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Abstract. We propose Clopen Knowledge Bases (CKBs) as a new formalism combining Answer Set
Programming (ASP) with ontology languages based on first-order logic. CKBs generalize the promi-
nent r-hybrid and DL+LOG languages of Rosati, and are more flexible for specification of problems
that combine open-world and closed-world reasoning. We argue that the guarded negation fragment
of first-order logic (GNFO)—a very expressive fragment that subsumes many prominent ontology
languages like Description Logics (DLs) and the guarded fragment—is an ontology language that
can be used in CKBs while enjoying decidability for basic reasoning problems. We further show
how CKBs can be used with expressive DLs of theALC family, and obtain worst-case optimal com-
plexity results in this setting. For DL-based CKBs, we define a fragment called separable CKBs
(which still strictly subsumes r-hybrid and DL+LOG knowledge bases), and show that they can be
rather efficiently translated into standard ASP programs. This approach allows us to perform basic
inference from separable CKBs by reusing existing efficient ASP solvers. We have implemented
the approach for separable CKBs containing ontologies in the DL ALCH, and present in this paper
some promising empirical results for real-life data. They show that our approach provides a dramatic
improvement over a naive implementation based on a translation of such CKBs into dl-programs.
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1 Introduction

Answer Set Programming (ASP) and ontology languages like Description Logics (DLs) play leading roles
in Knowledge Representation and Reasoning (KR&R). ASP and DLs have largely orthogonal features be-
cause they make very different assumptions regarding the completeness of information, and thus reasoning
techniques and algorithms that are deployed in ASP are significantly different from the ones used in DLs.
Combining ASP, which makes the closed-world assumption (CWA), with DLs, which make the open-world
assumption (OWA), into expressive hybrid languages that would enjoy the positive features of both has
received significant attention in the last decade (see, e.g., [21, 22, 6, 19, 18]). However, the progress on un-
derstanding the relationship between different hybrid languages, and their relationship with more standard
languages like plain ASP, has been limited, as has the development of efficient reasoning algorithms and
implementations.

These and related problems are investigated in this paper for a new hybrid language called Clopen
Knowledge Bases (CKBs), which generalizes and improves the prominent r-hybrid language [21], and
DL+LOG [22]. Each CKB is a triple H = (P, ϕ,Σ), where P is a disjunctive Datalog program with
“not” literals in rule bodies (Datalog¬,∨), ϕ is a theory (e.g., in first-order logic), and Σ is a set of predicate
symbols. Intuitively, Σ specifies the predicates that should be interpreted under the OWA; the remaining
predicates should be interpreted under the CWA. Our contributions can be summarized as follows:
• We introduce CKBs and define for them a stable model semantics, inspired by the semantics given by

Rosati to r-hybrid and DL+LOG KBs. In a nutshell, the major difference between the latter formalisms and
CKBs is that CKBs allow to use CWA predicates in the theory. This allows for more convenient knowledge
representation, but also causes technical challenges.
• We study automated reasoning in CKBs. To this end, we first provide a general decidability re-

sult for checking entailment of ground atoms and consistency testing in CKBs H = (P, ϕ,Σ), where ϕ
is expressed in the guarded negation fragment of FO (GNFO) [3]. This is a very expressive fragment
that subsumes the more prominent guarded fragment of FO, as well as many expressive DLs. We give
a NEXPTIME2EXPTIME upper bound for inference from GNFO-based CKBs (we note that satisfiability of
GNFO formulas is 2EXPTIME-hard).
• We next study the reasoning in CKBs H = (P, ϕ,Σ) where ϕ is expressed in the very expressive

DL ALCHOI, which extends the basic DL ALC with role hierarchies, inverse roles, and nominals. We
show that the (combined) complexity of reasoning in such CKBs is not higher than in standard (non-ground)
ASP. If we assume bounded predicate arities in rules, the basic reasoning problems are EXPTIME-complete,
which coincides with the complexity of standard problems in plain ALCHOI.
• We study the relationship between CKBs and other existing hybrid languages. We define a restricted

class of separable CKBs, and show that they can be transformed in polynomial time into the so-called dl-
programs [6]. These CKBs still generalize r-hybrid KBs, thus we establish a connection between r-hybrid
KBs and dl-programs that is interesting in its own right. The dl-programs resulting from this transformation
effectively implement a naive algorithm for reasoning in CKBs. However, our experiments with the dlvhex
suite (an implementation of dl-programs; see [20]) show that this approach is not suitable for a practical
implementation of CKBs.
• We address the above mentioned inefficiency by developing translations from separable CKBs into

standard ASP programs, thus enabling the reuse of existing ASP solvers. Roughly, the necessary knowledge
about the ontology is compiled into a set of disjunctive Datalog rules. Together with the original rules of the
CKB, they form an ASP program whose stable models are in close correspondence with the stable models
of the input CKB. We define two translations. The first data-independent one establishes a connection to
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ASP, showing that ASP is as expressive as separable CKBs. The other data-dependent translation is geared
towards implementation, exploiting the structure of the data in the input CKB to reduce non-deterministic
choices.
• We have implemented the data-dependent translation for separable CKBs with ALCH ontologies,

and present here some promising empirical results. In particular, our approach provides a dramatic improve-
ment over the naive implementation based on a direct encoding into dl-programs.

An extended version of this paper containing selected proofs can be found here: http://www.kr.
tuwien.ac.at/research/reports/rr1704.pdf

2 Preliminaries

In this paper we talk about logics which are, in general, sets of theories, and our results are for specific
logics that are fragments of standard FO. We start by introducing the notions of (relational) interpretations,
as usual in FO, and Herbrand interpretations, as usual in rule languages.

Interpretations and models. Assume a countably infinite set Sconst of constants, and a countably infinite
set Spred of predicate symbols. Each r ∈ Spred is associated with a non-negative integer, called the arity
of r. An interpretation is a pair I = (∆I , ·I) that consists of a non-empty set ∆I (called domain), and a
valuation function ·I that maps (i) each constant c∈Sconst to an element cI ∈ ∆I , and (ii) each predicate
symbol r to a set rI ⊆ (∆I)n, where n is the arity of r.

We assume a countably infinite set T of theories. Each theory ϕ ∈ T is associated with a set mods(ϕ)
of interpretations. Each I ∈ mods(ϕ) is called a model of ϕ. We assume that > ∈ T, and we let mods(>)
be the set of all interpretations. A logic is simply a set of theories L ⊆ T. As concrete logics we will
consider various fragments of FO; the notion of a model for a theory ϕ in FO is the standard one.

Atoms and Herbrand interpretations. We assume a countably infinite set Svar of variables. The elements
of Sconst ∪ Svar are called terms. An atom is an expression of the form r(t1, . . . , tn), where r ∈ Spred,
n is the arity of r, and t1, . . . , tn are terms. An atom is called ground if no variables occur in it. An
Herbrand interpretation I is any set of ground atoms. An Herbrand interpretation I can be seen as an
ordinary interpretation Ĩ = (∆Ĩ , ·Ĩ), where we let (i) ∆Ĩ =Sconst, and (ii) r Ĩ = {~u | r(~u) = I} for all
r∈Spred.

3 Clopen Knowledge Bases

We now formally define our new hybrid language.

Syntax. A rule ρ is an expression of the form

p1 ∨ . . . ∨ pk ← pk+1, . . . , pl,not pl+1, . . . ,not pm (1)

where p1, . . . , pm are atoms. An expression not p, with p an atom, is a negated atom. We let head(ρ) = {p1, ..., pk},
body+(ρ) = {pk+1, ..., pl}, and body−(ρ) = {pl+1, ..., pm}.

A program P is a set of rules. A Clopen Knowledge Base (CKB) is a triple H = (P, ϕ,Σ), where P is
a program, ϕ ∈ T is a theory, and Σ ⊆ Spred. The predicate symbols in Σ (resp., in Spred \ Σ) are called
the open predicates (resp., closed predicates) w.r.t.H. The CKB H is called safe if the following holds for
every rule ρ ∈ P: each variable occurring in ρ appears in some atom r(~u)∈ body+(ρ) with r 6∈Σ. Unless
stated otherwise, all considered CKBs are safe.
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A rule or program is called ground (resp., positive) if no variables (resp., negated atoms) occur in it. A
ground rule r(~u)← is called a fact. We write r(~u) ∈ P in case the fact r(~u)← is present in the program P .

As usual, dom(f) and ran(f) denote the domain and range of a function f , respectively. A substitution
σ is any partial function from Svar to Sconst. For a rule ρ and a substitution σ, we use σ(ρ) to denote the rule
that is obtained from ρ by replacing every variable X ∈ dom(σ) with σ(X). The grounding of a program
P , denoted ground(P), is the ground program that consists of all ground rules ρ′ such that ρ′ = σ(ρ) for
some ρ ∈ P and some substitution σ. Note that ground(P) is infinite in case P has at least one variable.
Semantics. An Herbrand interpretation I is called a model of a ground positive program P if body+(ρ) ⊆ I
implies head(ρ) ∩ I 6= ∅ for all ρ ∈ P . Furthermore, I is a minimal model of the program P if, in addition,
there is no J ( I such that J is a model of P .

Given a program P , an Herbrand interpretation I , and Σ ⊆ Spred, the reduct PI,Σ of P w.r.t. I and Σ is
the ground positive program obtained from ground(P) in two steps:

(1) First, delete every rule ρ that contains

(a) r(~u) ∈ body+(r) with r ∈ Σ and r(~u) 6∈ I ,

(b) r(~u) ∈ head(r) with r ∈ Σ and r(~u) ∈ I , or

(c) r(~u) ∈ body−(r) with r(~u) ∈ I .

(2) In the remaining rules, delete all negated atoms, and all ordinary atoms r(~u) with r ∈ Σ.

An Herbrand interpretation I is a stable model of a CKBH = (P, ϕ,Σ) if the following two conditions
are satisfied:

- {r(~u) | r(~u)∈ I, r 6∈Σ} is a minimal model of PI,Σ, and

- Ĩ is model of ϕ.

Reasoning problems. As usual in hybrid languages (see, e.g., [21]), the basic reasoning task for CKBs is
entailment of ground atoms. That is, given a CKB H = (P, ϕ,Σ) and a ground atom R(~u), the problem is
to decide whether R(~u) ∈ I holds for all stable models I of H. This problem can be reduced to checking
the non-existence of a stable model for the CKBH′ = (P ∪ {← R(~u)}, ϕ,Σ). Thus in the rest of the paper
we focus on checking the stable model existence for a given CKB. Note that in general a CKB may have
infinitely many stable models.

Example 1. The CKB H = (P, ϕ,Σ) contains information on the local transport network (provided by
the city’s transport authority and assumed to be complete) and on hotels and relevant locations (extracted
form the web and not necessarily complete). We have P = P1 ∪ P2 ∪ P3, where P1 and P2 contain facts.
The network, which is depicted by solid lines at the bottom of Figure 1, is described in P1. Facts of the
form RouteTable(`, s, s′) ← store that on the line `, station s is followed by station s′. The constants t1
and t2 represent tram lines, while `1 represents a metro line; we have corresponding facts MetroLine(`1),
TramLine(t1), TramLine(t2). P2 contains facts related to locations, including the following (for conve-
nience, CloseTo is depicted with dotted lines).

CloseTo(c1, s1)← Hotel(h1)← TramConn(h1)←
CloseTo(h2, s4)← Hotel(h2)←

The (self-explanatory) rules in P3 and the theory ϕ are shown in Figure 1 (URailConn stands for urban
rail connection). If h is a hotel with direct connection to the point of interest c1, then Q(h) holds for it.
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P3 = {MetroStation(Y1)← RouteTable(X,Y1, Y2),MetroLine(X)

TramStation(Y2)← RouteTable(X,Y1, Y2),TramLine(X)

ReachOnLine(X,Y1, Y2)← RouteTable(X,Y1, Y2)

ReachOnLine(X,Y1, Y3)← ReachOnLine(X,Y1, Y2),RouteTable(X,Y2, Y3)

TramOnly(X)← TramConn(X),not MetroConn(X)

Q(X)←Hotel(X),CloseTo(X,Y ),ReachOnLine(Z, Y, Y ′),CloseTo(c1, Y
′)

Q′(X)←Q(X),not TramOnly(X) }

ϕ = { ∀x.
(
MetroStation(x) ∨ TramStation(x)↔ Station(x)

)
,

∀x.
(
TramConn(x)↔ ∃y CloseTo(x, y) ∧ TramStation(y)

)
,

∀x.
(
MetroConn(x)↔ ∃y CloseTo(x, y) ∧MetroStation(y)

)
,

∀x.
(
URailConn(x)↔ ∃y CloseTo(x, y) ∧ Station(y)

)
}

Theory and Practice of Logic Programming 5

P3 = { SubwayStation(Y1) RouteTable(X ,Y1,Y2),SubwayLine(X)

TramStation(Y2) RouteTable(X ,Y1,Y2),TramLine(X)

ReachOnLine(X ,Y1,Y2) RouteTable(X ,Y1,Y2)

ReachOnLine(X ,Y1,Y3) ReachOnLine(X ,Y1,Y2),RouteTable(X ,Y2,Y3)

TramOnly(X) TramConn(X),not SubwayConn(X)

Q(X) Hotel(X),closeTo(X ,Y ),ReachOnLine(Z,Y,Y 0),CloseTo(c1,Y 0)

Q0(X) Q(X),not TramOnly(X) }

T = { 8x.
�
SubwayStation(x)_TramStation(x)! Station(x)

�
,

8x.
�
TramConn(x)$9ycloseTo(x,y)^TramStation(y)

�
,

8x.
�
SubwayConn(x)$9y.closeTo(x,y)^SubwayStation(y)

�
,

8x.
�
URailConn(x)$9y.closeTo(x,y)^Station(y)

�
}

Fig. 1. Example CKB
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Fig. 2. GRAPHICS CAPTiON!!!!!!S

for any program P and each n-ary relation symbol r with r 6= adom that appears in P, we assume
that (i) P contains the rule adom(x j) r(x1, . . . ,xn) for every 1 j n, and (ii) adom is allowed
to occur only in bodies of the remaining rules.

Example 1
The CKB H = (P,T ,S) contains information on the local transport network (provided by the
city’s transport authority and assumed to be complete) and on hotels and relevant locations (ex-
tracted form the web and not necessarily complete). We have P = P1 [P2 [P2, where P1 and
P2 contain facts. The network in Figure 2 is described in P1. The constants t1 and t2 repre-
sent tram lines, while l1 represents a subway line; we have corresponding facts SubwayLine(`1),
TramLine(t1), TramLine(t2). Facts of the form RouteTable(`,s,s0) mean that on the line l,
station s is followed by station s0. P2 contains facts related to locations, including:

CloseTo(c1,s1) Hotel(h1) TramConn(h1) Hotel(h2) CloseTo(h2,s4) 

The (self-explanatory) rules in P1 and the theory T are in Figure 1 (URailConn stands for
urban rail connection). If h is a hotel with direct connection to the point of interest c1, then
Q(h) will hold for it. In this case, it holds for both h1 and h2. We can use negation as failure
to further exclude hotels for which a tram connection is explicitely mentioned, but no subway
connection, hence we can assume that it is only reachable by tram (like h1). The open predicates
are S = {Hotel,closeTo,TramConn,SubwayConn,URailConn}

4 Decidable CKBs

We now turn to identifying useful settings in which the existence of a stable model for a CKB
H = (P,j,S) is decidable. This naturally requires that the theory j belongs to a logic L in which
satisfiability is decidable (i.e., the set {j 2L | mods(j) 6= /0} should be recursive). However, this
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In this case, it holds for both h1 and h2 (note that we do not know which station h1 is close to). We can
use negation as failure to further exclude hotels for which a tram connection is explicitly mentioned, but no
metro connection, hence we can assume that it is only reachable by tram, like h1. For this reason, Q′ only
holds for h2. The predicates that describe the network, and those that occur in the heads of the rules in
P3 are closed. The remaining ones are open, i.e. Σ = {Hotel, CloseTo, Station, TramConn, MetroConn,
URailConn}.

In the spirit of r-hybrid and DL+LOG KBs, the FO theory of a CKB can be seen as a set of integrity
constraints on the inferences made using the rules of the CKB. Since we are not in classical logic, and in
particular because double negation elimination is not valid, “moving” a fact from the program to its theory
need not preserve the stable models.

Example 2. We let Σ = {Edge} and

ϕ= {∀xy Edge(x, y)→ (Node(x) ∧ Node(y))}
P =Node(v1)←; . . .Node(vn)←;

Reach(X,X)←Node(X);

Reach(X,Z)←Reach(X,Y ),Edge(Y,Z),Node(Z); }

Then these CKBs are not equivalent:

H1=(P, ϕ ∧ Reach(v1, v2),Σ)

H2 =(P ∪{Reach(v1, v2)←}, ϕ,Σ)

Indeed, each stable model of H1 correspond to a directed graph G over v1, . . . , vn such that (v1, v2) is
included in the reflexive transitive closure of the edge relation in G. In contrast, a stable model of H2

consists of an arbitrary graph over v1, . . . , vn, together with the reflexive transitive closure of the edge
relation augmented with the tuple (v1, v2).

Relationship to ASP. Assume a program P and an Herbrand interpretation I . We call I a stable model
of P if I is a stable model of the CKB H = (P,>, ∅). It is not difficult to see that this definition yields
precisely the stable models that can alternatively be computed using the standard definition of stable model
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semantics in ASP. Indeed, the program PI,∅ boils down to the standard Gelfond-Lifschitz reduct PI of P
w.r.t. I [12]. Observe that in a CKB H = (P, ϕ, ∅), the theory ϕ plays the role of integrity constraints on
the stable models of the plain program P , i.e. I is a stable model of H iff I is a stable model of P such that
Ĩ ∈ mods(ϕ).
Relationship to r-hybrid KBs. Our CKBs are a close relative of the r-hybrid KBs of Rosati [21]. The safety
restriction here is inspired by the safety condition in r-hybrid KBs, and so is our definition of the semantics
via a generalization of the Gelfond-Lifschitz reduct that additionally reduces the program according to the
truth value of atoms over open predicates. Intuitively, r-hybrid KBs are a special kind of CKBs in which
the rule component can refer to both open and closed predicates, but the theory component can use open
predicates only. More formally, an r-hybrid KBH= (ϕ,P), whereϕ is a theory in FO andP is a Datalog¬,∨

program, corresponds to the CKB H′= (P, ϕ,Σ), where Σ is the set of predicates symbols appearing in ϕ.
One can verify that the stable models ofH′ are exactly the so-called NM-models ofH.

In generic CKBs H = (P, ϕ,Σ), the set Σ need not contain all the predicate symbols that appear in ϕ.
That is, closed predicates may occur in ϕ, and the extensions of these predicates in (the relevant) models
of ϕ must be justified by program rules. This feature causes technical challenges, but is very useful for
declarative specification of problems: in our approach, predicates under the OWA and the CWA can be used
both in the program and in the theory of a hybrid KB (see Example 1 for an illustration).

The DL+LOG language is obtained from r-hybrid KBs by allowing only DLs for specifying theories,
and relaxing the safeness condition to weak safeness [22]. In the extended version we show that, when
sufficiently rich DLs are considered, CKBs also generalize DL+LOG.
Active domain predicate. For convenience, we assume the availability of a unary “built-in” predicate adom
that, intuitively, stores the constants that appear in a given program. More precisely, for any program P and
each n-ary relation symbol r with r 6= adom that appears in P , we assume that (i) P contains the rule
adom(Xj)← r(X1, . . . , Xn) for every 1 ≤ j ≤ n, and (ii) adom is allowed to occur only in bodies of the
remaining rules.

4 Decidable CKBs

We now turn to identifying useful settings in which the existence of a stable model for a CKBH = (P, ϕ,Σ)
is decidable. This naturally requires ϕ to belong to a logic L in which satisfiability is decidable (i.e., the set
{ϕ ∈ L | mods(ϕ) 6= ∅} should be recursive). However, this alone is not enough, since we will in general
be interested in models of ϕ where a selected set of predicates have a concrete extension that is given as
input. We will see that this calls for logics with a rather flexible support for equality reasoning.

Towards providing a quite general decidability result for checking stable model existence in CKBs, we
first define a simple program that allows us to freely “guess” the extensions of open predicates of a given
CKBH. These extensions are restricted to constants that appear inH.

Definition 1 (Program Choose(H)). Assume a CKB H = (P, ϕ,Σ). For every n-ary relation symbol
r ∈ Σ, let r be a fresh n-ary relation symbol that does not appear in H. We let Choose(H) be the set that
contains

r(Y1, . . . , Yn)∨ r(Y1,. . . , Yn)← adom(Y1), . . . , adom(Yn)

for each n-ary relation symbol r ∈ Σ that appears in P .

A stable model I of P ∪ Choose(H) can be seen as a (partially complete) candidate for a stable model
of a CKB H = (P, ϕ,Σ). The following proposition, whose proof relies on the imposed CKB safety
requirement, tells us when such an I witnesses the existence of a stable model ofH.
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Proposition 1. A CKB H = (P, ϕ,Σ) has a stable model iff P ∪ Choose(H) has some stable model I for
which there exists some I ∈ mods(ϕ) with the following properties:
(C1) (cI1 , . . . , c

I
n) ∈ rI for all r(c1, . . . , cn) ∈ I ,

(C2) (cI1 , . . . , c
I
n) 6∈ rI for all r(c1, . . . , cn) ∈ I , and

(C3) if (e1, . . . , en) ∈ rI and r 6∈ Σ, then there exists r(c1, . . . , cn) ∈ I with cI1 = e1, . . . , c
I
n = en.

From Proposition 1, we obtain decidability of stable model existence for H = (P, ϕ,Σ) whenever we
can list the stable models of P ∪ Choose(H) and test, for each of them, the existence of a model I of the
theory ϕ satisfying conditions (C1–C3). Moreover, if the logic L in question is strong enough to express,
for a fixed candidate I , conditions (C1–C3) as part of a theory in L, then decidability of the underlying
satisfiability problem suffices. This applies, in particular, to the guarded negation fragment (GNFO), which
is among the most expressive FO fragments for which decidability has been established [3].

We use ϕ[~x] to indicate that a FO formula ϕ has ~x as free variables. The fragment GNFO contains all
formulas that can be built using the following grammar:

ϕ ::= r(v1, . . . , vn) | v=u | ∃x ϕ |ϕ ∧ ϕ |ϕ ∨ ϕ |α ∧ ¬ϕ[~x],

where u, v, v1, . . . , vn are terms, and α is an atom or an equality statement such that all variables of ~x also
occur in α. Intuitively, in GNFO a subformula can be negated only if its free variables are “guarded” by an
atom or an equality statement. Observe also that a subformula with a single free variable x can always be
guarded by an equality statement x = x. GNFO is flexible and natural for domain modelling; for instance,
the theory ϕ in Example 1 is in GNFO.

Theorem 1. Checking the stable model existence in CKBs H = (P, ϕ,Σ), where ϕ is in GNFO, is decid-
able. The problem belongs to the class NEXPTIME2EXPTIME, and is 2EXPTIME-hard.

Proof. Assume a CKB H = (P, ϕ,Σ) with ϕ in GNFO. Let Σc be the set of predicates that occur in P but
not in Σ. For every n-ary predicate symbol r ∈ Σc, assume a tuple ~xr = (x1

r , . . . , x
n
r ) of variables. Assume

a stable model I of P ∪ Choose(H). For such I , let ψ(I) be the following formula:

ψ(I) =
∧

r(~c)∈I
r(~c) ∧

∧

r(~c)∈I
¬r(~c) ∧

∧

r∈Σc

∀x1
r . . . ∀xnr

(

r(x1
r , . . . , x

n
r )→

∨

r(c1,...,cn)∈I

( ∧

1≤i≤n
(xir = ci)

))

One can check that the formula ϕ ∧ ψ(I) is in GNFO. Note that the three conjuncts mimic the conditions
(C1)–(C3); the third one relies on the availability of equality, and is essentially the same formula used in
[4] for reasoning about visible and invisible tables in databases. The following holds: ψ(I) is satisfiable iff
there exists I ∈ mods(ϕ) that satisfies the conditions (C1-C3) of Proposition 1. Overall, this means that H
has a stable model iff P ∪ Choose(H) has some stable model I such that ϕ ∧ ψ(I) is satisfiable. Keeping
in mind that satisfiability in GNFO is 2EXPTIME-complete, this equivalence yields the NEXPTIME2EXPTIME

upper bound. Indeed, we can decide the existence of a stable model forH by non-deterministically guessing
a candidate stable model I of P ∪ Choose(H), whose size is at most exponential in the size ofH, and then
checking that (i) I is a minimal model of PI,∅, and (ii) that the formula ψ(I) is satisfiable. The lower bound
is carried over trivially from GNFO.
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5 CKBs and Description Logics

GNFO is very expressive and thus also computationally very expensive. In this section, we study DL-based
CKBs, and show that such CKBs are (to a large extent) computationally not more expensive than plain ASP.
We first recall the syntax and semantics of the expressive DL ALCHOI.

We assume a countably infinite set Scn ⊆ Spred of unary relation symbols, called concept names, and
a countably infinite set Srn ⊆ Spred of binary relation symbols, called role names. If R ∈ Srn, then R
and R− are roles. (Complex) concepts are defined as follows: (a) the symbols >,⊥, and every concept
name A ∈ Scn is a concept, (b) if a ∈ Sconst, then {a} is a concept (called nominal), and (c) if C,D are
concepts and R is a role, then C uD, C tD, ¬C, ∀R.C, ∃R.C are also concepts. Assume an interpretation
I = (∆I , ·I), and observe that AI ⊆ ∆I for all concept names A, and RI ⊆ ∆I ×∆I for all role names
R. The semantics to all complex concepts and roles beyond concept and role names is given by extending
the valuation function ·I in the usual way (see [2]; for convenience, we provide it in the extended version).
A TBox (or ontology) T is a finite set of axioms of the forms C vD (called concept inclusions), where C
and D are concepts, and R v S (called role inclusions), where R and S are roles. Given a TBox T , we
define v∗T as the reflexive transitive closure of the relation vT that contains R vT S and R− vT S− for
all role inclusions R v S in T . An interpretation I is a model of a TBox T if CI ⊆ DI for each concept
inclusion C v D ∈ T , and RI ⊆ SI for each role inclusion R v S ∈ T . A TBox is satisfiable if it has
some model. We note that satisfiability of ALCHOI TBoxes is EXPTIME-complete [2].

Example 3. The theory ϕ in Example 1 can be written in the syntax of ALCHOI as follows (we use the
axiom C ≡ D as a shortcut for the two inclusions C vD, D v C);

T = { MetroStation t TramStation ≡ Station,

TramConn ≡ ∃CloseTo.TramStation,

MetroConn ≡ ∃CloseTo.MetroStation,

URailConn ≡ ∃CloseTo.Station }

The following theorem can be proven using (well) known complexity results from DLs and ASP, in
combination with an encoding of condition (C3) of Proposition 1 by means of nominals, similarly to the
encoding of DBoxes in [10] (see the extended version).

Theorem 2. Deciding stable model existence in CKBs H = (P, T ,Σ), where T is an ALCHOI TBox,
is NEXPTIMENP-complete. If P is not disjunctive, the problem is NEXPTIME-complete. The problem is
EXPTIME-complete, if (i) P is both non-disjunctive and positive, or (ii) the arity of predicate symbols in P
is assumed to be bounded by a constant.

Proof. Assume a CKB H = (P, T ,Σ), where T is an ALCHOI TBox. Assume a stable model I of
P ∪ Choose(H). For any such I , let TBox(H, I) be the ALCHOI TBox that contains the following
inclusions (in some axioms below we use {d1, . . . , dn} instead of {d1} t . . . t {dn}):

- {c} v A, for all A(c) ∈ I with A ∈ Scn, and {c} v ¬A for all A(c) ∈ I with A ∈ Scn,

- {c} v ∃r.{d} for all r(c, d) ∈ I with r ∈ Srn, and {c} v ∀r.¬{d} for all r(c, d) ∈ I with r ∈ Srn,

- A v ⊔A(c)∈I{c}, for all concept names A 6∈ Σ,

- ∃r v {d | ∃d′ : r(d, d′) ∈ I}, for all role names r 6∈ Σ,
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- {c} v ∀r.{d | ∃e : r(e, d) ∈ I} for all role names r 6∈ Σ and all constants c that appear in I .

The construction of TBox(H, I) is inspired by a similar encoding in [10] where an expressive DL with the
so-called DBoxes is a translated into a standard DL with nominals.

Due to Proposition 1, and due to the construction of the above TBoxes, H has a stable model iff P ∪
Choose(H) has a stable model I such that T ∪ TBox(H, I) is consistent. In other words, the consistency
of H can be decided by traversing the stable models I of P ∪ Choose(H), for each such I building T ∪
TBox(H, I) and checking its satisfiability. We note that TBox(H, I) is always of polynomial size in the
size of H, and consequently checking the consistency of TBox(H, I) is feasible in single exponential time.
From this observation, and the complexity of standard ASP under the syntactic restriction mentioned in the
theorem, the completeness results follow.

6 Translations and Implementation

We focus here on DL-based CKBs as described in the previous section, and provide translations from such
CKBs to other formalisms, in particular to dl-programs and to plain ASP. The translations are given for a
large fragment of CKBs, which we call separable CKBs, and which in fact generalizes r-hybrid KBs. To
define the fragment we need the notion of a positive occurrence and a negative occurrence of a concept or
role name α in a concept C. These notions are defined inductively as follows. (A) Every concept name A
occurs positively in A. (B) Every role name S with R v∗T S occurs positively in ∃R.C, for any concept C.
(C) Every role name S with R v∗T S occurs negatively in ∀R.C, for any concept C. (D) If a concept name
A occurs positively (resp., negatively) in C, then A occurs positively (resp., negatively) in C uD, C tD,
∀R.C and ∃R.C, for any concept D and role R. (E) If a concept or role name α occurs positively (resp.,
negatively) in C, then α occurs negatively (resp., positively) in ¬C.

Definition 2 (Separability). A CKBH = (P, T ,Σ) is separable if the concept
d
CvD∈T (¬C tD) does not

have a positive occurrence of concept or role name α with α 6∈ Σ.

Example 4. Take the CKBH = (P, T ,Σ) withP = {Q(X,Y, Z)← T (X,Y ), P (Y,Z)}, T = {∃R.(∃P.A)v
B}, and Σ = {R,A,B}. ThenH is separable because P occurs only negatively in ¬(∃R.(∃P.A)) tB.

Intuitively, in a separable CKB H = (P, T ,Σ) the inclusions in T can be used to infer the extensions
of open predicates from the extensions of closed predicates and other predicates, but these axioms simply
cannot assert membership of a domain element (resp., pair of elements) in a closed concept name (resp., role
name). More concretely, for separable CKBs one can show a version of Proposition 1 where the condition
(C3) is omitted (the rest of the proposition remains the same). The omission of condition (C3) is a major
change: recall that we relied heavily on the equality predicate in GNFO, and on nominals supported in
ALCHOI in order to cope with (C3). We note that separable CKBs capture r-hybrid KBs H = (T ,P)
with T an ALCHOI TBox. Such KBs, as mentioned, correspond to CKBsH = (P, T ,Σ), where Σ is the
set of predicates symbols that appear in T , and which trivially satisfy the separability condition. We remark
that the pair (T ,P) with T ,P from Example 4 is not a safe r-hybrid KB (neither is it weakly safe in the
spirit of DL+LOG), because the variable Z does not appear in a rule atom with a predicate symbol that does
not occur in T .

6.1 Translation into DL-programs

We can now show how a separable CKB H can be translated into a dl-program ΠH while preserving the
existence of a stable model. Please see [6] for the definition of dl-programs; for convenience, in the extended
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version we provide the definition of a core fragment of dl-programs that is sufficient for the encoding. From
a separable CKBH = (P, T ,Σ) we build a dl-program ΠH = (T ′,P ′) as follows. For every concept name
A (resp., role name r) that appears in T , let A′ be a fresh concept name (resp., let r′ be a fresh role name).
Then the TBox T ′ is obtained from T simply by replacing every concept and role name S by S′. For the
construction of P ′, let S1, . . . , Sn be an arbitrary enumeration of the concept and role names that appear
both in P and Σ. Then the set P ′ of dl-rules is defined as follows:

P ′ = P ∪ Choose(H) ∪ {← DL[λ;⊥](X)},

where λ = S′1]S1, . . . , S
′
n]Sn, S′1−∪S1, . . . , S

′
n
−∪Sn.

Intuitively, given a stable model I of P ∪ Choose(H), the expression λ above allows us to check the
conditions (C1) and (C2) of Proposition 1 (see the construction of TBox(H, I) as used in the proof of
Theorem 2 in the extended version). The constraint← DL[λ;⊥](X) is then used to discard I in case the
built TBox is inconsistent. Thus from this encoding we get the following result.

Theorem 3. A separable CKBH has a stable model iff the dl-program ΠH has an answer set.

6.2 Translation into Plain ASP

We describe here our translations from separable CKBs H = (P, T ,Σ) into standard ASP. Intuitively,
instead of using a richer language than plain ASP to perform the search for I ∈ mods(ϕ) with properties
(C1) and (C2) described in Proposition 1 (as we did above with dl-programs), we perform reasoning about
the TBox of an input KB during the translation so that afterwards the TBox can effectively be forgotten.
Unlike our translation into dl-programs, this translation is not polynomial and may take single exponential
time in the size of the input. However, our experiments show that in practice the latter performs much
better than the former. The below translations are inspired by existing translation from expressive DLs into
disjunctive Datalog [16, 8, 5]. In fact, we provide a pair of translations: a generic modular translation that is
independent from the concrete facts in the input KB, and a restricted translation that does take into account
the data (the latter was implemented). We limit this approach toALCH (i.e., we do not support inverses and
nominals).

We assume here TBoxes in normal form, that is, each axiom is of one of the following forms:

A1 u . . .uAnvB AvB1 t . . .tBm Av∃R.B (I)
∃R.AvB Av ∀R.B Rv S (II)

where A,B,Ai, Bi are concept names, > or ⊥, and R,S are role names. It is well known that any TBox
T can be normalized into a TBox T ′ in polynomial time so that T and T ′ have the same models up to the
original signature of T (see, e.g., [23]).

Definition 3 (Communication rules Comm(H)). For a separable CKB H = (P, T ,Σ), let Comm(H)
denote the set of the following rules:

S(X,Y )←R(X,Y ) for each Rv S ∈T
B(X)←r(X,Y ), A(Y ) for each ∃R.AvB ∈T
B(Y )←A(X), r(X,Y ) for each Av ∀R.B ∈T

The program Comm(H) simply contains the direct translation of inclusions listed in (II). To deal with
the remaining inclusions (i.e. the ones listed in (I)), we employ types.
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Definition 4 (Types). A type is any set τ ⊆ Scn ∪ {¬A | A ∈ Scn}. A type τ is consistent w.r.t. a TBox T if
there exists a model I of T and an element e ∈ ∆I such that e ∈ (

d
C∈τ C)I . We use types(T ) to denote

the set of types τ such that (i) τ is consistent w.r.t. T , and (ii) A ∈ τ or ¬A ∈ τ for each concept name A in
T .

Data-independent translation. Assume a separable CKB H= (P, T ,Σ). For each τ ∈ types(T ), let
Typeτ be a fresh unary predicate symbol. We let ASP(H) be the extension of P ∪Choose(H)∪Comm(H)
with the following rules:

(i) the rule
∨
τ∈types(T ) Typeτ (X)← adom(X)

(ii) for each type τ ∈ types(T ), the following constraints

A(X)←Typeτ (X) for each A ∈ τ ∩ Scn

←Typeτ (X), A(X) for each ¬A ∈ τ

The program ASP(H) above built from a CKBH yields a tool to decide consistency ofH. In fact, the rules
additional to the original program P depend only on T and Σ, and thus the translation is data-independent.
Note that the set types(T ) can be computed in single exponential time in the size of T , and for this a standard
DL reasoner can be used. Indeed, a type τ is consistent w.r.t. T iff T ∪{A(c) | A ∈ τ}∪{¬A(c) | ¬A ∈ τ}
has a model, for a fresh constant c.

Theorem 4. The CKB H = (P, T ,Σ) has a stable model iff ASP(H) has a stable model. In fact, for any
set F of facts,H = (P ∪ F, T ,Σ) has a stable model iff ASP(H) ∪ F has a stable model.

Data-dependent translation. Since |types(T )| is often exponential in the size of T , the program ASP(H)
can be prohibitively large to be used in practice. We next present an optimized way to obtain a desired ASP
program, by sacrificing data independence.

Assume a separable CKB H= (P, T ,Σ). For every constant c that appears in H, let t(c,H) be the set
of types returned by the non-failing runs of the following non-deterministic procedure:

(1) Let τ = {A | P has the fact A(c)←}.

(2) Close τ under the following inference rules:

(a) If A1 u · · · uAn vB ∈ T and {A1, . . . , An} ⊆ τ , then add B to τ .

(b) If ∃S.>vB ∈ T , Rv∗T S, and P has the fact R(c, d)← for some d, then add B to τ .

(c) If >v ∀S.B ∈ T , Rv∗T S, and P has the fact R(d, c)← for some d, then add B to τ .

If τ is inconsistent w.r.t. T , then return failure.

(3) Pick a concept name B such that {B,¬B} ∩ τ = ∅, and B appears in one of the following:

(a) in a non-fact rule of P ,

(b) in some ∃R.AvB ∈ T or Av ∀R.B ∈ T such that R appears in a non-fact rule of P ,

(c) in some ∃S.AvB ∈ T such that P has the fact R(c, d)← for some d, and Rv∗T S, or

(d) in some Av ∀R.B ∈ T such that P has the fact R(d, c)← for some d, and Rv∗T S.
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If the above B does not exist, then return τ . Otherwise, non-deterministically add to τ either B or ¬B,
and go to step (2).

Take a fresh unary predicate symbol Typeτ for each τ ∈ t(c,H) such that c occurs in H. We let
ASPdd(H) be the extension of P ∪ Comm(H) with the following rules:

(i) for all rolesR ∈ Σ that appear in a non-fact rule inP , the ruleR(X,Y )∨R(X,Y )← adom(X), adom(Y ),
where R is a fresh relation symbol

(ii) for each constant c ofH, the rule
∨
τ∈t(c,H) Typeτ (c)←

(iii) for each constant c ofH and type τ ∈ t(c,H), the following constraints

A(c)←Typeτ (c) for each A ∈ τ ∩ Scn

←Typeτ (c), A(c) for each ¬A ∈ τ

The translation allows us to decide stable model existence:

Theorem 5. The CKBH = (P, T ,Σ) has a stable model iff ASPdd(H) has a stable model.

6.3 Implementation and Experiments

We present here some experiments that demonstrate the advantages of translating a separable CKBH into a
plain program ASPdd(H). We have implemented our approach in a prototype reasoner. In particular, to build
the function t described previously, instead of relying on an external DL reasoner, we have implemented our
own algorithm for testing consistency of types w.r.t. a TBox. It is designed in such a way that the consistency
of several types can be tested simultaneously, using caching to avoid recomputation. Consistent types are
stored in a database and can be reused for other hybrid knowledge bases over the same ontology.

Our implementation is written in Java and PostgreSQL 9.5.5 database, and uses OWLAPI [15] to man-
age ontologies. The ASP program resulting from the translation is evaluated with Clingo 4.2.1 [11]. The
experiments were run on a PC with Intel Core i7 CPU and 16GB RAM running 64bit Linux-Mint 17. We
compared the performance of our implementation with the direct encoding to dl-programs, as presented on
page 5. The latter is implemented in dlvhex, which also uses Clingo.

For benchmarking, we used real-world OpenStreetMap1 data, transformed into Datalog facts following
[9]. The data, describing the city of Vienna, is available as database dumps at BBBike2. The extracted data
contains facts about 19517 geographical points in the map treated as constants. Concept assertions were ex-
tracted from tags in the mapping data, for points of interest like Hotel,Restaurant, Shop,Hospital,MetroStation
etc. There are also facts about relations between these points and other constants representing objects of in-
terest such as metro lines, types of cuisine, dishes etc. Among plain Datalog relations, we extracted next,
relating pairs of points whose distance is below a certain threshold set in meters. By considering different
thresholds, ranging from 50 to 250 meters, we obtained sets of facts of different sizes. Other Datalog rela-
tions extracted to describe the Vienna metro network are locatedAlong and nextStation. The former relates
a metro station to the corresponding metro line, and the latter relates pairs of consecutive stations on the
same line. The extracted relations that also occur in T include roles like hasCuisine and serves, which relate
a Restaurant to a Cuisine or a Dish, respectively. As TBox for our CKBs, we used the DL-LiteR ontology
from the MyITS Project [7], enriched with ALCH axioms.

1https://www.openstreetmap.org
2http://download.bbbike.org/osm/bbbike/Wien/
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next50 next100 next150 next200 next250
Fact count 145014 263075 479283 743935 1053335
P1 19.6 30.1 44.6 60.2 87.6
P2 19.6 31.8 52.7 64.0 95.4
P3 19.6 32.8 56.1 64.7 98.2
P4 23.8 32.9 49.8 65.9 87.3

Table 1: Number of facts for different next relations, and running times in seconds for P1–P4

We considered 4 separable CKBs with the same TBox T , but different programs P . The programs are
given in the extended version. Each program captures the potential information need of a tourist searching
for a hotel. ProgramsP1–P4 ask for a reachable Hotel from the main station “Hauptbahnhof ”. Additionally
P1–P3 ask for Hotels that are next to some LocRestaurant (a concept inferred from the ontology). P4 asks
for Hotels that are in a quiet neighbourhood, by negating the computed relation LoudNeighbourhood. Note
that P1 requires that the station close to the Hotel should be reachable without line changes, while P2 allows
for at most one line change, whereasP3–P4 allow for any number of changes as long as a station is reachable
(achieved via recursion).

For each of the mentioned programs, we included the datasets of different sizes shown in Table 1, which
have up to roughly a million facts. Our approach behaved well, as can be seen from the running times shown
in Table 1. The dl-program encoding for dlvhex did not scale for any of the example programs provided, and
failed to return answers because of memory exhaustion even for the smallest dataset shown in Table 1. We
tried to test it against a smaller yet useful set of facts with approx 13000 Datalog facts, and it still reached
the time out of 600s that was set.

7 Discussion

We have presented CKBs, a powerful generalization of r-hybrid andDL+LOG KBs due to Rosati. In addition
to decidability and complexity results for CKBs, we have provided an implementation for a rich fragment
of CKBs. The implementation is based on a reduction to reasoning in plain ASP. Our experiments show that
this is a promising approach that provides a dramatic improvement over a naive implementation based on a
translation into dl-programs.

As shown in Example 1, the ability to use CWA predicates in the theory of a CKB adds significant power.
This power is not readily available even in hybrid MKNF, a very rich formalism that captures r-hybrid and
DL+LOG KBs [19]. Roughly speaking, to capture CKBs we would need to extend hybrid MKNF to support
modal operator K inside FO theories. Another way to see a difference is using data complexity. Due
to results on DLs with DBoxes (see [10]), satisfiability is already NP-hard in data complexity for CKBs
based on basic DL-Lite TBoxes in combination with non-disjunctive positive rules. The same setting in
hybrid MKNF is tractable.

Related Work. There are few other works on implementing reasoning over combinations of DL ontologies
and rules. For expressive (non-Horn) DLs that go beyond the DL-Lite and EL families, dl-programs is the
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richest formalism that has been implemented, in particular in the dlvhex suite. The HermiT system supports
reasoning in expressive DLs enriched with positive rules under DL-safety [13]. The work in [16] enables
query answering services over expressive DLs using a data-independent translation into disjunctive Datalog.
For Horn DLs, Heymans et al. showed how dl-programs with external queries over Datalog-rewritable DLs
can be translated into Datalog with stable negation [14]. Redl recently presented a generalization of this
rewriting approach to external atoms in general HEX-programs [20], still its applicability for reasoning
with DL ontologies was demonstrated only using the lightweight logic DL-Lite. An implementation of
reasoning in hybrid MKNF KBs (with lightweight ontologies) under the Well-Founded Semantics is also
available [1, 17]. The work in [24] shows how reasoning about DL concepts, but not general TBoxes,
can be implemented in ASP.
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8 Appendix

8.1 CKBs and DL+LOG

For r-hybrid KBs based on DLs, Rosati has generalized the DL-safety restriction to weak DL-safety, result-
ing in the DL+LOG language [22]. We now generalize safe CKBs to weakly safe CKBs so that the weak
DL-safety condition is captured. We will show next that, when sufficiently expressive logics for theory spec-
ification are used, there is effectively no difference between weak and ordinary safeness. For this reason, in
the paper we concentrate on the conceptually simplier r-hybrid language, instead of DL+LOG.

Definition 5 (Weak safety). A CKB H = (P, ϕ,Σ) is weakly safe if the following conditions are satisfied
for every rule ρ ∈ P:

(a) every variable x of ρ must appear in some atom from body+(ρ), and

(b) if x appears in head(ρ), then x also appears in some atom r(~u) ∈ body+(ρ) with r 6∈ Σ.
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One can check that DL+LOG KBs H = (T ,P), where T is an ALCHOI TBox, are subsumed by
weakly safe CKBs. Indeed, for such an H build the CKB H′ = (P, T ,Σ), where Σ is the set of concept
and role names that appear in T . One can verify thatH′ is weakly safe, and that the stable models ofH′ are
precisely the NM-models ofH.

W.l.o.g., we assume that CKBs do not have a rule ρ such that r(~u) ∈ body−(ρ) and r ∈ Σ. A CKB
that violates this requirement can be transformed in polynomial time into an equivalent CKB that does
obey it. Indeed, if a CKB contains a rule ρ as above, one can replace it by the rule head(ρ) ∨ r(~u) ←
body(ρ) \ {not r(~u)}. It is not difficult to see that this transformation preserves the stable models ofH.

We next show that if we consider a sufficiently expressive DL, there is effectively no difference between
safety and weak safety. We need the notion of Boolean conjunctive queries (BCQs). A BCQ Q is just a
finite set of atoms of the form R(~u), where R ∈ Scn ∪ Srn. We say Q is true in an interpretation I if there
exists a function π : Sconst ∪ Svar → ∆I such that (i) π(c) = cI for all c ∈ Sconst, (ii) π(t) ∈ AI for all
A(t) ∈ Q, and (iii) (π(t), π(t′)) ∈ rI for all r(t, t′) ∈ Q. We consider an extension of ALCHOI with
BCQs, denoted ALCHOIBCQ. In particular, every BCQ Q is considered to be a concept, in addition to
the usual rules used to build ALCHOI concepts. The semantics of such concepts in an interpretation I is
defined as follows:

QI =

{
∆I if Q is true in I;
∅ otherwise.

Definition 6. Assume a weakly safe CKBH = (T ,P,Σ). By safe(H) we denote a CKB that can be obtained
fromH in two steps:

(1) Replace each rule ρ in P by the set of all rules σ(ρ), where σ is a substitution with

- dom(σ) = {x ∈ Svar | x occurs in r(~u) ∈ body+(ρ), r 6∈ Σ}, and

- ran(σ) = {c ∈ Sconst | c occurs in P}.

(2) For every rule ρ of P perform the following. Let Qρ = {r(~u) | r(~u) ∈ body(ρ), r ∈ Σ}. Take a fresh
concept name A, and let a be an arbitrary individual from P . Add A to Σ, add the inclusions Qρ v A
and AvQρ to T , and replace ρ in P by the rule

head(ρ)← (body(ρ) \Qρ) ∪ {A(a)}

It is not difficult to obtain the following:

Theorem 6. Assume a weakly safe CKBH. Then safe(H) is a safe CKB such thatH has a stable model iff
safe(H) has a stable model.

In other words, a weakly safe CKB H based on an ALCHOI TBox can be effectively translated, while
preserving the existence of a stable model, into a safe CKB H′ based on an ALCHOIBCQ TBox. We
finally give the following remark on the complexity of reasoning in ALCHOIBCQ TBoxes.

Proposition 2. Testing consistency of ALCHOIBCQ TBoxes is 2EXPTIME-complete.

Proof (sketch). Assume an ALCHOIBCQ TBox T , and let BCQ(T ) denote the set of BCQs that appear
in T . For every Q ∈ BCQ(T ) and every variable x in Q, reserve a fresh individual cQ,x. For every
Q ∈ BCQ(T ), let QSkolem be the BCQ that is obtained from Q by replacing every variable x with the
individual cQ,x, and let TQ be the TBox that consists of inclusions (i) {c} v A for all A(c) ∈ QSkolem, and
(ii) {c} v ∃r.{d} for all r(c, d) ∈ QSkolem. A BCQ-valuation for T is any set V ⊆ BCQ(T ). We let T V
be the TBox that is obtained from T by
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- replacing with > every occurrence of Q ∈ V , and

- replacing with ⊥ every occurrence of Q ∈ BCQ(T ) \ V .

It is not difficult to see that T has a model iff there exists V ⊆ BCQ(T ) such that T V ∪⋃Q∈V TQ has a
model where each Q′ ∈ BCQ(T ) \ V is false. Clearly, the later task corresponds to non-entailment of a
union of conjunctive queries (UCQ), which is known to be 2EXPTIME-complete for ALCHOI. The lower
bound can be inferred from this problem as well.

8.2 DL-programs

We briefly recall here the syntax and semantics of dl-programs [6]. Roughly speaking, dl-programs extend
plain ASP with dl-atoms, which are special atoms that correspond to queries over an external DL KB. For
the encoding based on Proposition 1, we need only a relatively small fragment of dl-programs. In particular,
here dl-atoms are only allowed to test consistency of DL knowledge bases, and can only use the operators
] and −∪ to (“temporarily”) update it. More formally, a dl-atom α is an expression of the form

DL[S1op1R1, . . . , SnopnRn;⊥](t), (2)

where t is a term, {op1, . . . , opn} ⊆ {], −∪}, and each pair Si, Ri with 1 ≤ i ≤ n is such that (i) Si ∈ Scn,
and Ri ∈ Spred is unary, or (ii) Si ∈ Srn, and Ri ∈ Spred is a binary. The notion of dl-rules ρ is defined
exactly as the notion of ordinary rules, except that here dl-atoms can occur in the place of non-negated
ordinary atoms. Each dl-rule ρ must satisfy the next condition: every variable of ρ must appear in a non-
negated ordinary atom in the body of ρ. A dl-program is a pair Π = (T ,P) with T an ALCHOI TBox,
and P a set of dl-rules. Here concept and role names that occur in T are allowed to occur in P only in dl-
atoms. We let ground(P) be the set of ground dl-rules that can be obtained from the rules in P by replacing
variables with constants from P .

When building TBoxes next, we use P (t), P (t, v), ¬P (t) and ¬P (t, v) as abbreviations for inclusion
axioms {t} v P , {t} v ∃P.{v}, {t} v ¬P , and {t} v ∀P.¬{v}, respectively. For a TBox T , an Herbrand
interpretation I , and a ground dl-atom α of form (2), we write I |=T α if the TBox T ∪ T1 ∪ · · · ∪ Tn is
inconsistent, where each Ti, 1 ≤ i ≤ n, is defined as follows:

- Ti = {Si(t) | Ri(t) ∈ I} if opi = ] and Si ∈ Scn,
- Ti = {Si(t, v) | Ri(t, v) ∈ I} if opi = ] and Si ∈ Srn,
- Ti = {¬Si(t) | Ri(t) ∈ I} if opi = −∪ and Si ∈ Scn, and
- Ti = {¬Si(t, v) | Ri(t, v) ∈ I} if opi = −∪ and Si ∈ Srn.
Assume a dl-program Π = (T ,P) and an Herbrand interpretation I . We let ΠI be the (plain) ground

positive program that is obtained from ground(P) by

- deleting every rule with a dl-atom L such that I 6|=T L,
- deleting every rule with a literal not R(~u) with R(~u) ∈ I ,
- deleting all dl-atoms, and all negative literals in the remaining rules.

If I is a minimal model of ΠI , then I is called a (weak) answer set of Π.
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>I = ∆I (C uD)I = CI ∩DI (∃R.C)I = {e ∈ ∆I | ∃e′ ∈ ∆I : (e, e′) ∈ RI ∧ e′ ∈ CI}
⊥I = ∅ (C tD)I = CI ∪DI (∀R.C)I = {e ∈ ∆I | ∀e′ ∈ ∆I : (e, e′) 6∈ RI ∨ e′ ∈ CI}

(¬C)I = ∆I \ CI {c}I = {cI} (R−)I = {(e, e′) | (e′, e) ∈ RI}

Table 2: Extension of the valuation function for ALCHOI
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P1: Find hotels that are close to stations reachable from Hauptbahnhof (main Station) with no metro line changes, and
have local restaurants close by.

reachableWithNoChanges(X,Y )←locatedAlong(X,Z), locatedAlong(Y,Z),

X = “Hauptbahnhof ”

q1(X)←Hotel(X), next(X,Y ), reachableWithNoChanges(Z, Y ),

next(X,V ), LocRestaurant(V )

P2: Find hotels that are close to stations reachable from Hauptbahnhof (main Station) with up to one metro line
change, and have local restaurants close by.

reachableWithNoChanges(X,Y )←locatedAlong(X,Z), locatedAlong(Y,Z)

reachableWithOneChange(X,Z)←reachableWithNoChanges(X,Y ), locatedAlong(X,V ),

reachableWithNoChanges(Y,Z), locatedAlong(Z,W ),

X = “Hauptbahnhof ”

q2(X)←Hotel(X), next(X,Y ), reachableWithOneChange(Z, Y ),

next(X,V ), LocRestaurant(V )

P3: Find hotels that are close to stations reachable from Hauptbahnhof (main Station) using metro lines and have local
restaurants close by.

reachable(X,Y )←nextStation(X,Y ), X = “Hauptbahnhof ”

reachable(X,Z)←nextStation(X,Y ), reachable(Y, Z)

q3(X)←Hotel(X), next(X,Y ), reachable(Z, Y ),

next(X,V ), LocRestaurant(V )

P4: Find hotels that are close to stations reachable from Hauptbahnhof (main Station) and are in a quiet neighbourhood.

reachable(X,Y )←nextStation(X,Y ), X = “Hauptbahnhof ”

reachable(X,Z)←nextStation(X,Y ), reachable(Y, Z)

LoudNeighbourhood(X)←Hotel(X), next(X,Y ),

reachable(Z, Y ), next(X,V ),

Club(V )

LoudNeighbourhood(X)←Hotel(X), next(X,Y ),

reachable(Z, Y ), next(X,V ),

Bar(V )

q4(X)←Hotel(X), next(X,Y ), reachable(Z, Y ),

not LoudNeighbourhood(X)

Figure 2: Programs evaluated against both encodings. Note that the relation nextStation is symmetrical
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