
I N F S Y S
R E S E A R C H

R E P O R T

Institut für Informationssysteme

AB Wissensbasierte Systeme

Technische Universität Wien

Favoritenstraße 9-11

A-1040 Wien, Austria

Tel: +43-1-58801-18405

Fax: +43-1-58801-18493

sek@kr.tuwien.ac.at

www.kr.tuwien.ac.at

INSTITUT FÜR INFORMATIONSSYSTEME

ARBEITSBEREICH WISSENSBASIERTE SYSTEME

CONTRASTING RDF STREAM PROCESSING

SEMANTICS

MINH DAO-TRAN HARALD BECK THOMAS EITER

INFSYS RESEARCH REPORT 15-06

SEPTEMBER 2015

INFSYS RESEARCH REPORT

INFSYS RESEARCH REPORT 15-06, SEPTEMBER 2015

CONTRASTING RDF STREAM PROCESSING SEMANTICS

Minh Dao-Tran1 Harald Beck1 Thomas Eiter1

Abstract. The increasing popularity of RDF Stream Processing (RSP) has led to developments of
data models and processing engines which diverge in several aspects, ranging from the representa-
tion of RDF streams to semantics. Benchmarking systems such as LSBench, SRBench, CSRBench,
and YABench were introduced as attempts to compare different approaches, focusing mainly on the
operational aspects. The recent logic-based LARS framework provides a theoretical underpinning
to analyze stream processing/reasoning semantics. In this work, we use LARS to compare the se-
mantics of two typical RSP engines, namely C-SPARQL and CQELS, identify conditions when they
agree on the output, and discuss situations where they disagree. The findings give insights that might
prove to be useful for the RSP community in developing a common core for RSP.

1Institut für Informationssysteme, Technische Universität Wien, Favoritenstraße 9-11, A-1040 Vienna, Austria;
email: {dao,beck,eiter}@kr.tuwien.ac.at.

Acknowledgements: This research has been supported by the Austrian Science Fund (FWF) projects
P24090, P26471, and W1255-N23.

Copyright c© 2015 by the authors

2 INFSYS RR 15-06

Contents

1 Introduction 3

2 Preliminaries 4
2.1 RDF and SPARQL . 4
2.2 RDF Stream Processing . 5
2.3 Logic-oriented view on Streams, Windows and Time Reference 7
2.4 LARS Programs . 8

3 Modeling RSP Queries 9

4 Capturing RSP Queries Using LARS 10
4.1 Push- and Pull-Based Execution Modes for LARS Programs 11
4.2 Translate RSP Window Expressions to LARS Window Operators 11
4.3 Translate RSP Queries to LARS Programs . 12

5 RSP Semantics Analysis Based on LARS 15
5.1 Agreement between C-SPARQL and CQELS . 15
5.2 Agreement Conditions . 16

6 Discussion and Conclusion 17

A Proofs 20
A.1 Proof Sketch of Proposition 1 . 20
A.2 Proof Sketch of Proposition 2 . 20
A.3 Proof Sketch of Theorem 3 . 20
A.4 Proof Sketch of Theorem 4 . 21

INFSYS RR 15-06 3

1 Introduction
In interconnected information technologies such as Internet of Things and Cyber Physical Systems it is
crucial to have simple access to data irrespective of their sources. The Semantic Web’s RDF data model was
designed to integrate such distributed and heterogeneous data. Recently, RDF Stream Processing (RSP) has
been emerging to tackle novel problems arising from streaming data: to integrate querying and processing
of static and dynamic data, e.g., information continuously arriving from sensors.

This has led to the development of data models, query languages and processing engines, which diverge
in several aspects, ranging from the representation of RDF streams, execution modes [Phuoc et al., 2012],
to semantics [Barbieri et al., 2010a, Phuoc et al., 2011, Calbimonte et al., 2010, Bolles et al., 2008, Groppe,
2011]. To deal with this heterogeneity, the RSP community1 was formed to establish a standard towards a
W3C recommendation.

A standardization must start from seeing the differences between existing approaches and thus compar-
ing RSP engines is an important topic. Initial empirical comparisons were carried out in two benchmarking
systems, namely SRBench [Zhang et al., 2012] and LSBench [Phuoc et al., 2012]. The former defined
functional tests to verify the query languages features by the engines, while the latter measured mismatch
between the output of different engines, assuming they are sound, i.e., all output produced by them are
correct. Later on, CSRBench [Dell’Aglio et al., 2013] introduced an oracle that pregenerates the correct
answers wrt. each engine’s semantics, which are then used to check the output returned by the engine.
YABench [Kolchin and Wetz, 2015] follows the approach by CSRBench with the main purpose of facilitat-
ing joint evaluation of functional, correctness, and performance testing. However, this approach allows only
partial comparison between engines by referring to their ideal counterparts.

Due to the lack of a common language to express divergent RSP approaches, the three works above
could just look at the output of the engines and did not have further means to explain beyond the output
what caused the difference semantically.

Recently, [Dell’Aglio et al., 2015] proposed a unifying query model to explain the heterogeneity of RSP
systems. It shows the difference between two approaches as represented by representative engines in the
RSP community, namely C-SPARQL [Barbieri et al., 2010a], SPARQLStream [Calbimonte et al., 2010] and
CQELS [Phuoc et al., 2011]. This work identified types of datasets that C-SPARQL/SPARQLStream can
handle while CQELS cannot, and vice versa. However, it does not point out systematically when and how
the engines agree on the output.

In the stream processing community, SECRET [Dindar et al., 2013] was proposed to characterize and
analyze the behavior of stream processing engines, but at the operational level.

Latterly, a Logic-based framework for Analyzing Reasoning over Stream (LARS) was introduced [Beck
et al., 2015]. LARS can be used as a unifying language which stream processing/reasoning languages can
be translated to. It may serve as a formal host language to express semantics and thus allows a deeper
comparison that goes beyond mere looking at the output of the respective engines. Furthermore, the model-
based semantics of LARS is a means to formalize the intuition of agreement between not only RSP engines
but also engines from other communities, and to identify conditions where this holds.

In this paper, we exploit the capability of LARS to analyze the difference between the semantics of
C-SPARQL and CQELS by:

• providing translations that capture the push- and pull- execution modes for general LARS programs,

• providing translations from C-SPARQL and CQELS to LARS,

1https://www.w3.org/community/rsp/

https://www.w3.org/community/rsp/

4 INFSYS RR 15-06

• introducing a notion of push-pull-agreement between LARS programs, and

• identifying conditions where C-SPARQL and CQELS agree on their output, by checking whether the
translated LARS programs push-pull-agree.

Our findings show that C-SPARQL and CQELS agree on a very limited setting, and give insights on their
difference. This result might prove to be useful for the RSP community in developing a common core for
RSP. Moreover, we demonstrate how envisaged semantics may be formalized and checked with LARS.

Throughout this paper, for the purpose of a theoretical comparison, we adopt as in [Dell’Aglio et al.,
2015] the assumption that execution time of RSP engines is neglectable compared to the data rate of the
input streams.

2 Preliminaries

RSP can be intuitively seen as extending querying RDF datasets with SPARQL to querying RDF streams
with “continuous SPARQL.” LARS is a logic-based framework for analyzing stream reasoning. This sec-
tion briefly reviews RDF, SPARQL, RSP, and LARS, which will be illustrated using the following running
scenario inspired by [Dell’Aglio et al., 2015].

Example 1 The Sirius Cybernetics Corporation offers shop owners a real-time geo-marketing solution
(RTGM) to increase their sales. RTGM provides two services: (i) an application that allows shop owners
to push instantaneous discount coupons to a server, and (ii) a free mobile App that fetches the coupons from
shops near the phone, matches them with the preferences specified in the user’s shopping profile, and deliv-
ers the matched coupons to the user. Alice and Bob own shops a and b that sell shoes and glasses, resp. At
time point 10, Alice sends out a coupon for a 30% discount for men’s MBT shoes. At time 15, Bob sends
out a coupon for a 25% discount on Ray-Ban glasses.

Claire has the App installed on her mobile phone and is walking near shops a and b from time 18. She
is neither interested in discounts on men’s products nor discounts of less than 20%. Therefore, she will get
only the discount from shop b.

2.1 RDF and SPARQL

RDFmodels data as directed labeled graphs whose nodes are resources and edges represent relations among
them. Each node can be a named resource (identified by an IRI), an anonymous resource (a blank node), or
a literal. We denote by I , B, L the sets of IRIs, blank nodes, and literals, respectively.

A triple (s, p, o) ∈ (I ∪B)× I × (I ∪B ∪ L) is an RDF triple, where s is the subject, p the predicate,
and o the object. An RDF graph is a set of RDF triples.

Example 2 (cont’d) Information in the scenario of Ex. 1 about products, offers from shops, and Claire’s
relative locations to shops can be stored in the following RDF graphs:

G = { :“mbt” :g classify :1. :“rayban” : g classify :0. . . . }
g1 = {:a :offers :c1. :c1 :on :“mbt”. :c1 :reduce :30.}
g2 = {:b :offers :c2. :c2 :on :“rayban”. :c2 :reduce :25.}
g3 = {:“claire” :isNear :a. :“claire” :isNear :b.}

INFSYS RR 15-06 5

A triple pattern is a tuple (sp, pp, op)∈(I∪B∪V)×(I∪V)×(I∪B∪L∪V), where V is a set of variables.
A basic graph pattern is a set of triple patterns.

SPARQL, a W3C recommendation for querying RDF graphs, is essentially a graph-matching query
language. A SPARQL query is of the form H ← B, where B, the body of the query, is a complex
RDF graph pattern composed of basic graph patterns with different algebraic operators such as UNION,
OPTIONAL, etc.; and H , the head of the query, is an expression that indicates how to construct the answer
to the query [Pérez et al., 2009].

Example 3 (cont’d) Assume that a snapshot of coupons in the last 30 minutes contains triples in g1 ∪ g2
from Example 2 and is collected in an RDF store identified by the IRI <http://coupons-snapshot>.
Furthermore, suppose that product information is stored at <http://products>. The following SPARQL
query computes the relevant coupons for Claire at a single time point. For simplicity, the geographical
proximity between the location of the user and that of the shops is not considered.

SELECT ?shop ?product ?percent
FROM <http://products> <http://coupons-snapshot>
WHERE { ?shop :offers ?coupon. ?coupon :reduce ?percent.

?product :g_classify ?gender. ?coupon :on ?product.
FILTER (?percent >= 20 && ?gender != 1) }

Q0: One-shot query expressed in SPARQL

The semantics of SPARQL is defined via mappings. A mapping µ is a partial function from V to I ∪B ∪L.
The result of a SELECT SPARQL query is a set of mappings that match the query’s body, projected to the
variables specified in the SELECT clause. For example, Q0 in Ex. 3 evaluated under the data in Ex. 2 returns
a set of a single mapping:

{{?shop 7→ b, ?product 7→ “rayban”, ?percent 7→ 25}}.
However, one-shot queries by themselves are not able to give answers under dynamic input as in the running
scenario. For this purpose, we need RDF stream processing.

2.2 RDF Stream Processing

Temporal RDF Graphs and RDF Streams. In continuous query processing over dynamic data, the
temporal nature of the data is crucial and needs to be captured in the data representation. For this purpose,
temporal RDF graphs and RDF streams are defined by generalizing the standard definition of RDF graphs
as follows.

1. An RDF graph at timestamp t, denoted by G(t), is a set of RDF triples valid at time t and called an
instantaneous RDF graph. A temporal RDF graph is a sequence G = [G(t)], t ∈ N = {0, 1, 2, . . .},
ordered by t.

2. An RDF stream S is a sequence of elements 〈g : [t]〉, where g is an RDF graph and t is a timestamp.

Example 4 (cont’d) The input stream S of our running scenario is a sequence of elements 〈gi : [ti]〉, where
gi, representing an offer, is of the form in Example 2 and ti can be either (i) the time point when the offer
is announced by a shop owner (application time), or (ii) the time point when gi arrives at an RSP engine
(system time).

6 INFSYS RR 15-06

Continuous Queries. Continuous queries are registered on a set of input streams and a background data,
and continuously send out the answers as new input arrives at the streams. There are two modes to execute
such queries: In pull-based mode, the system is scheduled to execute periodically independent of the arrival
of data and its incoming rate. In push-based mode, the execution is triggered as soon as data is fed into the
system.

Continuous queries in C-SPARQL and CQELS are inspired by the Continuous Query Language (CQL)
[Arasu et al., 2006], in which queries are composed of three classes of operators, namely stream-to-relation
(S2R), relation-to-relation (R2R), and relation-to-stream (R2S) operators. They are reflected in the context
of RSP as follows (See also Fig. 1, page 10).

(i) S2R operators, also called windows, yield relational snapshots of streaming tuples for pure SPARQL
processing. They include time-based and tuple-based windows.

(ii) R2R: Next, finite sets of mappings or triples (if windows did no pattern matching) are processed under
SPARQL operators such as AND, OPTIONAL, MINUS, etc., based on the graph pattern specified in
the body of the query.

(iii) R2S: The operators RStream, IStream, and DStream are used after R2R operators to convert the
“pure” SPARQL output into an output stream. While RStream reports all output triples that can be
computed based on the snapshots provided by S2R operators at the current execution, IStream/DStream
only reports the inserted/deleted triples in comparison with the previous execution.

As CQL is based on SQL, the background data tables and input streams all have schemas. This makes it
crystal clear to see which input tuple comes from which stream. On the other hand, as RDF is schema-less,
it is not straightforward to get this distinction; RSP engines use different approaches to build the snapshot
datasets for R2R evaluation [Dell’Aglio et al., 2015]:

(B1) C-SPARQL merges snapshots of the input streams into the default graph,

(B2) CQELS directly accesses the content of the input streams by introducing a new “stream graph” pattern
in the body of the query.

Example 5 (cont’d) A continuous query to notify Claire with instantaneous coupons matching her prefer-
ences can be expressed in C-SPARQL and CQELS as follows. For readability, we write <coupons> instead
of <http://coupons>, etc.

SELECT ?shop ?product ?percent
FROM <products>

STREAM <coupons> [RANGE 30m]
STREAM <locations> [RANGE 5m]

WHERE {
?shop :offers ?coupon.
?coupon :reduce ?percent.
?coupon :on ?product.
?user :isNear ?shop.
?product :g_classify ?gender.
FILTER
(?percent >= 20 && ?gender != 1)}

Q1: Notification query in C-SPARQL

SELECT ?shop ?product ?percent
FROM <products>
WHERE {
STREAM <coupons> [RANGE 30m] {

?shop :offers ?coupon.
?coupon :reduce ?percent.
?coupon :on ?product. }

STREAM <locations> [RANGE 5m] {
?user :isNear ?shop. }

?product :g_classify ?gender.
FILTER
(?percent >= 20 && ?gender != 1)}

Q2: Notification query in CQELS

Compared to Q0 in Ex. 3, here we take into account the input stream regarding the locations of the user.
The FROM clause of Q1 now applies a window of range 30m to a stream of coupons instead of fetching input

INFSYS RR 15-06 7

from a static RDF graph. This means that all streaming triples which arrived in the last 30 minutes will
be considered for querying. Similarly, a window for the last 5 minutes is applied on the stream of users’
locations. These windows produce a so-called snapshot of incoming data for computation. Query Q2 puts
the streams of coupons, users’ locations and the corresponding window to the WHERE clause and relates the
streams with the patterns for matching with them.

Note that in [Barbieri et al., 2010b], to implement C-SPARQL, the authors translates a C-SPARQL query
into an Operator Graph (O-Graph), where the decision on which input sources (RDF streams or RDF graph)
go to which operator/pattern matching is made, but the details were not shown. Furthermore, this distinction
is done at the implementation level and has never been mentioned at the semantics level of any C-SPARQL
publication. This paper proposes a clear view to this issue at the semantics level.

2.3 Logic-oriented view on Streams, Windows and Time Reference

We will introduce the central concepts of LARS [Beck et al., 2015] tailored to the considered fragment.
Throughout, we distinguish extensional atoms AE for input data and intensional atoms AI for derived
information. By A = AE ∪ AI , we denote the set of atoms.

Definition 1 (Stream) A stream S = (T, υ) consists of a timeline T , an interval in N, and an evaluation
function υ : N 7→ 2A. The elements t ∈ T are called time points.

Intuitively, a stream S associates with each time point a set of atoms. We call S a data stream, if it contains
only extensional atoms. The projection of a stream S to a predicate p is defined as S|p = (T, υ|p), where
υ|p(t) = {p(c) | p(c) ∈ υ(t)}. Here, p(c) is any atom with predicate p and arguments (constants) c. By
Ats(S) =

⋃
t∈T υ(t), we denote the set of all atoms appearing in S.

Example 6 (cont’d) The offers in the running scenario (Example 1) can be modeled as a data stream
D = (TD, υD) with a timeline TD = [0, 50] whose time unit is minute, and the evaluation function υD(10) =
{offer(a, “mbt”, 30)}, υ(15)={offer(b, “rayban”, 25)}, υD(18) = {isNear(a), isNear(b)} and υD(t) =
∅ for all t ∈ TD \ {10, 15, 18}. The evaluation function υD can be equally represented as

υD =

{
10 7→ {offer(a, “mbt”, 30)}, 15 7→ {offer(b, “rayban”, 25)},
18 7→ {isNear(a), isNear(b)}

}
.

To cope with the amount of data, one usually considers only recent atoms. Let S = (T, υ) and S′ = (T ′, υ′)
be two streams s.t. S′ ⊆ S, i.e., T ′ ⊆ T and υ′(t′) ⊆ υ(t′) for all t′ ∈ T ′. Then S′ is called a window of S.

Definition 2 (Window function) A (computable) window function wι of type ι takes as input a stream
S = (T, υ), a time point t ∈ T , called the reference time point, and a vector of window parameters x for
type ι and returns a substream S′ of S.

Important are tuple-based and time-based window functions. The former select a fixed number of latest
tuples while the latter select all atoms appearing in last n time points.
Window operators �. Window functions can be accessed in formulas by window operators. That is, an
expression �α has the effect that α is evaluated on the “snapshot” of the stream delivered by its associated
window function w�.

By dropping information based on time, window operators specify temporal relevance. For each atom
in a window, we control the semantics by some temporal reference.

8 INFSYS RR 15-06

Time Reference. Let S = (T, υ) be a stream, a ∈ A and B ⊆ A static background data. Then, at time
point t ∈ T ,

• a holds, if a ∈ υ(t) or a ∈ B;

• 3a holds, if a holds at some time point t′∈T ;

• 2a holds, if a holds at all time points t′ ∈ T ;

• @t′a holds, if t′∈T and a holds at t′

Next, the set A+ of extended atoms is given by the grammar

a|@ta|�@ta|�3a|�2a,

where a ∈ A and t is any time point. Expressions of form � ? a, where ?∈{@t,3,2}, are called window
atoms.

Example 7 The window atom �30
τ 3offer(Sh,Pr ,Pe) takes a snapshot of the last 30 time units (which are

minutes in our running scenario) of a stream and uses the 3 operator to check whether an offer from shop Sh
on product Pr with a discount of Pe% appeared in the stream during this period. Similarly, �5

τ3isNear(Sh)
does the same job to take a snapshot of size 5 minutes of the shops near the user.

2.4 LARS Programs

We present a fragment of the formalism in [Beck et al., 2015].

Syntax. A rule r is of the form a← β(r), where H(r) = a is the head and the body of r is

β(r) = β1, . . . , βj , notβj+1, . . . ,notβn,

where a ∈ AI , and each βi is either an ordinary atom or a window atom.
Let B(r) = B+(r) ∪ B−(r), where B+(r) = {βi | 1 ≤ i ≤ j} is the positive and B−(r) = {βi |

j < i≤n} is the negative body or r. A (LARS) program P is a set of rules. A program is positive, if none
of its rules has a negative body atom.

Example 8 (cont’d) Suppose we are given static background data B that contains product information in a
predicate of form g classify(Pr ,Ge), where Ge = 0 (resp. 1) marks that product Pr is for women (resp.,
men). The following LARS rule amounts to the queries in Example 5, under the input streams in a format
as in Example 6.

ans(Sh,Pr ,Pe)← �30
τ 3offer(Sh,Pr ,Pe),�5

τ3isNear(Sh),

g classify(Pr ,Ge),Pe ≥ 20,Ge 6= 1.

This rule works as follows: the two window atoms provide offers announced in the last 30 minutes and the
shops near the user within the last 5 minutes. Together with the gender classification of products provided
by g classify , only products not for men (Ge 6= 1) and have discount rate from 20% are concluded at the
head with predicate ans .

INFSYS RR 15-06 9

Semantics. Let P be a LARS program. For a data stream D = (TD, vD), any stream I = (T, υ) ⊇ D that
coincides with D on AE is an interpretation stream for D. A tuple M = 〈T, υ,W,B〉 is an interpretation
for D, where W is a set of window functions w� such that the corresponding window operators � appears
in P , and B is the background knowledge. Throughout, we assume W and B are fixed and thus also omit
them.

Satisfaction by M at t ∈ T is as follows: M, t |= α for α ∈ A+, if α holds in (T, υ) at time t; M, t |= r
for rule r, if M, t |= β(r) implies M, t |= H(r), where M, t |= β(r), if (i) M, t |= βi for all i ∈ {1, . . . , j}
and (ii) M, t 6|= βi for all i ∈ {j+1, . . . , n}; and M, t |= P for program P , i.e., M is a model of P (for D)
at t, if M, t |= r for all r ∈ P . Moreover, M is minimal, if in addition no model M ′ = 〈T, υ′,W,B〉 6=M
of P exists such that υ′ ⊆ υ.

Definition 3 (Answer Stream) An interpretation stream I = (T, υ) for a data stream D ⊆ I is an answer
stream of program P at time t, if M = 〈T, υ,W,B〉 is a minimal model of the reduct

PM,t = {r ∈ P |M, t |= β(r)}.

By AS(P,D, t) we denote the set of all such answer streams I .

As RSP queries return just a single answer at a time point, we consider in this paper LARS programs that
have a single answer stream. By AS (P,D, t), we directly refer to the single element of AS(P,D, t).

Example 9 (cont’d) Consider background data B that contains product information as in Example 2. That
is, B = {. . . , g classify(“mbt”, 1), g classify(“rayban”, 0), . . .}. Take the data stream D from Example 6
and let P be the LARS program consisting of the single rule in Ex. 8. Then, I = (TI , υI) is the only answer
stream of P wrt. D and B at time t = 18, where TI = TD and υI = υD ∪ {18 7→ {ans(b, “rayban”, 25)}}.

3 Modeling RSP Queries

Section 2.2 shows a divergence in realizing continuous queries in C-SPARQL and CQELS. To be able to
capture and analyze the difference between the two approaches, we need to have a common starting point,
which concerns the same static datasets, the same input streams, and the same algebraic expression on top
of the snapshot at an execution. This section proposes a formal model of RSP queries that captures this
common starting point idea, and then classifies C-SPARQL and CQELS on the model.

Similarly as in [Polleres, 2007], we ignore solution modifiers and formalize an RSP query as a quadru-
ple Q = (V, P,D,S), where V is a result form, P is a graph pattern, D is a dataset,2 and S is a set of input
stream patterns. Roughly, S is a set of tuples of the form (s, ω, g), where s is a stream identifier, ω is a
window expression, and g is a basic RDF graph pattern.

Given a result form V , we denote by V the tuple obtained from lexicographically ordering the set of
variables in V .

2For simplicity, we omit instantaneous background datasets, which can be extended in a straightforward way.

10 INFSYS RR 15-06

Pull

Push
S2R

(B1) merge

(B2) stream graph
R2R R2S

(1) Capture modes (2) Window ops (3) Capture building of snapshots & R2R ops (4) Post-processing

Figure 1: A strategy to capture RSP queries with LARS

Example 10 Queries Q1 and Q2 in Ex. 5 stem from Q = (V, P,D,S), where

P =(P1 ∪ P2 ∪ P3) FILTER R

V ={?shop, ?pname, ?percent}, D ={<http://products>},

P1=

 ?shop :offers ?coupon.
?coupon :on ?product.
?coupon :reduce ?percent.

 , R =(?percent ≥ 20 && ?gender 6= 1),

P2={ ?user :isNear ?shop. }, P3={ ?product :g classify ?gender. },

S =

{
(<http://coupons>,[RANGE 30m], P1),
(<http://locations>,[RANGE 5m], P2)

}
.

This query covers all common aspects of Q1 and Q2: They both access the static dataset identified by
the IRI <http://products> and the input streams at <http://coupons> and <http://locations>
with a window of range 30 and 5 minutes, respectively. On top of the snapshot from the input streams
together with the static dataset, a pattern matching is carried out on the graph pattern P .

Next, we show how this RSP query model captures the divergent C-SPARQL and CQELS queries. Consider
an RSP query Q.
• The corresponding C-SPARQL query, denoted by cs(Q), can be obtained from Q by setting the graph

patterns in all input stream patterns in S to ∅. This goes along with the idea of C-SPARQL to merge patterns
on the input streams into the default graph.

• A corresponding CQELS query, however, can be obtained from Q at different levels of cautiousness:
for every part of P that contains gi s.t. (si, ωi, gi) ∈ S , replace it with either (i) (STREAM si ωi gi), or
(ii) ((STREAM si ωi gi) UNION gi). The former is a brave approach when one can make sure that the static
dataset and the stream si do not share patterns, while the latter is more cautious when one is not sure and
rather expects triples matching gi come from either the static dataset or the input streams. Therefore, Q is
corresponding to a set cq(Q) of 2|S| CQELS queries, including a brave one, a cautious one, and the ones in
between. Note that Q2 in Example 5 is the brave CQELS query of Q.

4 Capturing RSP Queries Using LARS

The building blocks of RSP queries presented in Section 2.2 recommend a strategy, as depicted in Figure 1,
to capture different RSP approaches using LARS.

(1) First, the two push- and pull-based execution modes can be applied to LARS programs in general via
two straightforward translations.

INFSYS RR 15-06 11

(2) Then, window expressions in RSP are translated into window operators in LARS.

(3) Next, R2R operators and the approaches in building the datasets to be evaluated by R2R operators are
captured by two slightly different translations τ1 and τ2, based on the translation from SPARQL to
Datalog rules in [Polleres, 2007].

(4) Finally, post-processing can be carried out to mimic IStream and DStream based on RStream. Note
that LARS semantics corresponds to RStream, and the post-processing can be done operationally.
Therefore, it is not of our theoretical interest and will not be considered in this paper.

We now go into details of (1)-(3).

4.1 Push- and Pull-Based Execution Modes for LARS Programs

This section provides two translations that capture the push- and pull-based execution modes by means of
LARS itself. Given a LARS program P and a pulling period U > 0, the translations �(P) and �(P,U)
encode the push- and pull-mode by LARS rules, respectively. Intuitively, we add to the body of each rule
in P an ordinary atom trigger. Then, rules to conclude trigger are added depending on the mode. For
push-based mode, trigger will be concluded per new incoming input triple. For pull-based mode, the
condition is that the current time point is a multiple of U .

Formally speaking, for a LARS rule r, a LARS program P , a pulling period U , let

trigger(r) = head(r)← B(r), trigger.

trigger(P) = {trigger(r) | r ∈ P ∧ B(r) 6= ∅}

�(P) = trigger(P) ∪ {trigger← �NOW p(X). | p ∈ AI}

�(P,U) = trigger(P) ∪ {trigger← �NOW@T true, T % U = 0.}

Notably, the translation � for the pull-based mode needs to acquire the current time point, which is achieved
as follows. The logical constant true always holds, and thus @T true holds for all considered time points T .
By applying window operator �NOW (or equivalently �0

τ) before, only the current time point will be se-
lected. The following proposition shows that � and � faithfully capture the execution modes.

Proposition 1 Let P be a LARS program, U be a positive integer, and D = (TD, υD) be an input stream.
For every t ∈ TD, it holds that

(1) If υD(t) 6= ∅, then AS(�(P), D, t) = AS(P,D, t), else AS(�(P), D, t) = {D}.

(2) If t % U=0, then AS(�(P,U), D, t) = AS(P,D, t), else AS(�(P,U), D, t)={D}.

4.2 Translate RSP Window Expressions to LARS Window Operators

Table 1 presents a translation from windows in RSP to window operators in LARS. Given a window expres-
sion ω in RSP, τ(ω) returns a LARS window operator which corresponds to a window function that provides
the same functionalities as ω [Beck et al., 2014a,b, 2015].

12 INFSYS RR 15-06

Window expression ω τ(ω) Window expression ω τ(ω)

[RANGE L] �L
τ [NOW] �0

τ or �NOW

[RANGE L SLIDE D] �L,0,D
τ [ROWS N] �N

#

[RANGE UNBOUNDED] �∞τ

Table 1: Translating window expressions ω to LARS’ window operators

4.3 Translate RSP Queries to LARS Programs

For CQL, R2R operators are simply captured by SQL operators. Similarly, capturing R2R operators of
continuous SPARQL queries can exploit an existing translation from SPARQL to Datalog rules [Polleres,
2007]. The difference in our setting is the streaming input and how RSP engines take snapshots of the stream
to build datasets for SPARQL evaluation.

We propose two strategies (T1) and (T2) to extend the translation in [Polleres, 2007] to capture R2R
operators and the ways to build snapshot datasets (B1), (B2) (cf. Section 2.2):

(T1) For (B1), we just need to make sure that the triples from the input streams are collected into the default
graph.

(T2) For (B2), we introduce one more case for translating a stream graph pattern to LARS rules.

Towards formally presenting our translations, we start with a review of the translation from SPARQL to
Datalog in [Polleres, 2007], which has two parts:

(i) The first part imports RDF triples from the dataset into a 4-ary predicate of the form triple(S, P,O,G),
where (S, P,O) covers RDF triples and G holds a graph identifier. This can be done with the Answer
Set Programming solver dlvhex.3

(ii) For the second part, a function τ takes as input a result form V , a graph pattern P , a dataset D, an
integer i>0 and translates the input into a Datalog program, recursively along P . The base case is a
single RDF triple pattern, i.e., P = {(S, P,O)}. Intuitively, τ converts the operational semantics of
SPARQL to declarative rules.

Our purpose is to provide a translation for theoretical analysis rather than for practical implementation of
RSP queries. Thus, we concentrate on (ii). For (i), we assume that

• each triple (s, p, o) from the static dataset can be accessed by a fact triple(s, p, o,D),

• each triple (s, p, o) arriving at a stream s at time t contributes to the evaluation function υ at t under
a predicate striple, that is, striple(s, p, o, s) ∈ υ(t).

The extension of τ in [Polleres, 2007] with a parameter S representing the input streams is shown in
Fig. 2.

The translation LT (·) is taken from [Polleres, 2007], which is based on the rewriting defined by Lloyd
and Topor [Lloyd and Topor, 1984].

3http://www.kr.tuwien.ac.at/research/systems/dlvhex/

http://www.kr.tuwien.ac.at/research/systems/dlvhex/

INFSYS RR 15-06 13

τ(V, (S, P,O),D,S, i) = ansi(V ,D,S)← triple(S, P,O,D)

τ(V, (P1 AND P2),D,S, i) = τ(vars(P1), P1,D,S, 2i)∪
τ(vars(P2), P2,D,S, 2i+ 1)∪
ansi(V ,D,S)← ans2i(vars(P1),D,S),

ans2i+1(vars(P2),D,S).
τ(V, (P1 UNION P2),D,S, i) = τ(vars(P1), P1,D,S, 2i)

τ(vars(P2), P2,D,S, 2i+ 1)∪
ansi(V [(V \ vars(P1))→ null],D,S)← ans2i(vars(P1),D,S).
ansi(V [(V \ vars(P2))→ null],D,S)← ans2i+1(vars(P2),D,S).

τ(V, (P1 MINUS P2),D,S, i) = τ(vars(P1), P1,D,S, 2i)∪
τ(vars(P2), P2,D,S, 2i+ 1)∪
ansi(V [(V \ vars(P1))→ null],D,S)← ans2i(vars(P1),D,S),

not ans′2i(vars(P1) ∩ vars(P2),D,S).
ans′2i(vars(P1) ∩ vars(P2),D,S)← ans2i+1(vars(P2),D,S).

τ(V, (P1 OPT P2),D,S, i) = τ(V, (P1 AND P2),D,S, i)∪
τ(V, (P1 MINUS P2),D,S, i)

τ(V, (P FILTER R),D,S, i) = τ(V, P,D,S, 2i)∪
LT (ansi(V ,D,S)← ans2i(vars(P),D,S), R.)

τ(V, (GRAPH g P),D,S, i) = τ(V, P, g,S, i) for g ∈ V ∪ I
ansi(V ,D)← ansi(V , g),isIRI(g), g 6= default.

Figure 2: Extending translation τ in [Polleres, 2007] with input streams S

For (T1) we modify the base cases of τ for (S, P,O) with

τ(V, (S, P,O),D,S, i) = {ansi(V ,D,S)← triple(S, P,O,D)}∪
{ansi(V ,D,S)← triple(S, P,O,S)},

and add the following rules to import input streaming triples to the default graph:

τ ′(S) = {triple(S, P,O,S)← τ(ω)3striple(S, P,O, s) | (s, ω, g) ∈ S}.

The translation for strategy (T1) is τ1(V, P,D,S, i) = τ(V, P,D,S, i) ∪ τ ′(S).
For (T2), let τ2 be a function that agrees with τ , and moreover fulfills:

τ2(V, (STREAM s ω g),D,S, i)=ansi(V ,D,S)← τ(ω)(
∧

(S,P,O)∈g 3striple(S, P,O, s)).

When it is clear from context, we will write in the sequel τ/τi(Q) (i ∈ {1, 2}), for a queryQ = (V, P,D,S)
instead of τ/τi(V, P,D,S, 1).

14 INFSYS RR 15-06

Example 11 Take Q1 from Example 5, then τ1(Q1) is the following LARS program.

ans1(Pe,Pr ,Sh,D,S)← ans2(C ,Ge,Pe,Pr ,Sh,U ,D,S), Pe ≥ 20,Ge 6= 1. (r1)
ans2(C ,Ge,Pe,Pr ,Sh,U ,D,S)← ans4(C ,Pe,Pr ,Sh,D,S),

ans5(Ge,Pr ,Sh,U ,D,S). (r2)
ans4(C ,Pe,Pr ,Sh,D,S)← ans8(C ,Sh,D,S), ans9(C ,Pe,Pr ,D,S). (r3)

ans8(C ,Sh,D,S)← triple(Sh,"offers",C ,D). (r4)
ans8(C ,Sh,D,S)← triple(Sh,"offers",C ,S). (r5)

ans9(C ,Pe,Pr ,D,S)← ans18(C ,Pe,D,S), ans19(C ,Pr ,D,S). (r6)
ans18(C ,Pe,D,S)← triple(C ,"reduce",Pe,D). (r7)
ans18(C ,Pe,D,S)← triple(C ,"reduce",Pe,S). (r8)
ans19(C ,Pr ,D,S)← triple(C ,"on",Pr ,D). (r9)
ans19(C ,Pr ,D,S)← triple(C ,"on",Pr ,S). (r10)

ans5(Ge,Pr ,Sh,U ,D,S)← ans10(Ge,Pr ,D,S), ans11(Sh,U ,D,S). (r11)
ans10(Ge,Pr ,D,S)← triple(Pr ,"g classify",Ge,D). (r12)
ans10(Ge,Pr ,D,S)← triple(Pr ,"g classify",Ge,S). (r13)
ans11(Sh,U ,D,S)← triple(U ,"isNear",Sh,D). (r14)
ans11(Sh,U ,D,S)← triple(U ,"isNear",Sh,S). (r15)

triple(S, P,O,S)← �30 3striple(S, P,O, s1). (r16)

triple(S, P,O,S)← �5 3striple(S, P,O, s2). (r17)

Take Q2 from Example 5, then τ2(Q2) is the following LARS program.

ans1(Pe,Pr ,Sh,D,S)← ans2(C ,Ge,Pe,Pr ,Sh,U ,D,S), Pe ≥ 20,Ge 6= 1. (r18)
ans2(C ,Ge,Pe,Pr ,Sh,U ,D,S)← ans4(C ,Pe,Pr ,Sh,D,S),

ans5(Ge,Pr ,Sh,U ,D,S). (r19)

ans4(C ,Pe,Pr ,Sh,D,S)← �30 (3striple(Sh,"offers",C , s1)∧
3striple(C ,"reduce",Pe, s1)∧
3striple(C ,"on",Pr , s1)). (r20)

ans5(Ge,Pr ,Sh,U ,D,S)← ans10(Ge,Pr ,D,S), ans11(Sh,U ,D,S). (r21)
ans10(Ge,Pr ,D,S)← triple(Pr ,"g classify",Ge,D). (r22)

ans11(Sh,U ,D,S)← �5
τ 3striple(U ,"isNear",Sh, s2). (r23)

where s1 = "http://coupons" and s2 = "http://locations".

Given an RSP queryQ=(V, P,D,S), letQ′∈{cs(Q)}∪cq(Q) and I=AS (τi(Q
′), D, t) for a data streamD

and a time point t, where i ∈ {1, 2}. We denote the set of atoms of predicate ansj with the parameter
corresponding to S projected away by

chop(I,Q) = {ansj(Vj ,D) | ansj(Vj ,D,S) ∈ I} ∪ (I \ {ansj(Vj ,D,S) ∈ I}).
The following result shows that our translation preserves the translation in [Polleres, 2007].

Proposition 2 Let Q = (V, P,D, ∅) be an RSP query, that is, a SPARQL query, and cq(Q) = {Q′}.
Let I be the single answer set of τ(Q), I1 = AS (τ1(cs(Q)), D, t), and I2 = AS (τ2(Q

′), D, t). It holds
that I = chop(I1, Q) = chop(I2, Q).

INFSYS RR 15-06 15

Translations τ1 and τ2 share the core from translation τ in [Polleres, 2007], and differ due to two approaches
by C-SPARQL and CQELS in extending SPARQL to deal with streaming input. So far, it has not been clear
under which conditions the two engines will return the same output. Tackling this question now becomes
possible at a formal level using LARS.

Given an RDF triple (s, p, o) and a basic graph pattern g, we say (s, p, o) sub-matches g, denoted
by sm(s, p, o, g), iff there exists a triple pattern (S, P,O) ∈ g s.t. [[(S, P,O)]]{(s,p,o)} 6= ∅, where the no-
tion of subgraph matching [[.]] is defined in [Pérez et al., 2009]. Given a graph pattern P , let trp(P) be the
set of triple patterns appearing in P .

The following result identifies a class of RSP queries where the answer streams of the translated LARS
programs by τ1 and τ2 coincide on the output predicate ans1.

Theorem 3 Let Q = (V, P,D,S) be an RSP query where D = (G,Gn) contains a default graph G and a
set Gn of named graphs, and S = {(s1, ω1, g1), . . . , (sm, ωm, gm)}. Let P1 = τ1(cs(Q)), P2 = τ2(Q

′), for
any Q′ ∈ cq(Q), D be a data stream, and t be a time point. If

∀g 6= g′ ∈ {{trp(P) \
⋃
gi}} ∪ {g1, . . . , gm} : g ∩ g′ = ∅, (?)

∀striple(s, p, o, si) ∈ Ats(D) : sm(s, p, o, gi) and
∀gj 6= gi ∈ S : ¬sm(s, p, o, gj) and ¬sm(s, p, o, trp(P) \

⋃
gj) (??)

then AS (P1, D, t)|ans1 = AS (P2, D, t)|ans1 .

Condition (?) requires that the graph patterns wrt. the static dataset and the input streams do not share triple
patterns while (??) makes sure that triples arrived at stream si are not allowed to enter any other stream or to
stay in the static dataset. Combining these two conditions intuitively means that all input streams and static
dataset have disjoint input. Then, the two approaches in building snapshots correspond as the distinction
of input due to stream graph patterns in CQELS also happens for C-SPARQL. Thus, the answer streams
produced by two translated LARS programs coincide on the output predicate.

5 RSP Semantics Analysis Based on LARS

Section 4.3 introduces translations from RSP queries on either C-SPARQL or CQELS branches into LARS
programs. Under condition (?) and (??) in Theorem 3, the two translated LARS programs from a C-SPARQL
and a CQELS queries, rooted from the same RSP query, produce the same output predicate ans1 (thus on
RStream operator) when they are evaluated at the same time point.

However, C-SPARQL and CQELS are based on two different execution modes: push-based and pull-
based, which are captured in Section 4.1 for general LARS programs. In order to theoretically analyze and
compare the semantics of C-SPARQL and CQELS, we need to combine the above two results, together with
taking into account the difference between IStream and RStream operators. But first of all, we must clarify
what we mean by saying “C-SPARQL and CQELS agree on the output.”

5.1 Agreement between C-SPARQL and CQELS

We propose a characterization of agreement between C-SPARQL and CQELS using LARS. For the core
notion, we concentrate on the agreement on the resulted mappings after non-aggregate SPARQL operators
such as AND, UNION, etc. Extending to aggregate will be discussed in Section 6.

16 INFSYS RR 15-06

Intuitively, the two semantics are considered to agree on a timeline T with a pulling period U , if (1) they
both start at the same time point 0, and (2) for every interval (i · U, (i+ 1) · U] ∈ T , where i ≥ 0, the union
of outputs produced by CQELS in the interval coincides with the output produced by C-SPARQL at the
right-end of the interval. To formalize the conditions for agreement, we need the notion of trigger time
points and incremental output presented next.
Trigger Time Points. Let t1 < t2 be two time points. The set of trigger time points in a data streamD in the
interval (t1, t2] is defined as ttp(t1, t2, D)={t∈ (t1, t2] | υD(t)6=∅}. For a time point t ∈ TD such that t > 0,
the previous trigger point of t with respect toD is prev(t,D) = max(ttp(0, t− 1, D)) if ttp(0, t−1, D) 6=
∅ and is 0 otherwise.
Incremental Output. Next, we capture the incremental output strategy, i.e., the IStream operator by
means of the difference between answer streams of two consecutive trigger time points. Let It = AS (P,D, t).
Then, the incremental output inc(P, t) at a trigger time point t (i.e., υD(t) 6= ∅) is Ats(It \Iprev(t)) if t > 0,
and inc(P, 0) = Ats(I0). Here, the difference between two streams S1 = (T, υ1) and S2 = (T, υ2) is
defined as S′ = S1 \ S2 = (T, υ′) s.t. for all t′ ∈ T , we have that υ′(t′) = υ1(t

′) \ υ2(t′).
Based on this, we define when two LARS programs, executed on push- and pull- modes, agree on an

interval of time.

Definition 4 Given two LARS programs P1, P2, a data stream D = (TD, υD), and two time points t1<t2
of TD, let A1=

⋃
t∈ttp(t1,t2,D) inc(P1, t) ∪

⋂
t∈ttp(t1,t2,D)∪{t2}Ats(It) and A2 = Ats(AS (P2, D, t2)). Let

R = {p1, . . . , pn} be a set of predicates. We say P1 and P2 push-pull-agree on D and R

(i) during the interval (t1, t2], denoted by P1 ≡D,R
t1,t2

P2, iff A1|R = A2|R;

(ii) with pulling period U , denoted by P1 ≡D,R
U P2, iff P1 ≡D,R

t1,t2
P2, where t1, t2 ∈ TD such that there

exists some i ∈ N, where t1 = i · U and t2 = (i+ 1) · U .

Intuitively, push-pull-agreement during (t1, t2] is established by comparing the answer stream evaluated
at t2 with the union of incremental answer computed at all trigger time points in the interval. The term⋂
t∈ttp(t1,t2,D)∪{t2}Ats(It) ensures that for programs that always produce some output p(c) at every time

point, this output is also counted in comparing the incremental result and the result at t2.

5.2 Agreement Conditions

Given an RSP query Q = (V, P,D,S), let Q1 = cs(Q) and Q2 ∈ cq(Q). We want to identify condi-
tions guaranteeing that the LARS programs τ1(Q1) and τ2(Q2) agree on the output predicate ans1, that is
τ2(Q2) ≡D,ans1

t1,t2
τ1(Q1).

Let D = (TD, υD) be a data stream. The projection of D on an input stream identified by an IRI s
is D|s = (TD, υD|s), where for all t ∈ TD, we have that υD|s(t) = {striple(S, P,O, s) ∈ υD(t)}. That
is, we keep only facts with s as the stream identifier. The snapshot of D with respect to S at time point t is
defined as:

sn(D,S, t) =
⋃

(s,ω,g)∈S wτ(ω)(D|s, t).
Intuitively, for each input stream pattern (s, ω, g) ∈ S, we apply the window function wτ(ω)=w� to the
projection of D on s. Note that τ(ω) translates the window expression ω to a window operator � (Table 1),
and w� is the window function behind �. The union of all substreams extracted by the window functions
give us the snapshot. The following result identifies sufficient conditions where C-SPARQL and CQELS
agree.

INFSYS RR 15-06 17

Theorem 4 LetQ=(V, P,D,S) be an RSP query, whereP contains neither MINUS nor FILTER NOT EXISTS,
D = (G,Gn) contains a default graph G and a set Gn of named graphs, and S = {(s1, ω1, g1), . . . ,
(sm, ωm, gm)} contains only time-based windows of the form [RANGE L]. Let Q1 = cs(Q), Q2 ∈ cq(Q),
and t1 < t2. If (?) and (??) hold, and additionally⋃

t∈ttp(t1,t2,D)

sn(D,S, t) = sn(D,S, t2) (? ? ?)

then
τ2(Q2) ≡D,ans1

t1,t2
τ1(Q1).

This result can be straightforwardly extended to check whether τ1(Q1) ≡D,ans1
U τ2(Q2), but is omitted due

to space reason. The theorem shows that having agreement between C-SPARQL and CQELS is not easy to
achieve, as discussed in the next section.

6 Discussion and Conclusion

Theorem 4 identifies sufficient conditions on which C-SPARQL and CQELS agree on their output, including
(i) no MINUS or FILTER NOT EXISTS operator, (ii) only time-based windows with sliding size 1, (iii) only
“disjoint” patterns and data in the static datasets and the input streams, and (iv) having the same snapshot
collected in the interval as at the right end of the interval.

While (i)-(iii) correspond to useful fragments of queries for practical purposes, (iv) cannot be guaranteed
in case of high throughput. The reason is that with dense input streams, the snapshots taken at time points
near the left end of an interval will have high chances to collect more triples than the snapshot at the right end
of the interval. Thus, having C-SPARQL and CQELS agreeing in practice is very unlikely, due to the strong
semantic implications of push/pull-based querying. Consequently, data independent agreement conditions
are unlikely to be found for queries that go beyond pure SPARQL.

One can easily find a counter example for the agreement when relaxing any of (i)-(iii) and keeping
other conditions unchanged. For example, when FILTER NOT EXISTS or MINUS is allowed, the translated
LARS programs are not positive. This takes away the monotonic property, i.e., having more input one any
side (push- or pull-based) might lead to shrinking the output facts and introducing disagreement on the
output.

For sliding windows with sliding size greater than 1, C-SPARQL can produce output that CQELS cannot,
even when (? ? ?) is satisfied. Intuitively, this is because the window only slides after a certain amount of
time and might miss some most recent input. In this case, we think that pull-based is preferable over push-
based execution.

Finally, if the static datasets and the input streams share patterns by which triples are matched for R2R
operators, the result of C-SPARQL and CQELS will be different. For instance, if these datasets share
the same pattern and the static dataset contains some triples matching this pattern, then C-SPARQL can
produce output even when no input triple arrives at the stream, as it cannot distinguish where a triple
comes from. On the other hand, the stream graph pattern of CQELS has no mapping due to empty in-
put, and thus produces no output. However, this situation should not happen often in practice as merged
input streams will usually be distinguishable by an implicit schema. For instance, in our running exam-
ple, the pattern ?user :isNear ?shop can only match triples in the stream <locations>, since predi-
cate :isNear will not be streamed in <coupons>.

18 INFSYS RR 15-06

The core notion of agreement does not consider aggregate. When considering aggregate, we observe
that only certain types of aggregate allow for tracing agreement between pull- and push-based executions.
For example, for COUNT, we can say that CQELS agrees with C-SPARQL in an interval (t1, t2] iff the sum
of output values produced by the former during the interval equal to the output value returned by the latter
at t2. Similar extension can be done for MAX, MIN. However, with MEDIAN or AVG, one cannot reproduce
the result from CQELS’ output to match that from C-SPARQL. In general, we can only give agreement
notion for aggregates that can be recursively defined.

Conclusion and Outlook. This paper utilizes LARS to give insights on the contrast between two RSP
semantics implemented in two representative engines, namely C-SPARQL and CQELS. Compared to the
closest work in [Dell’Aglio et al., 2015], we made another important step forward by introducing a notion
of agreement between the engines and identifying conditions for it to hold.

The theoretical result is based on the assumption that engine execution time is neglectable to the input
rate. For further practical comparison, we envision future work where this condition is dropped. Implement-
ing the proposed translations is also on our agenda. In another direction, we are investigating equivalence
for general LARS programs. Once this result is available, one can have an automatic equivalence checker
which takes any two translated LARS programs of two continuous queries from any two stream processing
languages, tell whether the two original queries are equivalent, and possibly even enumerate their different
outputs due to our model-based approach.

References

A. Arasu, S. Babu, and J. Widom. The CQL continuous query language: semantic foundations and query
execution. VLDB J., 15(2):121–142, 2006.

D. F. Barbieri, D. Braga, S. Ceri, E. Della Valle, and M. Grossniklaus. C-SPARQL: a continuous query
language for rdf data streams. Int. J. Semantic Computing, 4(1):3–25, 2010a.

D. F. Barbieri, D. Braga, S. Ceri, and M. Grossniklaus. An execution environment for C-SPARQL queries.
In EDBT, pages 441–452, 2010b.

H. Beck, M. Dao-Tran, T. Eiter, and M. Fink. Towards Ideal Semantics for Analyzing Stream Reasoning.
In ReactKnow, 2014a.

H. Beck, M. Dao-Tran, T. Eiter, and M. Fink. Towards a Logic-Based Framework for Analyzing Stream
Reasoning. In OrdRing, pages 11–22, 2014b.

H. Beck, M. Dao-Tran, T. Eiter, and M. Fink. LARS: A logic-based framework for analyzing reasoning over
streams. In AAAI, 2015.

A. Bolles, M. Grawunder, and J. Jacobi. Streaming SPARQL - extending SPARQL to process data streams.
In ESWC, pages 448–462, 2008.

J.-P. Calbimonte, Ó. Corcho, and A. J. G. Gray. Enabling ontology-based access to streaming data sources.
In ISWC (1), pages 96–111, 2010.

D. Dell’Aglio, J. Calbimonte, M. Balduini, Ó. Corcho, and E. D. Valle. On Correctness in RDF Stream
Processor Benchmarking. In ISWC 2013, pages 326–342, 2013.

INFSYS RR 15-06 19

D. Dell’Aglio, E. D. Valle, J.-P. Calbimonte, and O. Corcho. Rsp-ql semantics: a unifying query model to
explain heterogeneity of rdf stream processing systems. IJSWIS, 10(4), 2015.

N. Dindar, N. Tatbul, R. J. Miller, L. M. Haas, and I. Botan. Modeling the execution semantics of stream
processing engines with SECRET. VLDB J., 22(4):421–446, 2013.

S. Groppe. Data Management and Query Processing in Semantic Web Databases. Springer, 2011.

M. Kolchin and P. Wetz. Demo: YABench - Yet Another RDF Stream Processing Benchmark. In RSP
Workshop, 2015.

J. W. Lloyd and R. W. Topor. Making Prolog more Expressive. J. Log. Program., 1(3):225–240, 1984.

J. Pérez, M. Arenas, and C. Gutierrez. Semantics and complexity of sparql. ACM Trans. Database Syst.,
34:16:1–16:45, September 2009. ISSN 0362-5915.

D. L. Phuoc, M. Dao-Tran, J. X. Parreira, and M. Hauswirth. A native and adaptive approach for unified
processing of linked streams and linked data. In ISWC (1), pages 370–388, 2011.

D. L. Phuoc, M. Dao-Tran, M.-D. Pham, P. Boncz, T. Eiter, and M. Fink. Linked stream data processing
engines: Facts and figures. In ISWC - ET, pages 300–312, 2012.

A. Polleres. From SPARQL to rules (and back). In WWW 2007, pages 787–796, 2007.

Y. Zhang, P. Minh Duc, O. Corcho, and J. P. Calbimonte. SRBench: A Streaming RDF/SPARQL Bench-
mark. In ISWC, pages 641–657, 2012.

20 INFSYS RR 15-06

AND (r3)

:?shop :offers :?coupon (r5) AND (r6)

:?coupon :reduce :?percent (r8) :?coupon :on :?product (r10)

Figure 3: Structural analysis of rules constructed by τ1 that are in correspondence with (r20) by τ2

A Proofs

A.1 Proof Sketch of Proposition 1

The rules concluding trigger mimics the pushed- and pull-modes. When trigger is concluded, the
original LARS program P is evaluated. Therefore the “if” parts of (1) and (2) hold.

When trigger is not concluded, no rule in the translated LARS programs fires; therefore, no intensional
fact will be concluded and thus the input stream D is the only answer stream. Therefore, the “else” part
of (1) and (2) hold.

A.2 Proof Sketch of Proposition 2

The two translations τ1 and τ2 are established by (i) adding another argument S on τ and the predicates ansi
from [Polleres, 2007], and (ii) introducing new rules with τ ′. When S = ∅, it is easy to see that chopping
off this argument in τ1, τ2 and the predicate ansi gives us exactly τ . Furthermore, the additional rules
in τ ′ will never fire during evaluating τ1(cs(Q)), τ2(Q′) since there is no facts to support them. Therefore,
Proposition 2 holds.

A.3 Proof Sketch of Theorem 3

The conditions (?) and (??) intuitively means that all streams and static datasets provide disjoint input,
both on schematic and data levels. Under these conditions, certain rules generated translation τ1 can be
disregarded; for example, rules (r4), (r7), (r9), (r13), and (r14) in Example 11. These rules will never fire
since they try to import triples of the form not provided by the respective sources.

Next, recall from [Phuoc et al., 2011] that the stream graph pattern contains only triple templates. This
means when C-SPARQL merges such patterns into the default graph, we can see them as a pattern of triple
templates connected by operator AND. Example 10 illustrates this observation: P3 contains triple patterns
connected with AND. It is plugged in the stream graph pattern of P2 also appears in P1.

Thus, we can choose an order in applying translation τ1 on a C-SPARQL query that mimics the order
when τ2 is applied on its CQELS counterpart query. The two LARS programs in Example 11 was con-
structed in the same order: we split the AND operator between the first three triple templates and the last
two (that is P3 AND P4) to mimic the split between the stream graph pattern (STREAM s ω P3) and the
pattern P4 from the default graph.

Under the proposed ordering, the translated rules regarding the static datasets between τ1 and τ2 coin-
cides (note the removed rules due to condition (?)).

What we need to argue now is the correspondence between the translations of the pattern related to
the input streams. For this, we see that when g is a set of triple templates, i.e., the combination of

INFSYS RR 15-06 21

t2

tj

L

L no input coming

• • • • • • • •

Figure 4: Illustration for proving (ii)

these triple templates by operator AND; the translation τ2(V, (STREAM s ω g),D,S, i) is a short hand
for τ1(V, g,D,S, i) ∪ τ ′(S). The latter simply unfolds the binary tree where intermediate nodes are opera-
tors AND and leaf nodes are triple templates in g, while the former translate the whole graph pattern in one
go. Figure 3 illustrates this correspondence on the pattern P3 (Example 10). Furthermore, τ2 applies the
window and 3 operators directly in the translation of the stream graph pattern. This is complemented in τ1
by τ ′(S).

A.4 Proof Sketch of Theorem 4

First, based on Theorem 3, condition (?) guarantees that Q1 and Q2 can be seen as “equivalent” on the
output predicate ans1. To prove Theorem 4, we can start with a LARS program P translated from either Q1

or Q2 using the respective translation, and show that

P �≡�
(t1,t2],{ans1} P.

Now, we have that
A1 =

⋃
t∈ttp(t1,t2) inc(t) ∪

⋂
t∈ttp(t1,t2)∪{t2}Ats(It)

A2 = Ats(AS (P,D, t2)).

We need to show two directions: (i) A1|ans1 ⊆ A2|ans1 , and (ii) A2|ans1 ⊆ A1|ans1 . Under the assumption
that the graph pattern in Q does not contain MINUS, the translated LARS program P is positive, that is,
there is no rule with negative atom in the body. This gives us a nice monotonic property that adding new
facts into P does not shrink its model.

We therefore can accomplish the proof with the following intuition: a concluded fact of the predi-
cate ans1 in A1 or A2 must be conducted from a set of supporting input facts from predicates triple

or striple. Our idea to prove (i) and (ii) is to show that whenever such a set of supporing input facts is
available to derive a fact ofthe predicate ans1 in push- or pull- execution mode, the set is also available in
the other mode. Since we assume a static background dataset, we will concentrate in the following only on
facts from predicate striple.

Prove (i). Assume that ans1(c) ∈ A1, we need to show that ans1(c) ∈ A2.
Indeed, suppose that ans1(c) ∈ It, where t ∈ (t1, t2]. This means there exists a set {striple(c1), . . . , striple(ck)} ⊆

sn(t) that contributes to concluding ans1(c).
By condition (??), we have {striple(c1), . . . , striple(ck)} ⊆ sn(t2), therefore, ans1(c) ∈ It2 .

Prove (ii). Assume that ans1(c) ∈ A2, we need to show that ans1(c) ∈ A1 by pointing out a trigger time
point t′ s.t. {striple(c1), . . . , striple(ck)} ⊆ sn(t′).

Let tj be a time point in ttp(t1, t2) such that ttp(tj , t2) = ∅. Intuitively, this means that tj is the maximal
time point in the interval with input coming in. Given a stream S = (T, υ), under the condition that Q only

22 INFSYS RR 15-06

has time-based window expression of the form [RANGE L], we have that

Ats(w((L, 0, 1), S, t2)) ⊆ Ats(w((L, 0, 1), S, tj)),

where w is the time-based window function defined in [Beck et al., 2015]. Intuitively, as illustrated in
Figure 4, the window applied at tj covers more time points with non-empty input than the application of the
same window at t2. Note that this only holds if the sliding size of the window is 1.

Therefore, we have {striple(c1), . . . , striple(ck)} ⊆ sn(tj) and thus ans1(c) ∈ Itj . From here, it
is easy to see that ans1(c) ∈ A1.

	Introduction
	Preliminaries
	RDF and SPARQL
	RDF Stream Processing
	Logic-oriented view on Streams, Windows and Time Reference
	LARS Programs

	Modeling RSP Queries
	Capturing RSP Queries Using LARS
	Push- and Pull-Based Execution Modes for LARS Programs
	Translate RSP Window Expressions to LARS Window Operators
	Translate RSP Queries to LARS Programs

	RSP Semantics Analysis Based on LARS
	Agreement between C-SPARQL and CQELS
	Agreement Conditions

	Discussion and Conclusion
	Proofs
	Proof Sketch of Proposition 1
	Proof Sketch of Proposition 2
	Proof Sketch of Theorem 3
	Proof Sketch of Theorem 4

