of their attached fixing gadgets. Thus the deleted vertices must come
from class and connection gadgets. However, there must be precisely one vertex from each such
component: if no vertex is deleted then the degree of some vertex in that component will remain
r + 1; if more than one vertex is deleted, then the degree of some vertices in the component will
drop below r. Also note that for each vertex uv deleted from one side of a connection gadget, the
vertex deleted in the other side must be the vertex vu. If it were not, then at least one vertex in
each side would have degree r − 1. Also, the vertex deleted from each side of each connection
gadget must be attached to the vertex deleted from the adjacent class gadget, otherwise the vertices
attached to vertices deleted from the class gadget will have degree at most r − 1. Thus we can see
that if (G′, k′) is a yes-instance, the set of vertices to be deleted is very precise and restricted. In
fact, if we are to use only the allotted budget of k + 2

(
k
2

)
, we must choose precisely one vertex

from each class gadget, and two vertices from each connection gadget, where the vertices from the
connection gadget component are connected to the vertices deleted from the two class gadgets it
is associated with. An edge deletion can only reduce the degree of two vertices, leaving us with
too many edges to delete, or vertices of degree less than r. Similarly, the tight budget implies that
no edge addition can be used either. Thus (G′, k′) is a yes-instance of WDCEr1(v). Furthermore,
the vertices v1, . . . , vk corresponding to the k vertices deleted from the class gadgets induce a
properly colored clique in G; the edges of the clique correspond to the 2

(
k
2

)
vertices deleted from

the connection gadgets. Hence (G, k) is a yes-instance of SRMCC.

Corollary 3.5. The problems WDCE∗1(S) and WDCE1(S) are W[1]-hard for parameter k and
{v} ⊆ S ⊆ {v,e,a}.

As the proof of Theorem 3.3 ensures that no edge addition is used in the reduction, the
W[1]-hardness results hold also for the weighted versions of the problems.

Corollary 3.6. The problems WDCEr(S), WDCE∗(S), and WDCE(S) are W[1]-hard for pa-
rameter k and {v} ⊆ S ⊆ {v,e,a}.

Let WDCE=(S) denote the variant of WDCEr(S) where we ask for a regular graph of un-
specified regularity (i.e., when r is not given).

Corollary 3.7. The problems WDCE=
1 (S) and WDCE=(S) are W[1]-hard for parameter k and

{v} ⊆ S ⊆ {v,e,a}.

Proof. We reduce from WDCEr1(S) and WDCEr(S), respectively. Given an instance (G, k) of
one of these problems, we construct a new instance (G′, k) by adding one r-regular connected
component with more than k vertices. This can be done by taking, for example, k fixing gad-
gets and connecting them in a ring. We clearly cannot alter this component within the budget k,
thus the only possible solution is the same as that for (G, k). Thus if (G′, k) is a yes-instance of
WDCE=

1 (S) or WDCE=(S), then it is also a yes-instance of WDCEr1(S) or WDCEr(S), respec-
tively. The converse direction holds trivially.
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The next theorem covers the remaining W[1]-hard cases of the Classification Theorem.

Theorem 3.8. The problem WDCE1(S) is W[1]-hard for parameter k and ∅ 6= S ⊆ {e,a}.

Proof. Let (G, k) be an instance of REGULAR CLIQUE whereG is r-regular and has n vertices. We
construct a graph G′ by adding to G additional vertices v1, . . . , vk and all edges uvi for u ∈ V (G)
and 1 ≤ i ≤ k. We set δ(vi) = {n − k}, 1 ≤ i ≤ k, and δ(u) = {r − k + 1, r + k} for
all u ∈ V (G). We set k′ =

(
k
2

)
+ k2. Furthermore let G be the complement graph of G (i.e.,

V (G) = V (G) and E(G) = {uv | u, v ∈ V (G), u 6= v, and uv /∈ E(G) }) and label the vertices
v of G with δ(v) = { |V (G)| − 1− d | d ∈ δ(v) }.

The theorem follows from Lemma 3.1 and the following claim.
Claim 3.9. The following statements are equivalent.

1. (G, k) is a yes-instance of REGULAR CLIQUE.

2. (G′, k′) is a yes-instance of WDCE1(e).

3. (G′, k′) is a yes-instance of WDCE1(e,a).

4. (G, k) is a yes-instance of WDCE1(a).

(1 ⇒ 2) Assume there is a k-clique in G. Let the set of vertices of the clique be C =
{u1, . . . , uk}. Then we can satisfy the degree requirement of G′ by deleting the edges uiuj ,
1 ≤ i, j ≤ k, and the edges viuj , 1 ≤ i, j ≤ k. The number of edges deleted is exactly k′.

(2⇒ 3) This implication is trivial.
(3⇒ 1) Assume that (G′, k′) is a yes-instance of WDCE1(e,a) and fix a solution of total cost

at most k′. For i ∈ {r − k + 1, r + k} let Vi ⊆ V (G) be the set of vertices that have degree i after
editing. LetD be the set of edges that are deleted in the solution and are incident with a vertex vi for
1 ≤ i ≤ k. Clearly |D| ≥ k2. LetDi ⊆ D denote the subset of deleted edges that have an end point
in Vi, i ∈ {r−k+1, r+k}. Each deleted edge e ∈ D causes the degree of a vertex v ∈ V (G) to be
decreased by one, and therefore causes additional editing operations to repair the degree of v: either
by edge additions (if v ∈ Vr+k) or by edge deletions (if v ∈ Vr−k+1). At least one edge addition
is required to repair the degree change caused by 2 edges from Dr+k. At least

(
k
2

)
= k(k − 1)/2

edge deletions are required to repair the degree change caused by k2 edges from Dr−k+1; this is
exactly the case ifG contains a clique on k vertices u1, . . . , uk, andDr+1 = {uivj | 1 ≤ i, j ≤ k }.
Thus the average cost caused by an edge in Dr+k is at least 1/2, whereas the average cost caused
by an edge in Dr−k+1 is at least k(k − 1)/(2k2) = (k − 1)/(2k), which is smaller than 1/2.
Consequently, the editing cost is smallest if Dr+k = ∅ and Dr−k+1 = {uivj | 1 ≤ i, j ≤ k } for
vertices u1, . . . , uk that form a clique in G. However, in this case the total editing cost is exactly
|Dr−k+1|+ |Dr−k+1|(k − 1)(2k) = k2 +

(
k
2

)
= k′, hence this case is the only one possible.

(2⇔ 4) This equivalence follows immediately from the definition of G.

Since the main reduction in the proof of Theorem 3.8 does not use edge addition it also applies
to the weighted version of the problems:

Corollary 3.10. The problem WDCE(S) is W[1]-hard for parameter k and ∅ 6= S ⊆ {e,a}.
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4 Fixed-Parameter Tractability of WDCE for Parameter k + r

In this section we establish the fixed-parameter tractability part of the Classification Theorem:

Theorem 4.1. The problems WDCE(S) and WDCE1(S) are fixed-parameter tractable for pa-
rameter k + r and ∅ 6= S ⊆ {v,e,a}.

For establishing Theorem 4.1 we take a logical approach and apply the meta-theorem of Frick
and Grohe [16]. They show that, given a sentence φ in first-order logic and a relational structure
S, the problem of deciding whether S is a model of φ is fixed-parameter tractable, parameterized
by the length of φ, when the structure has “effectively bounded local treewidth.” More particularly
we use their corollary that the parameterized model checking problem for first-order logic is fixed-
parameter tractable for relational structures of bounded degree. Stewart [33] pointed out that this
result also holds if the degree bound is not global but depends on the parameter. Furthermore he
indicated how this can be used to show that r-REGULAR SUBGRAPH with parameter k+r is fixed-
parameter tractable. In the following we extend this approach to WDCE(S) and WDCE1(S) for
S ⊆ {v,e,a}.

We must now ensure that the graph is of bounded weighted degree, which is not guaranteed
by the problem. However if the graph has a vertex v such that dρ(v) > k + r then, if there is a
solution of cost at most k, v must be part of the solution, i.e., v must be deleted (this operation will
also be part of the kernelization approach in Section 6). Thus we can eliminate all such vertices
in polynomial time and decrease the parameter k accordingly. Further, we can assume that all
vertices are of weight at most k+1 and all edges are of weight at most r+k+1 (this or any higher
weight renders deletion infeasible). Hence we can assume that the weighted degree and all edge
and vertex weights are bounded in terms of the parameters k and r.

We associate with a weighted graph G its incidence structure SG. The universe of SG consists
of the vertices and edges of G. SG has two unary relations V and E (expressing the property of
being a vertex or edge, respectively), a binary relation I (where Ixy expresses that vertex x is
incident to edge y), and unary relations Wi, 1 ≤ i ≤ k + 1, and Dj , 0 ≤ j ≤ r (where Wix
expresses that vertex x has weight ρ(x) = i, and Dj(x) expresses that j ∈ δ(x)). We represent an
edge uv of weight w by w distinct “parallel” elements x1, . . . , xw with Iuxi and Ivxi, 1 ≤ i ≤ w.
Note that the maximum degree of the structure SG (in the sense of [16]) is bounded in terms of k
and r.

Thus, for showing Theorem 4.1 it suffices to formulate first-order formulas φk, k ≥ 0, such
that SG is a model of φk if and only if (G, k, r) is a yes-instance of the considered editing problem.
In the following we write [n] = {1, . . . , n}. We define

φk =
∨

k′,k′′,k′′′∈[k] such that k′+k′′+k′′′≤k

∃u1, . . . , uk′ , e1, . . . , ek′′ , a1, . . . , ak′′′ , b1, . . . , bk′′′ (φ′k ∧ ∀v φ′′k)

where φ′k and φ′′k are given below. The subformula φ′k is the conjunction of the clauses (1)–(3)
and ensures that u1, . . . , uk′ represent deleted vertices, e1, . . . ek′′ represent deleted edges, ai, bi,
1 ≤ i ≤ k′′′, represent end points of added edges, and the total editing cost is at most k. Note
that since added edges are not present in the given structure we need to express them in terms
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vertex pairs. For the unweighted case we must also include subformulas (4) and (5) to ensure
that the addition of edges does not produce parallel edges. By restricting k′, k′′ or k′′′ to zero as
appropriate we can express which editing operations are available.

(1)
∧
i∈[k′] V ui ∧

∧
i∈[k′′]Eei “ui is a vertex, ei is an edge;”

(2)
∧
i∈[k′′′] V ai ∧ V bi ∧ ai 6= bi ∧

∧
j∈[k′](uj 6= ai ∧ uj 6= bi) “ai and bi are distinct vertices and

not deleted;”

(3)
∨
w1,...,wk′∈[k′] such that

∑
i∈[k′] wi+k′′+k′′′≤k

∧
i∈[k′]Wwi

ui “the weight of deleted vertices is cor-
rect;”

(4)
∧

1≤i<j≤k′′(ai 6= bj ∨ aj 6= bi) ∧ (ai 6= aj ∨ bi 6= bj) “the pairs of vertices are mutually
distinct;”

(5)
∧
i∈[k′′′] ∀y(¬Iaiy ∨ ¬Ibiy) “ai and bi are not adjacent.”

The subformula φ′′k ensures that after editing each vertex v has degree l ∈ δ(v).

φ′′k = (V v ∧
∧
i∈[k′]

v 6= ui)→
∨
l∈[r]

Dlv ∧
∨

l′, l′′ ∈ [l]
l′ + l′′ = l

∃x1, . . . , xl′ , y1, . . . , yl′′ φ′′′k ,

where φ′′′k is the conjunction of the clauses (6)–(12).

(6)
∧
i∈[l′] Ivxi “v is incident with l′ edges;”

(7)
∧

1≤i<j≤l′ xi 6= xj “the edges are all different;”

(8)
∧
i∈[l′],j∈[k′′] xi 6= ej “the edges have not been deleted;”

(9)
∧
i∈[l′],j∈[k′] ¬Iujxi “the ends of the edges have not been deleted;”

(10) ∀x(Ivx →
∨
i∈[l′] x = xi ∨

∨
i∈[k′′] x = ei ∨

∨
i Ixui) “v is not incident with any further

edges except deleted edges;”

(11)
∧
i∈[l′′]

∨
j(yi = aj ∧ v = bj) ∨ (yi = bj ∧ v = aj) “v is incident with at least l′′ added

edges;”

(12)
∧
j∈[l′′](v = aj →

∨
i yi = bj) ∧ (v = bj →

∨
j∈[l′′] yi = aj) “v is incident with at most l′′

added edges.”

The combination of the W[1]-hardness results of Section 3 and the fixed-parameter tractability
results of this section establishes the Classification Theorem.
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5 Polynomial Cases

In this section we show that the problems WDCE∗(S) and WDCE∗1(S) can be solved in polyno-
mial time for ∅ 6= S ⊆ {e,a}. If S = {e} then it is not difficult to apply standard methods of
matching theory [22]. The case S = {a} can be reduced to the case S = {e} by means of the
complement graph construction as in the proof of Theorem 3.8. However it is not immediately
apparent that matching techniques can be directly applied to the case where we allow both edge
addition and edge deletion. Hence we give a general construction for solving all variants of the
problem with ∅ 6= S ⊆ {e,a}.

Theorem 5.1. The problems WDCE∗(S) and WDCE∗1(S) can be solved in polynomial time for
∅ 6= S ⊆ {e,a}.

Proof. First we consider the problem WDCE∗(a,e); we will explain later how the approach can
be modified for the other versions of the problem. To simplify notation we write δ(v) = d instead
of δ(v) = {d}.

Let (G, k) be an instance of WDCE∗(e,a) with G = (V,E). For the scope of this proof it
is convenient to allow edges of weight 0, so we may assume that G is a complete graph. Solving
the problem is clearly equivalent to finding an edge weight function ρ′ : E(G) → {0, 1, 2, . . . }
of G such that for each v ∈ V (G) we have

∑
vv′∈E(G) ρ

′(vv′) = δ(v) and the cost of ρ′,∑
vv′∈E(G) |ρ(vv′)− ρ′(vv′)|, is at most k.
We construct a graph H with edge-weight function η as follows: For each vertex v of G we

introduce in H a set V (v) of δ(v) vertices. For each edge vv′ ∈ E(G) we add the following
vertices and edges to H .

1. We add two sets Vdel(v, v
′) and Vdel(v

′, v) of vertices, each of size ρ(vv′).

2. We add two sets Vadd(v, v
′) and Vadd(v

′, v) of vertices, each of size min(δ(v), δ(v′)).

3. We add all edges uw for u ∈ V (v) and w ∈ Vdel(v, v
′) ∪ Vadd(v, v

′), and all edges uw for
u ∈ V (v′) and w ∈ Vdel(v

′, v) ∪ Vadd(v
′, v).

4. We add edges that form a matching Mvv′ between the sets Vdel(v, v
′) and Vdel(v

′, v). We will
refer to these edges as deletion edges.

5. We add edges that form a matching M ′
vv′ between the sets Vadd(v, v

′) and Vadd(v
′, v) and

subdivide the edges of M ′
vv′ twice; that is, we replace xy ∈M ′

vv′ by a path x, xy, yx, y where
xy and yx are new vertices. We will refer to the edges of the form xyyx as addition edges.

For all addition and deletion edges e in E(H) we set η(e) = 1. All other edges e′ have
η(e′) = 0.

Claim 5.2. G has a solution ρ′ of cost at most k if and only if H has a perfect matching of weight
at most k.
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(⇒) Let ρ′ be a solution of cost k′ ≤ k. We define a perfect matching M of H as follows.
Consider an edge e = vv′ ∈ E(G).

First we consider the case ρ(e) ≤ ρ′(e). Let d = ρ′(e) − ρ(e). We match the vertices in
Vdel(v, v

′) to ρ(e) vertices in V (v), and similarly, we match the vertices in Vdel(v
′, v) to ρ(e) vertices

in V (v′). Now we choose d vertices x1, . . . , xd in Vadd(v, v
′); let y1, . . . , yd be the corresponding

vertices in Vadd(v
′, v). We match the vertices xi to vertices in V (v), the vertices yi to vertices

in V (v′), and the vertices (xi)(yi) and (yi)(xi) to each other, 1 ≤ i ≤ d. We match the remaining
vertices x ∈ Vadd(v, v

′)\{x1, . . . , xd} to xy and the remaining vertices y ∈ Vadd(v
′, v)\{y1, . . . , yd}

to yx. Observe that the defined matching has weight d (all edges used for the matching have weight
0 except for d addition edges).

Second we consider the case ρ′(e) ≤ ρ(e). Let d = ρ(e) − ρ′(e). We choose d vertices
x1, . . . , xd from Vdel(v, v

′) and match them to the corresponding vertices y1, . . . , yd in V (v′, v). We
match the remaining vertices in Vdel(v, v

′) \ {x1, . . . , xd} to vertices in V (v), and the remaining
vertices in Vdel(v

′, v) \ {y1, . . . , yd} to vertices in V (v′). We match all vertices x ∈ Vadd(v, v
′) to

the corresponding vertices xy, and symmetrically, all vertices y ∈ Vadd(v
′, v) to the corresponding

vertices yx. Observe that the defined matching has weight d as the only edges of weight 1 are d
deletion edges.

In both cases we have defined a matching that covers exactly ρ′(e) vertices of V (v) and ρ′(e)
vertices of V (v′). By assumption

∑
vv′∈E(G) ρ

′(vv′) = δ(v), hence we can proceed in this way for
all edges vv′ ∈ E(G), and we end up with a perfect matching M of H of weight k′ ≤ k.

(⇐) Conversely, let M be a perfect matching of H of minimum weight k′ ≤ k.
First, we make the observation that for the sets of vertices corresponding to an edge vv′, the

matching M must be symmetric. That is, if a vertex x from Vdel(v, v
′) is matched to a vertex in

V (v), then the adjacent vertex y in Vdel(v
′, v) must be matched to a vertex in V (v′), as there is no

other possibility if M is a perfect matching. Similarly if a vertex x in Vadd(v, v
′) is matched to a

vertex in V (v), then its corresponding vertex y in Vadd(v
′, v) must be matched to a vertex in V (v′),

and xy must be matched to yx, as again there is no other possibility if M is a perfect matching.
Thus a perfect matching of H must correspond to some solution for G.

Second, as M is of minimum weight, there can be no edge vv′ in G where the matching in H
has vertices from Vadd(v, v

′) that are matched to vertices in V (v) and vertices in Vdel(v, v
′) matched

to vertices in Vdel(v, v
′). Assume for contradiction that a ∈ Vadd(v, v

′) is matched to x ∈ V (v) and
d ∈ Vdel(v, v

′) is matched to c ∈ Vdel(v
′, v). By symmetry we must have b ∈ Vadd(v

′, v) matched
to y ∈ V (v′), and the vertices ab and ba must also be matched to each other. Then we could take
the following alternate matching M ′ where we match d to x, c to y, a to ab and b to ba. Then M ′ is
still a perfect matching, but of weight two less than M .

Then we can construct a solution ρ′ of weight k. For each addition edge used inM , we increase
the weight of the edge between the corresponding vertices in G by one. For each deletion edge
used in M , we reduce the weight of the corresponding edge in G. As the vertices in V (v) are
matched, we know that

∑
vv′∈E(G) ρ

′(vv′) = δ(v).
Therefore a minimum weight perfect matching for H corresponds to a minimum weight solu-

tion for G. This completes the proof of Claim 5.2.
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The graph H can be obtained from G in polynomial time, and we can find a minimum weight
perfect matching for H in polynomial time by application of Edmond’s minimum weight perfect
matching algorithm [13, 22]. Consequently WDCE∗(a,e) can be solved in polynomial time.

For the unweighted case WDCE∗1(e,a) we need to modify the above construction of H to
ensure that α′(e) ≤ 1 holds for all e ∈ E(G). This, however, can be accomplished by using
sets Vadd(v, v

′), vv′ ∈ E(G), of size at most 1 only: |Vadd(v, v
′)| = 1 if and only if ρ(vv′) = 0.

Furthermore, the above construction can be modified to deal with the (simpler) case where only
edge deletion or edge addition is available: For S = {e} we remove all addition edges from H;
for S = {a} we remove all deletion edges from H . It is easy to check that Claim 5.2 also holds
for these variants of WDCE∗(a,e) with H modified as described.

6 Kernelization
In Section 4 we demonstrated the fixed-parameter tractability of WDCE for parameter k+ r using
a logic-based approach which, although constructive, does not provide practically feasible algo-
rithms.

In this section we give efficient and practically feasible fixed-parameter algorithms for several
of the considered problems by means of kernelization. For WDCE∗(v) and WDCE∗(v,e) in
particular we obtain polynomially sized kernels. At the end of this section we provide theoretical
evidence that it is unlikely that our kernelization approach extends to all the remaining fixed-
parameter tractable cases covered by Theorem 1.1.

We consider reduction rules that replace an instance (G, k, r) of WDCE(S) with a smaller
instance (G′, k′, r′). A reduction rule is sound for an editing problem if it replaces a yes-instance
with a yes-instance and a no-instance with a no-instance. An instance (G, k, r) is reduced under
a reduction rule if the rule is not applicable to (G, k, r). For all reduction rules considered it is
obvious that they can be applied in polynomial time and one can check in polynomial time if they
are applicable.

Reduction Rule 1. Let (G, k, r) be an instance of WDCE(S). If there is a vertex v in G such that
dρ(v) > k + r, then replace (G, k, r) with (G′, k′, r) where G′ = G− v and k′ = k − ρ(v).

Lemma 6.1. Reduction Rule 1 is sound for WDCE(S) with {v} ⊆ S ⊆ {v,e}.

Proof. Assume there is such a vertex v. At least k + 1 vertices or edges must be deleted if we
do not delete v, but we may only perform at most k deletions. Thus (G, k, r) is a yes-instance of
WDCE(S) if and only if (G′, k′, r) is a yes-instance of WDCE(S).

Consider an instance (G, k, r) of WDCE(S). Extending a notion of Moser and Thilikos [25],
we define a clean region C of G as a maximal connected subgraph of G where each vertex v ∈
V (C) has weighted degree dρG(v) ∈ δ(v). The boundary B(C) of a clean region C is the set of
vertices of G that are adjacent to some vertex in the clean region but do not belong to the clean
region.
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Let C be a clean region of G with boundary B(C). Let the i-th layer of C be the subset
Ci = { c ∈ V (C) | minb∈B dG(c, b) = i } where dG(c, b) denotes is the distance between c and b
in G. Note that all the neighbors of a vertex of layer Ci belong to Ci−1 ∪ Ci ∪ Ci+1.

Reduction Rule 2. Let (G, k, r) be an instance of WDCE(S) and let C be a clean region of G
such that Ck+2 6= ∅. Then replace (G, k, r) with (G′, k, r) as follows:

1. For each vertex u ∈ Ck+1 reduce each entry of δ(u) by dρCk+2
(u).

2. Delete all layers Ci for i ≥ k + 2.

Lemma 6.2. Reduction Rule 2 is sound for WDCE(S) with ∅ 6= S ⊆ {v,e}.

Proof. Let D be the set of vertices and edges deleted in a minimal solution of (G, k, r); thus
D ⊆ V (G) if S = {v} and D ⊆ V (G) ∪ E(G) if S = {v,e}. Let G(D) be the subgraph
of G induced by all vertices that belong to D or are incident to an edge in D. Each connected
component X of G(D) that contains a vertex or edge of a clean region C must also contain a
vertex of the boundary B(C) of C, since otherwise we could obtain a solution that is smaller than
D by removing those vertices and edges from D that induce X in G(D). Consequently, each
vertex v ∈ D ∩ V (C) must be of distance at most |D| from a vertex in the boundary of C, i.e.,
v ∈ Ci for i ≤ |D|. Similarly, each endpoint of an edge e ∈ D∩E(C) must belong to some Ci for
i ≤ |D|+ 1. If |D| ≤ k then D is also a solution of (G′, k, r) as D does not touch the part deleted
from G. On the other hand, each solution D′ of (G′, k, r) is trivially a solution of (G, k, r).

Reduction Rule 3. Let (G, k, r) be an instance of WDCE(S), let C be a clean region of G with
empty boundary B(C) = ∅, and let G′ = G− V (C). Then replace (G, k, r) with (G′, k, r).

Lemma 6.3. Reduction Rule 3 is sound for WDCE(S) with ∅ 6= S ⊆ {v,e}.

Proof. As B(C) = ∅, C is not connected to the rest of the graph and therefore does not affect the
solution.

Next we show our first kernelization lemma.

Lemma 6.4. Let ∅ 6= S ⊆ {v,e}. Every yes-instance (G, k, r) of WDCE(S) that is reduced
under Reduction Rules 1-3 has at most k(1 + (k + r)(1 + rk+1)) = O(k2rk+1 + krk+2) vertices.

Proof. Assume that (G, k, r) is a yes-instance of WDCE(S) and is reduced under Reduction Rules
1–3. We define three disjoint sets D, H , and X where D ⊆ E(G)∪V (G) is the set of vertices and
edges whose deletion provides a solution, H ⊆ V (G) is the set of vertices adjacent to vertices inD
or incident to edges in D, and X ⊆ V (G) contains the remaining vertices of G that are neither in
D nor in H . |D| ≤ k by definition, and D ⊆ V (G) if S = {v}. Observe that H separates D from
X . Furthermore, observe that there are no independent clean regions in G (otherwise the graph
would not be reduced under Reduction Rule 3), and dρ(x) ∈ δ(x) for all x ∈ X (otherwise D
would not be a solution).
Claim 6.5. |H| ≤ |D| · (k + r).
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Since the instance is reduced under Reduction Rule 1, the maximum weighted degree of every
vertex is at most k + r, and each vertex in H is adjacent or incident to some element of D; hence
the claim follows.

Claim 6.6. |X| ≤ |H| · rk+1.

As all vertices in X are clean, all boundary vertices for all clean regions are contained in
H ∪D. Then there is no vertex in X of distance greater than k+ 1 from H , otherwise the graph is
not reduced under Reduction Rule 2. Thus X is the disjoint union of the sets X1, . . . , Xk+1 where
Xi = {x ∈ X | minh∈H dG(x, h) = i }. We have |X1| ≤ |H| ·r as vertices inH may have all their
neighbors in X . For i > 1 we have |Xi| ≤ |Xi−1|(r−1) ≤ |X1|(r−1)i−1 as each vertex in Xi has
at least one neighbor in Xi−1 and at most r in neighbors in total. For r ≥ 1 we assume inductively
that

∑m
i=1 |Xi| ≤ |X1|·rm−1. Then

∑m+1
i=1 |Xi| ≤ |X1|·rm−1+|X1|·(r−1)m−1(r−1) ≤ |X1|·rm.

Therefore with k+ 1 layers, |X| ≤ |H| · rk+1. For r = 0, H is an independent set after removal of
D, therefore X = ∅, and the claim holds trivially.

Since |V (G)| ≤ |D|+ |H|+ |X| and |D| ≤ k, the lemma follows from Claims 6.5 and 6.6.

If we restrict the allowed editing operations to edge deletion alone, then we can obtain a better
kernel by observing that if the graph contains any vertex of degree greater than k + r, then it is a
no-instance, as this vertex cannot be fixed with only k edge deletions. Reduction Rules 2 and 3
still apply. Thus WDCE(e) allows an improved kernelization lemma.

Lemma 6.7. Every yes-instance (G, k, r) of WDCE(e) that is reduced under Reduction Rules 2
and 3 has at most 2k(1 + rk+1) = O(krk+1) vertices.

Proof. We define D, H , and X as before. Since D consists only of edges and is of size at most k,
we have |H| ≤ 2k. The rest of the proof follows as for Lemma 6.4.

Next we consider the case where the degree lists are singletons, i.e., WDCE∗(S) for S ⊆
{v,e}. In this case we can obtain kernels of significantly smaller size.

Reduction Rule 4. Let (G, k, r) be an instance of WDCE∗(S). Let C be a clean region of G
containing more than one vertex. Then we replace (G, k, r) with (G′, k, r) where G′ is obtained
from G by contracting C to a single vertex v as follows:

1. We add a new vertex v and delete all vertices that belong to C.

2. For each b ∈ B(C) we add the edge bv to G′ of weight ρ(bv) =
∑

bc∈E(G),c∈V (C) ρ(bc).

3. We set ρ(v) = min(k + 1,
∑

u∈V (C) ρ(u)) and δ(v) = dρ(v) (i.e., v is clean in G′).

Claim 6.8. Reduction Rule 4 is sound for WDCE∗(S) with {v} ⊆ S ⊆ {v,e}.

Proof. Let (G, k, r) be an instance of WDCE∗(S) and let C be a clean region of G with bound-
ary B. Let (G′, k, r) be the new instance obtained by Reduction Rule 4, contracting C to a new
vertex v.
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If we delete a vertex u ∈ V (C) ∪ B(C) or an edge incident with a vertex u ∈ V (C), then any
neighbor u′ ∈ V (C) of u will no longer be clean, and subsequently must also be deleted (edge
addition is not available to make u′ clean again). Clearly this cascades until the entire clean region
is removed. Thus any solution for (G, k, r) either deletes all or none of the vertices in V (C).
Hence we can represent V (C) by a single vertex v as described in Reduction Rule 4. We can limit
the weight of v to k + 1 as any weight larger than k prevents deletion.

Next we state an improved kernelization lemma (we exclude the case WDCE∗(e) as it is solv-
able in polynomial time and thus admits a kernel of constant size, see Section 5).

Lemma 6.9. Let {v} ⊆ S ⊆ {v,e}. Every yes-instance (G, k, r) of WDCE∗(S) that is reduced
under Reduction Rules 1, 3, and 4 has at most k(1 + (k + r)(1 + r)) = O(kr(k + r)) vertices.

Proof. Assume (G, k, r) is a yes-instance of WDCE∗(S) and is reduced under Reduction Rules 1,
3, and 4.

We define sets D, H , and X as in the proof of Lemma 6.4. Clearly Claims 6.5 and 6.6 hold as
before.

Every vertex in X belongs to a clean region. However, since we assume that the instance is
reduced under Reduction Rule 4, every clean region consists of a single vertex. Therefore each
vertex in H can be adjacent to at most r vertices outside H and D, which themselves are adjacent
to no vertices outside H . Therefore |X| ≤ |H| · r ≤ kr(k + r). The Combination of this bound
with |D| ≤ k and the bounds of Claims 6.5 and 6.6 completes the proof of the lemma.

We summarize the results of Lemmas 6.4, 6.7, and 6.9:

Theorem 6.10. For {v} ⊆ S ⊆ {v,e}, the problem WDCE(S) admits a kernel with O(k2rk+1 +
krk+2) vertices, and the problem WDCE∗(S) admits a kernel with O(kr(k + r)) vertices. The
problem WDCE(e) admits a kernel with O(krk+1) vertices.

It appears that our kernelization approach does not work under the presence of edge addition.
If we apply our approach to a variant of WDCE that includes WDCE∗1(v,a) as a subproblem, it
becomes necessary to consider deleting a set of vertices from clean regions so that the edges that
become available may be used to complete the degree of a vertex of insufficient degree. This gives
rise to the following subproblem:

EDGE REPLACEMENT SET

Instance: A graph G = (V,E), two positive integers k and t.

Question: Does there exist a set X ⊆ V such that |X| ≤ k and there are exactly t
edges between vertices in X and vertices in V \X?

Unfortunately, EDGE REPLACEMENT SET is NP-complete, thus making the possibility of
obtaining a kernel in polynomial time by somehow identifying all relevant sets in the clean re-
gions unlikely. Consider an instance of WDCE∗(v,a) where we have only one vertex with weight
k(r − k + 2) + 1 which requires k(r − k + 1) edges and are allowed k(r − k + 2) editing steps,
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in this case the only possibility is to delete a clique of size k and add the k(r − k + 1) edges that
are now available. Note that if the graph is unweighted, it is not clear whether such a pathological
case exists.

Proposition 6.11. EDGE REPLACEMENT SET is NP-hard and W[1]-hard for parameter k.

Proof. We give a polynomial-time FPT reduction from REGULAR CLIQUE (see Lemma 3.1).
Let (G, k) be an instance of REGULAR CLIQUE where G = (V,E) is r-regular. We may

assume that r > k2 since we can use the fixing gadgets (see Section 2.3) to increase the degree of
each vertex arbitrarily without introducing non-trivial cliques. For a set X ⊆ V let d(X) denote
the number of edges uv ∈ E with u ∈ X and v ∈ V \ X . If X forms a k-clique in G then
d(X) = k(r − k + 1). Therefore we put t = k(r − k + 1) and consider (G, k, t) as an instance of
EDGE REPLACEMENT SET.

Let X ⊆ V with |X| ≤ k and d(X) = t. We show that X has exactly k elements and forms
a clique in G. Assume for the sake of contradiction that |X| < k. It follows that d(X) ≤ |X|r ≤
r(k − 1) < rk − k2 ≤ t, a contradiction; hence |X| = k. Each vertex x ∈ X has at most k − 1
neighbors in X and at least r − k + 1 neighbors in V \ X . Therefore, if at least one x ∈ X had
fewer than k − 1 neighbors in X , then d(X) > k(r − k + 1) = t, again a contradiction. Hence X
indeed induces a k-clique in G.

7 Conclusion
We have classified the parameterized complexity of a wide range of graph editing problems; our
general finding is that all the problems are fixed-parameter tractable if parameterized by the com-
bination of the total editing cost and the maximum (weighted) degree of the solution graph, but are
unlikely to be fixed-parameter tractable if parameterized by the total editing cost alone. For the
fixed-parameter tractable problems that exclude the operation of edge addition we could further
provide kernelizations: We obtain kernels of polynomial size if the degree lists are singletons, and
kernels of singly exponential size if the degree lists are arbitrary.

In our investigations we have only distinguished between singletons and arbitrary degree lists.
A further possible line of future research is to make a more refined distinction, aiming at results
of similar flavor as Cornuéjols’s theorem [9] (see Section 1). For example, one can try to obtain
polynomially-sized kernels for the case where all degree lists are intervals and the operations of
vertex deletion and edge deletion are both included. However, the most challenging question for
further research appears to be whether our kernelization results can be extended to editing problems
that include the operations of vertex deletion and edge addition.
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