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Abstract. Abstraction is a well-known approach to simplify a complex problem by over-
approximating it with a deliberate loss of information. It was not considered so far in Answer Set
Programming (ASP), a convenient tool for problem solving. We introduce a method to automatically
abstract ASP programs that preserves their structure by reducing the vocabulary while ensuring an
over-approximation (i.e., each original answer set maps to some abstract answer set). This allows for
generating partial answer set candidates that can help with approximation of reasoning. Computing
the abstract answer sets is intuitively easier due to a smaller search space, at the cost of encountering
spurious answer sets. Faithful (non-spurious) abstractions may be used to represent projected an-
swer sets and to guide solvers in answer set construction. For dealing with spurious answer sets, we
employ an ASP debugging approach to help with abstraction refinement, which determines atoms
as badly omitted and adds them back in the abstraction. As a show case, we apply abstraction to
explain unsatisfiability of ASP programs in terms of blocker sets, which are the sets of atoms such
that abstraction to them preserves unsatisfiability. Their usefulness is demonstrated by experimental
results.
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1 Introduction

Abstraction is an approach that is widely used in Computer Science and AI in order to simplify problems, cf.
(Clarke et al., 1994; Kouvaros and Lomuscio, 2015; Banihashemi et al., 2017; Giunchiglia and Walsh, 1992;
Geißer et al., 2016). When computing solutions for difficult problems, abstraction allows to omit details
and reduce the scenarios to ones that are easier to deal with and to understand. Such an approximation
results in achieving a smaller or simpler state space, at the price of introducing spurious solutions. The
well-known counterexample guided abstraction and refinement (CEGAR) approach (Clarke et al., 2003) is
based on starting with an initial abstraction on a given program and checking the desired property over the
abstract program. Upon encountering spurious solutions, the abstraction is refined by removing the spurious
transitions observed through the solution, so that the spurious solution is eliminated from the abstraction.
This iteration continues until a concrete solution is found.

Surprisingly, abstraction has not been considered much in the context of nonmonotonic knowledge rep-
resentation and reasoning, and specifically not in Answer Set Programming (ASP) (Brewka et al., 2011).
Simplification methods such as equivalence-based rewriting (Gebser et al., 2008; Pearce, 2004), partial eval-
uation (Brass and Dix, 1997; Janhunen et al., 2006), or forgetting (see (Leite, 2017) for a recent survey),
have been extensively studied. However, these methods strive for preserving the semantics of a program,
while abstraction may change the latter and lead to an over-approximation of the models (answer sets) of a
program, in a modified language.

In this paper, we make the first step towards employing the concept of abstraction in ASP. We are focused
on abstraction by omitting atoms from the program and constructing an abstract program with the smaller
vocabulary, by ensuring that the original program is over-approximated, i.e., every original answer set can
be mapped to some abstract answer set. Due to the decreased size of the search space, finding an answer
set in the abstract program is easier, while one needs to check whether the found abstract answer set is
concrete. As spurious answer sets can be introduced, one may need to go over all abstract answer sets until
a concrete one is found. If the original program has no answer set, all encountered abstract answer sets will
be spurious. To eliminate spurious answer sets, we use a CEGAR inspired approach, by finding a cause of
the spuriousness with ASP debugging (Brain et al., 2007) and refining the abstraction by adding back some
atoms that are deemed to be “badly-omitted".

An interesting application area for such an omission-based abstraction in ASP is finding an explanation
for unsatisfiability of programs. Towards this problem, debugging inconsistent ASP programs has been
investigated, for instance, in (Brain et al., 2007; Gebser et al., 2008; Oetsch et al., 2010; Dodaro et al.,
2015), based on providing the reason for why an answer set expected by the user is missed. However, these
methods do not address the question why the program has no answer set. We approach the unsatisfiability
of an ASP program differently, with the aim to obtain a projection of the program that shows the cause of
the unsatisfiability, without an initial idea on expected solutions. For example, consider the graphs shown
in Figure 1. The one in Figure 1(a) is not 2-colorable due to the subgraph induced by the nodes 1-2-3,
while the one in Figure 1(b) is not 3-colorable due to the subgraph of the nodes 1-2-3-4. From the original
programs that encode this problem, abstracting away the rules that assigns colors to the nodes not involved
in these subgraphs should still keep the unsatisfiability, thus showing the actual reason of non-colorability
of the graphs. This is related to the well-known notion of minimal unsatisfiable subsets (unsatisfiable cores)
(Liffiton and Sakallah, 2008; Lynce and Silva, 2004) that has been investigated in the ASP context (Alviano
and Dodaro, 2016; Andres et al., 2012), but is less sensitive to the issue of foundedness as it arises from rule
dependencies (for further discussion see Related Work).

Our contributions in this paper are briefly summarized as follows.
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Figure 1: Graph coloring instances
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(a) A non 2-colorable graph
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(b) A non 3-colorable graph

• We introduce a method to abstract ASP programs Π by omitting atoms in order to obtain an over-
approximation of the answer sets of Π. That is, a program Π′ is constructed such that each answer
set I of Π is abstracted to some answer set I′ of Π′. While this abstraction is many to one, spurious
answer sets of Π′ may exist that do not correspond to any answer set of Π.

• We present a refinement method inspired by ASP debugging approaches to catch the badly omitted
atoms through the encountered spurious answer sets.

• We introduce the notion of blocker sets as sets of atoms such that abstraction to them preserves unsat-
isfiability of a program. A minimal program to the minimal cause of unsatisfiability.

• We derive complexity results for the notions, such as for checking for spurious answer sets, for finding
minimal sets of atoms to put back in the refinement to eliminate a spurious solution, and for computing
a minimal blocker for a program. In particular, we characterize the complexity of these problems in
terms of suitable complexity classes, which unsurprisingly are intractable in general.

• We report about experiments focusing on unsatisfiable programs and investigate computing minimal
blockers of programs. We compare the results of the abstraction and refinement approach starting
with an initial abstraction (bottom-up) with a naive top-down approach that omits atoms one-by-one if
their omission preserves unsatisfiability, and observe that the bottom-up approach can obtain smaller
sized blockers.

Overall, abstraction by omission appears to be of interest for ASP, which besides explaining unsatisfi-
ability can be utilized, among other applications, to over-approximate reasoning and to represent projected
answer sets.

Organization The remainder of this article is organized as follows. After recalling in the next section some
necessary concepts and fixing the notation, we introduce in Section 3 program abstraction by atom omission
and consider some of its basic semantics properties. In Section 4 we study computational complexity issues
for relevant reasoning tasks around omission, while in Section 5 we turn to the question of abstraction
refinement. As an application of abstraction, we show in Section 6 how it can be used to find reasons for
unsatisfiability of programs and present results obtained by an experimental prototype implementation. The
subsequent Section 7 discusses some extensions and possible optimizations, while in Section 8 we address
related work. The final Section 9 gives a short summary and concludes with an outlook on future research.
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2 Preliminaries

We consider logic programs Π with rules r of the form

α0← α1, . . . ,αm,not αm+1, . . . ,not αn, 0≤m≤n, (1)

where each αi is a first-order atom1 and not is default negation; r is a constraint, if α0 is falsity (⊥, then
omitted) and a fact, if n=0. We also write r as α0←B(r), where H(r) = α0 is the head of r, or as H(r)←
B+(r),not B−(r), where B+(r) = {α1, . . . ,αm} is the positive body and B−(r) = {αm+1, . . . ,αn} is the
negative body of r, respectively; furthermore, we let B±(r) = B+(r)∪B−(r). We occasionally omit r from
B±(r), B(r) etc. if r is understood. As a common syntactic extension, we also consider choice rules of the
form {α}← B, which stands for the rules α ← B,not α and α ← B,not α , where α is a new atom.

Semantically, Π induces a set of answer sets (Gelfond and Lifschitz, 1991), which are Herbrand models
of Π that are justified by the rules. For a ground (variable-free) program Π, its answer sets are the Herbrand
interpretations, i.e., subsets I ⊆ A of the ground atoms A of Π, such that I is a minimal model of f ΠI =
{r ∈ grd(Π) | I |= B(r)} (Faber et al., 2004). The answer sets of a non-ground program Π are the ones of
its grounding grd(Π) =

⋃
r∈Π grd(r), where grd(r) is the set of all instantiations of r over the Herbrand

universe of Π (the set of ground terms constructible from the alphabet of Π). The set of answer sets of a
program Π is denoted as AS(Π). A program Π is unsatisfiable, if AS(Π) = /0. Throughout this paper, unless
stated otherwise we consider ground (propositional) programs, i.e., Π = grd(Π) holds.

Example 1 Consider the program Π = {c← not d.; d← not c.; a← not b,c.; b← d.} that has two answer
sets, viz. I1 = {c,a} and I2 = {d,b}; indeed, ΠI1 = {c← not d.; a← not b,c.} and I1 is a minimal model of
ΠI1; similarly, ΠI2 = {d← not c.; b← d.} has I2 among its minimal models.

The dependency graph of a program Π, denoted GΠ, has vertices A , (positive) edges from any α0=H(r)
to any α1 ∈ B+(r) and (negative) edges from any α0=H(r) to any α2 ∈ B−(r), for all r ∈ Π. E.g., in
Example 1 GΠ has positive edges a→ c and b→ d and negative edges c→ d, d→ c and a→ b. An odd
loop means that an atom α ∈A depends recursively on itself through an odd number of negative edges in
GΠ; constraints are viewed as simple odd loops. As well-known, Π is satisfiable, if it contains no odd loop.
The program Π in Example 1, e.g., has no odd loop, and thus (as already seen) has some answer set.

To group the rules with the same head α , we use def (α,Π) = {r ∈ Π | H(r) = α}. An atom α is
unsupported by an interpretation I if for each r ∈ def (α,Π), B+(r)* I or B−(r)∩ I 6= /0 (Van Gelder et al.,
1991). A set A ⊆ A of atoms is unfounded w.r.t an interpretation I, if atoms in A only have support by
themselves, i.e., a loop only with positive edges in the dependency graph.

3 Abstraction by Omission

Our aim is to over-approximate a given program through constructing a simpler program by reducing the
vocabulary and ensuring that the results of reasoning on the original program are not lost, at the cost of
obtaining spurious answer sets. We propose the following definition for abstraction of answer set programs.

Definition 1 Given two programs Π and Π′ with |A |≥|A ′|, where A ,A ′ are sets of ground atoms of Π

and Π′, respectively, Π′ is an abstraction of Π if there exists a mapping m : A → A ′ ∪{>} such that for
any answer set I of Π, I′ = {m(α) | α ∈ I} is an answer set of Π′.

1Lifting the framework to programs with strong negation is easily possible, where as usual negative literals ¬p(~t) are viewed as
atoms of a positive predicate ¬p and with an additional constraint← p(~t),¬p(~t).
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We refer to m as an abstraction mapping. This abstraction notion gives the possibility to do clustering
over atoms of the program. One approach to do this is to omit some of the atoms from the program, i.e.,
cluster them into >, and consider the abstract program which is over the remaining atoms. In this paper, we
focus on such an omission-based abstraction.

Definition 2 Given a set A ⊆ A of atoms, an omission (abstraction) mapping is mA :A →A ∪{>} such
that mA(α)=> if α∈A and mA(α) = α otherwise.

An omission mapping removes the set A of atoms from the vocabulary and keeps the rest. We refer to A
as the omitted atoms.

Example 2 Consider the below programs Π1,Π2 and Π3 and let the set A of atoms to be omitted to be {b}.

Π1 Π2 Π3
c← not d. c← not d. {a}.
d← not c. d← not c. {c}← a.
a← not b,c. {a}← c. d← not a.
b← d.

AS {c,a},{d,b} {c,a},{d},{c} {c,a},{d},{a}

Observe that for I′1 = {mA(c),mA(a)} = {c,a} we have I′1 ∈ AS(Π2) and I′1 ∈ AS(Π3) and that for I′2 =
{mA(d), mA(b)} = {d} we have I′2 ∈ AS(Π2) and I′2 ∈ AS(Π3). Thus, according to Definition 1, both of
the programs Π2 and Π3 are an abstraction of Π1. Moreover, they are over-approximations, as they have
answer sets {c} and {a}, respectively, which cannot be mapped back to the answer sets of Π1.

Although both Π2 and Π3 are abstractions, notice that the structure of Π2 is more similar to Π1, while
Π3 has an entirely different structure of rules.

Next we show a systematic way of building, given an ASP program and a set A of atoms, an abstraction of
Π by omitting the atoms in A that we denote by omit(Π,A). The aim is to ensure that every original answer
set of Π is mapped to some abstract answer set of omit(Π,A), while (unavoidably) some spurious abstract
answer sets may be introduced. Thus, an over-approximation of the original program Π is achieved.

3.1 Program Abstraction

The basic method is to project the rules to the non-omitted atoms and introduce choice when an atom is
omitted from a rule body, in order to make sure that the behavior of the original rule is preserved.

We build from Π an abstract program omit(Π,A) according to the abstraction mA. For every rule r :
α←B(r) in Π,

omit(r,A) =


r if A∩B± = /0∧α /∈ A, (a)

{α}← B+(r)\A,not (B−(r)\A) if A∩B± 6= /0∧α /∈ A∪{⊥}, (b)
/0 otherwise. (c)

In (a), we keep the rule as it is, if it does not contain any omitted atom. Item (b) is for the case when the rule
is not a constraint and the rule head is not in A. Then the body of the rule is projected onto the remaining
atoms, and a choice is introduced to the head. Note that we treat default negated atoms, B−(r), similarly,
i.e., if some α∈B−(r)∩A, then we omit not α from B(r). As for the remaining cases (either the rule head
is in A or the rule is a constraint), the rule is omitted by item (c). We use /0 as a symbol for picking no rule.

6



We sometimes denote omit(Π,A) as Π̂A, where A = A \A, to emphasize that it is an abstract program
constructed with the remaining atoms A. For an interpretation I and a collection S of atoms, I|A and S|A
denotes the projection to the atoms in A.

Example 3 Consider a program Π and its abstraction Π̂A for A = {b,d}, according to the above steps.

Π Π̂A
c← not d. {c}.
d← not c.
a← not b,c. {a}← c.
b← d.

AS {c,a},{d,b} {},{c},{c,a}

For I′1 = {mA(c),mA(a)} = {c,a} we have I′1 ∈ AS(Π̂A) and for I′2 = {mA(d),mA(b)} = {} we have I′2 ∈
AS(Π̂A). Thus, every answer set of Π can be mapped to some answer set of Π̂A, when the omitted atoms are
projected away, i.e., AS(Π)|A = {{c,a},{}} ⊆ {{c,a},{},{c}}= AS(Π̂A).

Notice that in Π̂A, constraints are omitted if the body contains an omitted atom (item (c)). If instead
the constraint gets shrunk by just omitting the atom from the body, then for some interpretation Î, the body
may be satisfied, causing Î /∈AS(Π̂A), while this was not the case in Π for any I∈AS(Π) with I|A= Î. Thus
I cannot be mapped to an abstract answer set of Π̂A, i.e., Π̂A is not an over-approximation of Π. The next
example illustrates this.

Example 4 (Example 3 continued) Consider an additional rule {← c,b.} in Π, which does not change its
answer sets. If however in the abstraction Π̂A this constraint only gets shrunk to {← c.}, by omitting b from
its body, we get AS(Π̂A) = {}. This causes to have no abstract answer set to which the original answer set
{c,a} can be mapped to. Omitting the constraint from Π̂A as described above avoids such cases of losing
the original answer sets in the abstraction.

Abstracting choice rules We focused above on rules of the form α←B only. However, the same principle
is applicable to choice rules r : {α}←B(r). When building omit(r,A), item (a) keeps the rule as it is, item (b)
removes the omitted atom from B(r) and keeps the choice in the head, and item (c) omits the rule. This would
be syntactically different from considering the expanded version (1) α← B(r),not α. (2) α← B(r),not α.
where α is an auxiliary atom. If α is omitted, the rule (2) turns into a guessing rule, but it is irrelevant as α

occurs nowhere else. If α is not omitted but some atom in B, both rules are turned into guessing rules and
the same answer set combinations are achieved as with keeping r as a choice rule in item (b). However, the
number of auxiliary atoms would increase, in contrast to treating choice rules r genuinely.

3.2 Over-Approximation

The following result shows that omit(Π,A) can be seen as an over-approximation of Π.

Theorem 1 For every answer set I ∈ AS(Π) and atoms A⊆A , it holds that I|A ∈ AS(omit(Π,A)).

Proof. Towards a contradiction, assume I is an answer set of Π, but I|A is not an answer set of omit(Π,A).
This can occur because either (i) I|A is not a model of Π′ = omit(Π,A)I|A or (ii) I|A is not a minimal model
of Π′.

7



(i) If I|A is not a model of Π′, then there exists some rule r ∈Π′ such that I|A |= B(r) and I|A2H(r). By
the construction of omit(Π,A), r is not obtained by case (b), i.e., by modifying some original rule to get rid
of A, because then r would be a choice rule with head H(r) = {α}, and r would be satisfied. Consequently,
r is a rule from case (a), and thus r ∈Π. We note that I|A and I coincide on all atoms that occur in r. Thus,
I|A |= B(r) implies that I |= B(r), and as I |= r, it follows I |= H(r), which then means I|A |= H(r); this is a
contradiction.

(ii) Suppose I′ ⊂ I|A is a model of Π′. We claim that then J = I′∪ (I ∩A) ⊂ I is a model of ΠI , which
would contradict that I ∈ AS(Π). Assume that J 6|= ΠI . Then J does not satisfy some rule r : α ← B(r) in
ΠI , i.e., J |= B(r) but J2α , i.e., α /∈ J. The rule r can either be (a) a rule which is not changed for Π′, (b) a
rule that was changed to {α} ← B̂ in Π′, or (c) a rule that was omitted, i.e., α ∈ A. In each case (a)-(c), we
arrive at a contradiction:

(a) Since r ∈ ΠI and r involves no atom in A, we have r ∈ Π′. As I|A |= r and J|A coincides with I|A, we
have that J|A |= r, and thus J |= r; this contradicts J2α .

(b) By definition of J, we have α ∈ I|A \ I′. Since J |= B(r), it follows that J|A |= B̂ and since I′ = J|A that
I′ |= B̂. As I′ is a model of Π′, we have that I′ satisfies the choice atom {α} in the head of the rewritten
rule, i.e., either (1) α ∈ I′ or (2) α /∈ I′; but (1) contradicts α ∈ I|A \ I′, while (2) means that I′ is not a
smaller model of Π′ than I|A, as then α ′ ∈ I′ \ I|A would hold, which is again a contradiction.

(c) As r is in ΠI , we have I |= B(r) and since I is an answer set of Π, that I |= α . As α /∈ J, by construction
of J it follows that α /∈ I, which contradicts I |= α . 2

By introducing choice rules for any rule that contains an omitted atom, all possible cases that would be
achieved by having the omitted atom in the rule are covered. Thus, the abstract answer sets cover the
original answer sets. On the other hand, not every abstract answer set may cover some original answer set,
which motivates the following notion.

Definition 3 Given a program Π and a set A of atoms, an answer set Î of omit(Π,A) is concrete, if Î ∈
AS(Π)|A holds, and spurious otherwise.

In other words, a spurious abstract answer set Î can not be completed to any original answer set, i.e., no
extension I= Î∪X of Î to all atoms (where X⊆A) is an answer set of Π. This can be alternatively defined
in the following way. We introduce the following set of constraints for A and Î:

QA
Î ={⊥←not α |α∈ Î}∪{⊥←α | α∈A\ Î}. (2)

Informally, QA
Î is a query for an answer set that concides on the non-omitted atoms with Î. The following is

then easy to see.

Proposition 2 For any program Π and set A of atoms, an abstract answer set Î ∈AS(omit(Π,A)) is spurious
iff Π∪QA

Î is unsatisfiable.

Example 5 (Example 3 continued) The program Π̂A constructed for A = {a,c} has the answer set col-
lection AS(Π̂A) = {{},{c},{c,a}}. The abstract answer sets Î1 = {} and Î2 = {c,a} are concrete since
they can be extended to the answers sets I1 = {d,b} and I2 = {c,a} of Π, as I1|A = Î1 and I2|A = Î2, re-
spectively. On the other hand, the abstract answer set Î = {c} is spurious: the program Π∪QA

Î , where

8



QA
Î = {⊥ ← not c.; ⊥← a.} is unsatisfiable, since the constraints in QA

Î require c is true and a is false,
which in turn affects that b and d must be false in Π as well; this however violates rule a← not b,c. in Π.

3.2.1 Refining abstractions

Upon encountering a spurious answer set, one can either continue checking other abstract answer sets until
a concrete one is found, or refine the abstraction in order to reach an abstract program with less spurious
answer sets. Formally, refinements are defined as follows.

Definition 4 Given a omission mapping mA = A → A ∪{>}, a mapping mA′ = A → A ∪{>} is a re-
finement of mA if A′ ⊆ A.

Intuitively, a refinement is made by adding some of the omitted atoms back.

Example 6 (Example 3 continued) A mapping that omits the set A′ = {b} is a refinement of the mapping
that omits A = {b,d}, as d is added back. This affects that in the abstraction program the choice rule {c}. is
turned back to c← not d. and the rule d← not c. is undeleted, i.e., omit(Π,A′) = {c← not d.; d← not c.;
{a} ← c}, which has the abstract answer sets Ĵ1={d}, Ĵ2={c,a} and Ĵ3={c}. Note that while Ĵ1 and Ĵ2
are concrete, Ĵ3 is spurious; intuitively, adding d back does not eliminate the spurious answer set {c} of
omit(Π,A).

The previous example motivates us to introduce a notion for sets of omitted atoms that need to be added
back in order to get rid of a spurious answer set.

Definition 5 Let Î ∈ AS(omit(Π,A)) be any spurious abstract answer set of a program Π for omitted atoms
A. A put-back set for Î is any set PB ⊆ A of atoms such that no abstract answer set Ĵ of omit(Π,A′) where
A′ = A\PB exists with Ĵ|A = Î.

That is, re-introducing the put-back atoms in the abstraction, the spurious answer set I is eliminated in
the modified abstract program. Notice that multiple put-back sets (even incomparable ones) are possible, and
the existence of some put-back set is guaranteed, as putting all atoms back, i.e., setting PB = A, eliminates
the spurious answer set.

Example 7 (Example 3 continued ) The discussion in Example 6 shows that {d} is not a put-back set,
for the spurious answer set Î = {c} ∈ Π̂A, and neither {b} is a put-back set: the abstract program for
A′ = A\{b}= {d} is omit(Π,A′) = {{c}.; a← not b,c.; {b}.}, which has Î among its abstract answer sets.
Thus, Î has only the trivial put-back set {b,d}.

In practice, small put-back sets are intuitively preferable to large ones as they keep higher abstraction;
we shall consider such preference in Section 4.

3.3 Properties of Omission Abstraction

We now consider some basic but useful semantic properties of our formulation of program abstraction.
Notably, it amounts to the original program in the extremal case and reflects the inconsistency of it in
properties of spurious answer sets.

Proposition 3 For any program Π,
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(i) omit(Π, /0) = Π and omit(Π,A ) = /0.

(ii) AS(Π) = /0 iff I = {} is spurious w.r.t. A = A .

(iii) AS(omit(Π,A)) = /0 implies AS(Π) = /0.

(iv) AS(Π) = /0 iff some A ⊆ A , has only spurious answer sets iff every omit(Π,A), A ⊆ A , has only
spurious answer sets.

Proof.

(i) Omitting the set /0 from Π causes no change in the rules, while omitting the set A causes all the rules
to be omitted.

(ii) Since Î = {} and A =A , we have QA
Î = {}. Thus, by the alternative definition, I = {} is spurious w.r.t.

A = A iff AS(Π∪QA
Î ) = /0 iff AS(Π) = /0.

(iii) Corollary of Theorem 1.

(iv) If AS(Π) = /0, then no Î ∈ AS(omit(Π,A)) for any A⊆A can be extended to an answer set of Π; thus,
all abstract answer sets of omit(Π,A) are spurious. This in turn trivially implies that omit(Π,A) has
for some A⊆A only spurious answer sets. Finally, assume the latter holds but AS(Π) 6= /0; then Π has
some answer set I, and by Theorem 1, I|A ∈ AS(omit(Π,A)), which would contradict that omit(Π,A)
has only spurious answer sets. 2

The abstract program is built by a syntactic transformation, given the set A of atoms to be omitted. It
turns out that we can omit the atoms sequentially, and the order does not matter.

Lemma 4 For any program Π and for any atoms a1,a2 ∈ A , it holds that omit(omit(Π,{a1}),{a2}) =
omit(omit(Π,{a2}),{a1}).

Proof. The rules of Π that do not contain a1 or a2 remain unchanged, and the rules that contain one of a1
or a2 will be updated at the respective abstraction steps. The rules that contain both a1 and a2 are treated as
follows:

• Consider a rule a1 ← B with a2 ∈ B (wlog). Omitting first a2 from the rule causes to have {a1} ←
B \ {a2}, and omitting then a1 results in omission of the rule. Omitting first a1 from the rule causes
the omission of the rule at the first abstraction step.

• Consider a rule α ← B, with a1,a2 ∈ B and α 6= a1,a2. Omitting first a2 from the rule causes to have
{a} ← B \ {a2}, and omitting then a1 causes to have {a} ← B \ {a1,a2}. The same rule is obtained
when omitting first a1 and then a2. 2

An easy induction argument shows then property mentioned above.

Proposition 5 For any program Π and set A = {a1, . . . ,an} of atoms,

omit(Π,A) = omit(omit(· · ·(omit(Π,{aπ(1)}), · · ·{aπ(n−1)}),{aπ(n)})

where π is any permutation of {1, . . . ,n}.
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Thus, the abstraction can be done one atom at a time.
Omitting atoms in a program means projecting them away from the answer sets. Thus, for a mapping

mA, the concrete answer sets in omit(Π,A) always have corresponding answer sets in the programs computed
for refinements of mA.

Proposition 6 Suppose Î is a concrete answer set of omit(Π,A) for a program Π and a set A of atoms. Then
for every A′ ⊆ A some answer set Î′ ∈ AS(omit(Π,A′)) exists such that Î′|A = Î.

Proof. By Definition 3, Î ∈ AS(Π)|A, i.e. there exists some I ∈ AS(Π) s.t. I|A = Î. By Theorem 1, for every
B⊆A , I|B ∈ AS(omit(Π,B)) holds, and in particular for B⊆ A; we thus obtain (I|B)|A = I|A = Î. 2

The next property is convexity of spurious answer sets.

Proposition 7 Suppose Î ∈AS(omit(Π,A)) is spurious and that omit(Π,A′), where A′⊆A, has some answer
set Î′ such that Î′|A = Î. Then for every A′′ such that A′ ⊆ A′′ ⊆ A, it holds that Î′|A′′ ∈ AS(omit(Π,A′′)) and
is spurious.

Proof. We first note that Î′ is spurious as well: if not, some I ∈ AS(Π) exists such that I|A′ = Î′; but
then I|A = (I|A′)|A = Î′|A = Î, which contradicts that Î is spurious. Applying Theorem 1 to omit(Π,A′) and
A′′, we obtain that Î′|A′′ is an answer set of omit(omit(Π,A′),A′′), which by Proposition 5 coincides with
omit(Π,A′′). Moreover, Î′|A′′ is spurious, since otherwise Î′ would not be spurious either, which would be a
contradiction. 2

The next proposition intuitively shows that once a spurious answer set is eliminated by adding back
some of the omitted atoms, no extension of this answer set will show up when further omitted atoms are
added back.

Proposition 8 Suppose that Î ∈ AS(omit(Π,A)) is a spurious answer set and PB ⊆ A is a put-back set for
Î. Then for every A′ ⊆ A\PB and answer set Î′ ∈ AS(omit(Π,A\ (PB∪A′)) it holds that Î′|A 6= Î.

Proof. Towards a contradiction, assume that for some A′ ⊆ A \PB and answer set Î′ ∈ AS(omit(Π,A \
(PB∪A′)) it holds that Î′|A = Î. By Proposition 7, we obtain that Î′ is spurious and moreover that Î′|A\PB ∈
AS(omit(Π,A\PB) and is spurious. However, as Î′|A\PB = Î|A∪PB, this contradicts that PB is a put-back set
for Î. 2

3.4 Faithful Abstractions

Ideally, abstraction simplifies a program but does not change its semantics. Our next notion serves to de-
scribe such abstractions.

Definition 6 An abstraction omit(Π,A) is faithful, if it has no spurious answer sets.

Faithful abstractions are a syntactic representation of projected answer sets, i.e., AS(omit(Π,A)) = AS(Π)|A.
They fully preserve the information contained in the answer sets, and allow for reasoning (both brave and
cautious) that is sound and complete over the projected answer sets.

Example 8 (Example 3 continued) Consider omitting the set A = {a,c} from Π. The resulting Π̂A is faith-
ful, since its answer sets {{},{b,d}} are the ones obtained from projecting {a,c} away from AS(Π).
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Π Π̂A
c← not d.
d← not c. {d}.
a← not b,c.
b← d. b← d.

AS {c,a},{d,b} {},{d,b}

However, while an abstraction may be faithful, by adding back omitted atoms the faithfulness might get
lost. In particular, if the program Π is satisfiable, then A =A is a faithful abstraction; by adding back atoms,
spurious answer sets might arise. This motivates the following notion.

Definition 7 A faithful abstraction omit(Π,A) is refinement-safe, if for all A′ ⊆ A, omit(Π,A′) has no spu-
rious answer sets.

In a sense, a refinement-safe abstraction allows us to zoom in details without losing already established
relationships between atoms, as they appear in the abstract answer sets, and no spuriousness check is needed.
In particular, this applies to programs that are unsatisfiable. By Proposition 3-(iii), unsatisfiability of an
abstraction omit(Π,A) implies that the original program is unsatisfiable, and hence the abstraction is faithful.
Moreover, we obtain:

Proposition 9 Given Π and A, if omit(Π,A) is unsatisfiable, then it is refinement-safe faithful.

Proof. Assume that A is refined to some A′ ⊂ A, where some atoms are added back in the abstraction, and
the constructed omit(Π,A′) is not unsatisfiable, i.e., AS(omit(Π,A′)) 6= /0. By Theorem 1, it must hold that
AS(omit(Π,A′))⊆ AS(omit(Π,A)), which contradicts to the fact that omit(Π,A) is unsatisfiable. 2

4 Computational Complexity

In this section, we turn to the computational complexity of reasoning tasks that are associated with program
abstraction. We start with noting that constructing the abstract program and model checking on it is tractable.

Lemma 10 Given Π and A, (i) the program omit(Π,A) is constructible in logarithmic space, and (ii) check-
ing whether I ∈ AS(omit(Π,A)) holds for a given I is feasible in polynomial time.

As for item (i), the abstract program omit(Π,A) is easily constructed in a linear scan of the rules in Π;
item (ii) reduces then to answer set checking of an ordinary normal logic program, which is well-known to
be feasible in polynomial time (and in fact P-complete).

However, tractability of abstract answer set checking is lost if we ask in addition for concreteness or
spuriousness.

Proposition 11 Given a program Π, a set of atoms A, and an interpretation I, deciding whether I|A, is a
concrete (resp., spurious) abstract answer set of omit(Π,A) is NP-complete (resp. coNP-complete).

Proof. Indeed, we can guess an interpretation J of Π such that (a) JA = IA, (b) JA ∈ AS(omit(Π,A)), and
(c) J ∈ AS(Π). By Lemma 10, (b) and (c) are feasible in polynomial time, and thus deciding whether IA
is a concrete abstract answer set is in NP. Similarly, IA is not a spurious abstract answer set iff for some J
condition (a) holds and either (b) fails or (c) holds; this implies coNP membership.
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The NP-hardness (resp. coNP-hardness) is immediate from Proposition 3 and the NP-completeness of
deciding answer set existence. 2

Thus, determining whether a particular abstract answer set causes a loss of information is intractable in
general. If we do not have a candidate answer set at hand, but want to know whether the abstraction causes
a loss of information with respect to all answer sets of the original program, then the complexity increases.

Theorem 12 Given a program Π and a set A of atoms, deciding whether some Î ∈ AS(omit(Π,A)) exists
that is spurious is Σ

p
2 -complete.

Proof. As for membership in Σ
p
2 , some answer set Î ∈ omit(Π,A) that is spurious can be guessed and checked

by Proposition 11 with a coNP oracle in polynomial time. The Σ
p
2 -hardness is shown by a reduction from

evaluating a QBF ∃X∀Y E(X ,Y ), where E(X ,Y ) =
∨k

i=1 Di is a DNF of conjunctions Di = li1 ∧·· ·∧ lini
over

atoms X = {x1, . . . ,xn} and Y = {y1, . . . ,ym} where without loss of generality in each Di some atom from Y
occurs.

We construct a program Π as follows;

xi←not xi. (3)

xi←not xi. for all xi ∈ X (4)

y j←not y j,not sat. (5)

y j←not y j,not sat. for all y j ∈ Y (6)

sat←l∗i1 , . . . l
∗
ini
. (7)

where X = {x1, . . .xn} and Y = {y1, . . .ym} are sets of fresh atoms and for each atom a∈ X ∪Y , we let a∗= a
and (¬a)∗ = a. Furthermore, we set A = Y ∪Y ∪{sat}.

Intuitively, the answer sets Î of omit(Π,A), which consists of all rules (3)-(4), correspond 1-1 to the
truth assignments σ of X . A particular such Î = Îσ = {xi ∈ X | σ(xi) = true} ∪{xi | xi ∈ X ,σ(xi) = false} is
spurious, iff it can not be extended after putting back all omitted atoms to an answer set J of Π. Any such
J must not include sat, as otherwise the rules (5) and (6) would not be applicable w.r.t. J, which means that
all y j and Yj would be false in J; but then sat could not be derived from Π and J, as no rule (7) is applicable
w.r.t. J by the assumption on the Di.

Now of Îσ is not spurious, then some answer set J of Π as described exists. As sat /∈ J, the rules (5) and
(6) imply that exactly one of y j and y j is in J, for each y j, and thus J induces an assignment µ to Y . As no
rule (7) is applicable w.r.t. J, it follows that E(σ(X),µ(Y )) evaluates to false, and thus ∀Y E(σ(X),Y ) does
not evaluate to true. Conversely, if ∀Y E(σ(X),Y ) does not evaluate to true, then some answer set J of Π that
coincides with Î_σ on X ∪X exists, and hence Î_σ is not spurious. In conclusion, it follows that omit(Π,A)
has some spurious answer set iff ∃X∀Y E(X ,Y ) evaluates to true. 2

An immediate consequence of the previous theorem is that checking whether an abstraction omit(Π,A)
is faithful has complementary complexity.

Corollary 13 Given a program Π and a set A ⊆ A of atoms, deciding whether omit(Π,A) is faithful is
Π

p
2 -complete.

We next consider the computation of put-back sets, which is needed for the elimination of spurious answer
sets. To describe the complexity, we use some complexity classes for search problems, which generalize
decision problems in that for a given input, some (possibly different or none) output values (or solutions)
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might be computed. Specifically, FPNP consists of the search problems for which a solution can be computed
in polynomial time with an NP oracle, and FPNP

‖ is analogous but under the restriction that all oracle calls

have to be made at once in parallel. The class FPΣP
k [log,wit], for k ≥ 1, contains all search problems that

can be solved in polynomial time with a witness oracle for Σ
p
k (Buss et al., 1993); a witness oracle for Σ

p
k

returns in case of a yes-answer to an instance a polynomial size witness string that can be checked with an
Σ

p
k−1 oracle in polynomial time. In particular, for k = 1, i.e., for FPNP[log,wit], one can use a SAT oracle

and the witness is a satisfying assignment to a given SAT instance, cf. (Janota and Marques-Silva, 2016).
While an arbitrary put-back set PB ⊆ A is can be trivially obtained (just set PB = A), computing a

minimal put-back set is more involved. Specifically, we have:

Theorem 14 Given a program Π, a set of atoms A, and a spurious answer set Î of omit(Π,A), computing
(i) some ⊆-minimal put-back set PB resp. (ii) some smallest size put-back set PB for Î is in case (i) feasible
in FPNP and FPNP

‖ -hard resp. is in case (ii) FPΣP
2 [log,wit]-complete.

Note that few FPΣP
2 [log,wit]-complete problems are known. The notions of hardness and completeness

are here with respect to a natural polynomial-time reduction between two problems P1 and P2: there are
polynomial-time functions f1 and f2 such that (i) for every instance x1 of P1, x2 = f1(x1) is an instance of
P2, such that x2 has solutions iff x1 has, and (ii) from every solution s1 of x2, some solution s1 = f2(x1,s2) is
obtainable.
Proof. [Proof of Theorem 14] As for membership in (i), we can compute such a set PB by an elimination
procedure as follows. Starting with A′ = /0, we repeatedly pick some atom α ∈ A\A′ and test the following
condition:

(+) for A′′ = A′∪{α}, the program omit(Π,A′′) has no answer set Î′′ such that Î′′|A = Î.

If (+) holds, we set A′ := A′′ and make the next pick from A\A′. Upon termination, PB = A\A′ is a minimal
put-back set. The correctness of this procedure follows from Proposition 8, by which the elimination of
spurious answer sets is anti-monotonic in the set A of atoms to omit. As for the effort, the test (+) can be
done in polynomial time with an NP oracle; from this, membership in in FPNP follows.

The hardness for FPNP
‖ is shown by a reduction from computing, given normal logic programs Π1, . . . ,Πn

on disjoint sets X1, . . . ,Xn of atoms, the answers q1, . . . ,qn to whether Pi has some answer set (qi = 1) or not
(qi = 0).

To this end, we use fresh atoms ai,bi,ci and construct

Π
′
i = {H(r)← B(r),not bi,not ai | r ∈Πi}∪

{ai← x,not x | x ∈ Xi}∪{bi← not ci; ci← not bi}.

The program Π′i has the answer sets {bi} and {ci} ∪ Ii where Ii is any answer set of Πi. Then for Ai =
A \ {ai,bi}, we have that Ii = {ai} is a spurious answer set of omit(Π′i,Ai). To eliminate Ii with A′i ⊆ Ai,
must put all atoms x ∈ Xi back: otherwise omit(Π′i,A

′
i) contains {ai}, and thus regardless of whether ci ∈ A′i,

omit(Π′i,A
′
i) has some answer set Ĵi such that Ĵi|{ai,bi} = Îi. Moreover, if all Xi are put back (i.e., A′i =

A \ (X ∪{ai,bi}) = {ci}), then omit(Π′i,A
′
i) has some answer set Ĵi such that Ĵi|{ai,bi} = Îi iff Πi has some

answer set I: if such a Ĵi exists and since Ĵi |= H(r)← B(r),not bi,not ai for each r ∈ Pii, it follows that
Ĵi |= H(r)← B(r) and in fact that Ĵi is an answer set of omit(Π′i,A

′
i) such that ci ∈ Ĵi, and thus Πi has some

answer set; Ii ∈ AS(Πi) implies that Ĵi = Ii∪{c} ∈ AS(omit(Π′i,A
′
i)). That is, PBi = Xi is a put-back set for

Îi, and moreover the unique ⊆-minimal put-back set iff Pi has some answer set.
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xi. xi. i = 1 . . . ,n (9)

sat←xi,not xi,xi,not xi. i = 1 . . . ,n (10)

zi←not zi,xi,not xi. i = 1 . . . ,n (11)

zi←not zi,xi,not xi. i = 1 . . . ,n (12)

y j←not y j,not sat. j = 1, . . . ,m (13)

y j←not y j,not sat. j = 1, . . . ,m (14)

sat←l◦i1 , . . . l
◦
ini
. i = 1, . . . ,k (15)

sat←y j,not y j. j = 1, . . . ,m (16)

sat←y j,not y j. j = 1, . . . ,m (17)

sat←zi,not zi. i = 1 . . . ,n (18)

sat←zi,not zi. i = 1 . . . ,n (19)

Figure 2: Program rules for the proof of Theorem 14-(ii), first part

We construct the final program as Π′ =
⋃n

i=1 Pi′i∪{ai← a j | 1 ≤ i 6= j ≤ n}. Then, Î = {a1, . . . ,an} is
a spurious answer set of omit(Π′,A \

⋃n
i=1{ai,bi}), and has a unique ⊆-minimal put-back set PB such that

ci /∈ BP iff Pi has some answer set; this proves FPNP
‖ -hardness.

As for (ii), the membership in FPΣP
2 [log,wit] holds as we can decide the problem by a binary search for

a put-back set of bounded size using a Σ
p
2 witness oracle, where the finally obtained put-back set is output.

The FPΣP
2 [log,wit] hardness is shown by a reduction from the following problem. Given a QBF Φ =

∃X∀Y E(X ,Y ), compute a smallest size truth assignment σ to X such that ∀Y E(σ(X),Y ) evaluates to true,
knowing that some σ with this property exists, where the size of σ is the number of atoms set to true.

More specifically, we assume similar as in the proof of Theorem 12 that E(X ,Y ) =
∨k

i=1 Di is a DNF
where every Di = li1 ∧ ·· · ∧ lini

is a conjunction of literals over X = {x1, . . . ,xn} and Y = {y1, . . . ,ym} that
contains some literal over Y ; moreover, we assume that E(X ,Y ) is a tautology if all literals over X are
removed from it. To verify the latter assumption, we may rewrite Φ to

∃X∀Y
∨

xi∈X

(xi∧¬xi∧ y j)∨ (xi∧¬xi∧¬y j)∨E(X ,Y ), (8)

for an arbitrary y j ∈ Y , which has the desired property.
We set up a program Π with rules shown in Figure 2, where X = {xi | xi ∈ X}, Z = {z1, . . . ,zn} and

Z = {zi | zi ∈ Z} are copies of X and Y = {y j | y j ∈ Y} is a copy of Y , and l◦ maps a literal l over X ∪Y to
default literals over Y ∪Y ∪Z∪Z as follows:

l◦ =


not zi, if l = ¬xi,
not zi, if l = xi,
y j, if l = y j,
y j if l = ¬y j.

We note that Π has no answer set: due to the facts xi and xi, none of the rules (10)–(12) is applicable and
zi,zi must be false in every answer set of Π. This in turn implies that in (15) all not zi, not zi literals are
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true. Now if we assume that sat would be true in an answer set of Π, then no rule in (13) or (14) would be
applicable to derive y j resp. y j, and then by the assumption on E(X ,Y ) no rule (15) is applicable; this means
that sat is not reproducible then and this not on the answer set, which is a contradiction. If on the other hand
sat would be false in an answer set, then the rules (13) and (14) would guess a truth assignment to Y ; by the
tautology assumption on E(X ,Y ), some rule (15) is applicable and derives that sat is true, which is again a
contradiction.

We then set A = A and Î = /0; clearly Î is a spurious answer set of omit(Π,A) = /0.
The idea behind this construction is as follows. As long as we do not put back sat, the abstraction

program omit(Π,A′) will have some answer set. Furthermore, if we do not put back (a) either xi or xi, for all
i = 1, . . . ,n, (b) both zi and zi for all i = 1, . . . ,n and(c) all y j, y j, for j = 1, . . . ,m, then we can guess by (10)
resp. (16)–(19) that sat is true, which again means that some answer set exists. The rules (11)–(12) serve
then to provide with zi and zi access to xi and its negation ¬xi, respectively. More in detail, if we put back
xi but not xi, then omit(Π,A′) contains the guessing rules ri : {zi} ← not zi,xi and ri : {zi} ← not zi,not xi

resulting from (11) and (12), respectively. As in omit(Π,A′) the fact xi. occurs and no rule has xi in the
head, the rule ri is inapplicable and zi thus false; hence the rule ri amounts to a guess {zi}. If zi is guessed
to be true, then not zi and not zi faithfully represent the value of the literals ¬xi and xi (where xi is true);
this is injected into the rules (15). On the other hand, if zi is guessed false, then both not zi and not zi are
true, which represents that both ¬xi and xi are true; if on such a guess, none of the rules (15) fires (which
would be necessary to have an answer set), the same holds if zi is guessed false, as zi and zi occur there only
negated. The case of putting back xi but not xi is symmetric.

The rules (13)–(14) serve to guess an assignment µ to Y (but this only works if sat is false). The rules
(15) check whether upon a combined assignment σ ∪µ , the formula E(σ(X),µ(Y )) evaluates to true; if this
is the case, sat is concluded which then however blocks the guessing in (13)–(14), and thus no answer set
exists. Consequently, E(σ(X),µ(Y )) evaluates to true for all assignments µ(Y ), i.e., ∀Y E(σ(X),Y ) is true
iff sat can be concluded for each guess on yi and yi, i.e., no answer set is possible for it.

In conclusions, it holds that some put-back set of size s = |X |+ 2|X |+ 2|Y |+ 1, which is the smallest
possible here, exists iff Φ evaluates to true. Note, that if we put back a single further atom, for some xi ∈ X
we have that xi is also a fact in omit(Π,A′), and thus by the special form of E(X ,Y ) in (8), regardless of how
one guesses on y j and yi, one can derive sat again. Thus the closest put-back set has either size s or s+1.

In order to discriminate among different σ(X) and select the smallest, we add further rules:

sat←not zi,ci (20)

sat←not zi,not zi,d1, . . . ,dl (21)

where all ci and d j are fresh atoms. Intuitively, when xi is put back, then ¬zi evaluates to true and ci must be
put back as well in order to avoid guessing on sat. Furthermore, if both xi and xi are put back, which means
that not zi and not zi are true in every answer set, then all d1, . . . ,dn must be put back as well. If exactly one
of xi and xi, for all i = 1, . . . ,n is put back and the corresponding assignment σ(X) makes ∀Y E(σ(X),Y )
true, then the closest put-back set has size s+1+ |σ |; if we let l be large enough, then putting both xi and
xi back is more expensive than putting back a proper assignment and the associated ci atoms. As the final
program Π is constructible in polynomial time from Φ, and the desired smallest σ(X) is easily obtained
from any smallest put-back set PB for Î the claimed result follows. 2

We remark that the problem is solvable in polynomial time, if the smallest put-back set PB has a size
bounded by a constant k. Indeed, in this case we can explore all PB of that size, and find all answer sets Î′

of omit(Π,A∪S) that coincide with I on L in polynomial time.
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We finally consider the problem of computing some refinement-safe abstraction that does not remove a
given set A0 of atoms.

Theorem 15 Given a set A0⊆A , computing (i) some⊆-maximal set A⊆A \A0 resp. (ii) some A⊆A \A0
of largest size such that omit(Π,A) is a refinement-safe faithful abstraction is in case (i) in FPNP and FPNP

‖ -

hard and in case (ii) FPΣP
2 [log,wit]-complete, with FPΣP

2 [log,wit]-hardness even if A0 = /0.

Proof. (i) One sets A := /0 and S := A \A0 initially and then picks an atom α from S and sets S := S \{α}.
One tests whether (*) omitting A′∪{α}, for every subset A′ ⊆ A, is a faithful abstraction; if so, then one sets
A :=A∪{α}. Then a next atom α is picked from S etc. When this process terminates, we have a largest set
A such that omitting A from Π is a faithful abstraction. Indeed, by construction the final set A fulfills that
for each A′ ⊆ A, omit(Π,A′) is faithful, and thus A is refinement-safe; furthermore A is maximal: if a larger
set A′ ⊃ A would exist, then at the point when α ∈ A′ \A was considered in constructing A the test (*) would
not have failed and α ∈ A would hold.

Notably, (*) can be tested with an NP oracle: the conditions fails iff for some A′, the program omit(Π,A′∪
α) has a spurious answer set Î. In principle, the spurious check for Î is difficult (a coNP-complete problem,
by our results), but we can take advantage of knowing that omit(Π,A′) is faithful: so we only need to check
whether an extension of Î is an answer set of omit(Π,A′), and not of Π itself; i.e., we only need to check
Î /∈ AS(omit(Π,A′)) and Î∪{α} /∈ AS(omit(Π,A′)).

(ii) The proof of FPΣP
2 [log,wit]-completeness is similar as above for Theorem 14. First, we note that to

decide whether some refinement-safe faithful A⊆A \A0 of size |A| ≥ k exists is in Σ
p
2 : a nondeterministic

variant of the algorithm for item (i), that picks α always nondeterministically and finally checks that |A| ≥ k
holds establishes this. We then can run a binary search, using a Σ

p
2 witness oracle, to find a refinement-safe

faithful abstraction A of largest size. This shows FPΣP
2 [log,wit]-membership.

As for the FPΣP
2 [log,wit]-hardness part, in the proof of FPΣP

2 [log,wit]-hardness for Theorem 14-(ii) each
put-back set PB for the spurious answer set Î = /0 for A = /0 satisfies omit(Π,A \PB) = /0, and is thus
by Proposition 9 refinement-safe faithful. As the smallest size PB sets correspond to the maximum size
A′ = A \PB sets, the FPΣP

2 [log,wit]-hardness follows, even for A0 = /0. 2

We remark that without refinement safety, the problem is likely to be more complex: deciding whether
an abstraction is faithful is Π

p
2 -complete, and this question is trivially reducible to this problem.

5 Refinement Using Debugging

Over-approximation of a program unavoidably introduces spurious answer sets, which makes it necessary
to have an abstraction refinement method. We show how to employ an ASP debugging approach in order to
debug the inconsistency of the original program Π caused by checking a spurious answer set Î, referred to
as inconsistency of Π w.r.t. Î.

We use a meta-level debugging language (Brain et al., 2007) which is based on a tagging technique that
allows one to control the building of answer sets and to manipulate the evaluation of the program. This is
a useful technique for our need to shift the focus from “debugging the original program" to “debugging the
inconsistency caused by the spurious answer set". We alter the meta-program, in a way that hints for refining
the abstraction can be obtained. Through debugging, some of the atoms are determined as badly omitted,
and by adding them back in the refinement the spurious answer set can be eliminated.
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5.1 Debugging Meta-Program

The meta-program constructed by spock (Brain et al., 2007) introduces tags to control the building of
answer sets. Given a program Π over A and a set N of names for all rules in Π, it creates an enriched
alphabet A + obtained from A by adding atoms such as ap(nr),bl(nr),ok(nr),ko(nr) where nr ∈ N for
each r ∈ Π. The atoms ap(nr),bl(nr) express whether a rule r is applicable or blocked, respectively, while
ok(nr),ko(nr) are used for manipulating the application of r. We omit the atoms ok(nr), as they are not
needed. The (altered) meta-program that is created is as follows.

Definition 8 Given Π, the program Tmeta[Π] consists of the following rules for r ∈ Π,α1 ∈ B+(r),α2 ∈
B−(r):

H(r)← ap(nr),not ko(nr).

ap(nr)← B(r).

bl(nr)← not α1.

bl(nr)← not not α2.

Here the last rules uses double (nested) negation not not α2 (Lifschitz et al., 1999), which in the reduct
w.r.t. an interpretation I is replaced by > if I |= α2 and by ⊥ otherwise. The role of ko(r) is to avoid the
application of the rule H(r)← ap(r),not ko(r) if necessary. We use it for the rules that are changed due to
some omitted atom in the body.

Abnormality atoms are introduced to indicate the cause of inconsistency: abp(r) signals that rule r is
falsified under some interpretation, abc(α) points out that α is true but has no support, and abl(α) indicates
that α may be involved in a faulty loop (unfounded or odd).

Definition 9 Given Π over A , the following additional meta-programs are constructed:

1. TP[Π]: for all r ∈Π with B(r)∩A 6= /0 and H(r) 6=⊥:

ko(nr).

{H(r)}← ap(nr).

abp(nr)← ap(nr),not H(r).

2. TC[Π,A ]: for all α∈A \A with the defining rules def (α,Π)={r1, ...,rk}:

{α}← bl(nr1), ...,bl(nrk).

abc(α)← α,bl(nr1), ...,bl(nrk).

3. TA[A ]: for all α ∈A :

{abl(α)}← not abc(α).

α ← abl(α).

In TC[Π,A ], we do not guess over the atoms A if all rules that have them in the head are blocked. This
helps the search of a concrete interpretation for the partial/abstract interpretation by avoiding “bad” (i.e.,
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non-supported) guesses of the omitted atoms. Notice that for the rules ri with H(ri) = α and empty body,
we also put bl(nri) so that abc(α) does not get determined, since one can always guess over α in Π.

Having abl(α) indicates that α is determined through a loop, but it does not necessarily show that the
loop is unfounded (as described through loop formulas in (Brain et al., 2007). By checking whether α only
gets support by itself, the unfoundedness can be caught. In some cases, α could be involved in an odd loop
that was disregarded in the abstraction due to omission, which requires an additional check.

5.2 Determining Bad-Omission Atoms

Whether or not Π is consistent, our focus is on debugging the cause of inconsistency introduced through
checking for a spurious answer set Î, i.e., evaluating the program Π∪QA

Î from Proposition 2. in Section 3.2.
We reason about the inconsistency by inspecting the reason for having Î ∈ AS(omit(Π,A)) due to some
modified rules.

Definition 10 Let r : α←B be a rule in Π such that B∩A 6= /0 and α /∈A. The abstract rule r̂ : {α}←mA(B)
in omit(Π,A) introduces w.r.t. an abstract interpretation Î ∈ AS(omit(Π,A))

(i) a spurious choice, if Î |= mA(B) and Î |= α , i.e., Î 6|= α , but some model I of Π\{r} exists s.t. I|A = Î
and I |= B.

(ii) a spurious support, if Î |= mA(B) and Î |= α , but some model I of Π exists s.t. I|A = Î and for all
r′ ∈ def (α,Π), I2B(r′).

Any occurrence of the above cases shows that Î is spurious. In case (i), due to Î 6|= α , the rule r is not
satisfied by I while I is a model of the remaining rules. In case (ii), an I that matches Î |= α does not give a
supporting rule for α .

Definition 11 Let r : α ← B be a rule in Π such that B∩A 6= /0. The abstract rule r̂ = mA(r) introduces a
spurious loop-behavior w.r.t. Î, if some model I of Π exists s.t. I|A = Î and I |= r, but α is involved in a loop
that is unfounded or is odd, due to some α ′ ∈ A∩B.

The need for reasoning about the two possible faulty loop behaviors is shown by the following examples.

Example 9 Consider the programs Π1,Π2 and their abstractions Π̂1 = Π̂1{a}, Π̂2 = Π̂2{a,b}.

Π1 Π̂1 Π2 Π̂2
r1 : a← b. r1 : a← b.
r2 : b← not c,a. {b}← not c. r2 : b← not a,c.

r3 : c. c.

The program Π1 has the single answer set /0, and omitting a creates a spurious answer set {b} disre-
garding that b in unfounded. The program Π2 is unsatisfiable due to the odd loop of a and b. When both
atoms are omitted, this loop is disregarded, which causes a spurious answer set {c}.

Bad omission of atoms are then defined as follows.

Definition 12 (bad omission atoms) An atom α ∈ A is a bad-omission w.r.t. a spurious answer set Î of
omit(Π,A), if some rule r∈Π with α∈B(r) exists s.t. r̂ = mA(r) introduces either (i) a spurious choice, or
(ii) a spurious support or (iii) a spurious loop-behavior w.r.t. Î.
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Intuitively, for case (i) of Definition 10, as α was decided due to choice in H(r̂), we infer that the omitted
atom which caused r to become a choice rule is a bad-omission. Also for case (ii), as α is decided with
Î |= B(r̂), we infer that the omitted atom that caused B(r) to be modified is a bad-omission. As for case (iii),
it shows that the modification made on r (either omission or change to choice rule) ignores an unfoundedness
or an odd loop. Case (i) also catches issues that arise due to omitting a constraint in the abstraction.

We now describe how we determine when an omitted atom is a bad omission.

Definition 13 (bad omission determining program) The bad omission determining program Tbadomit is
constructed using the abnormality atoms obtained from TP[Π], TC[Π,A ] and TA[A ] as follows:

1. A bad omission is inferred if the original rule is not satisfied, but applicable (and satisfied) in the
abstract program:

badomit(X , type1)←abp(R),absAp(R),modified(R),omittedAtomFrom(X ,R).

2. A bad omission is inferred if the original rule is blocked and the head is unsupported, while it is
applicable (and satisfied) in the abstract program:

badomit(X , type2)←bl(R),head(R,H),abc(H),absAp(R),changed(R),

omittedAtomFrom(X ,R).

3. A bad omission is inferred in case there is unfoundedness or an involvement of an odd loop, via an
omitted atom:

faulty(X)←abl(X), inOddLoop(X ,X1),omittedAtom(X1).

faulty(X)←abl(X), inPosLoop(X ,X1),omittedAtom(X1).

badomit(X1, type3)←faulty(X),head(R,X),modified(R),absAp(R),

omittedAtomFrom(X1,R).

where absAp(r) is an auxiliary atom to keep track of which original rule becomes applicable with the
remaining non-omitted atoms for the abstract interpretation, changed(r) shows that r is changed to a choice
rule in the abstraction, and modified(r) shows that r is either changed or omitted in the abstraction.

For defining type3, we check for loops using the encoding in (Syrjänen, 2006) and determine inOddLoop
and (newly defined) inPosLoop atoms of Π.

The cases for type2 and type3 introduce as bad omissions the omitted atoms of all the rules that add
to abc(H) being true, or of all rules that have X in the head for abl(X), respectively. Modifying badomit
determination to have a choice over such rules to be refined (and their omitted atoms to be badomit) and
minimizing the number of badomit atoms reduces the number of added back atoms in a refinement step, at
the cost of increasing the search space.

In order to avoid the guesses of abl for omitted atoms even if there is no faulty loop behavior related
with them (i.e., this is not the cause of inconsistency of Î), we add the constraint← abl(X),not someFaulty.

With all this in place, the program for debugging a spurious answer set is composed as follows.

Definition 14 (spurious answer set debugging program) For an abstract answer set Î, we shall denote by
T [Π, Î] the program Tmeta∪TP[Π]∪TC[Π,A ]∪TA[A ]∪Tbadomit ∪QA

Î .
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From the answer sets of T [Π, Î], we can see bad omissions and their types.

Example 10 For the following program Π, Î = {b} is a spurious answer set of the abstraction for A =
{a,d}:

Π Π̂a,d
r1 : c← not d. {c}.
r2 : d← not c.
r3 : a← not d,c.
r4 : b← a. {b}.

T [Π, Î] gives the answer set {ap(r2), bl(r1), bl(r4), bl(r3), abc(b), badomit(a, type2)}.

The next example shows the need for reasoning about the disregarded positive loops and odd loops, due
to omission.

Example 11 (Example 9 continued) Recall that the program Π1 has an unfounded loop between a and
b, and the abstraction Π̂1 = Π̂1{a} has the spurious answer set {b}. The program T [Π1,{b}] now yields
inPosLoop(b,a), ap(r1),ap(r2),abl(b),badomit(a, type3). Omitting from the program Π2 the loop atoms
a,b causes the spurious answer set {c}. Accordingly, T [Π2,{c}] yields ap(r3), inOddLoop(b,a), abl(b),
ap(r1), bl(r2),badomit(a, type3), as desired.

The following result shows that T [Π, Î] flags in its answer sets always bad omission of atoms, which
can be utilized for refinement.

Proposition 16 If Î is spurious, then for every answer set S ∈ AS(T [Π, Î]), badomit(α, type i) ∈ S for some
α ∈ A and i∈{1,2,3}.

Proof. Let Î be a spurious abstract interpretation. Then by Proposition 2 the program Π∪QA
Î is unsatisfiable.

We focus on debugging the cause of inconsistency introduced by QA
Î . This inconsistency can either be due

to (i) an unsatisfied rule, (ii) an unsupported atom, or (iii) an unfounded support from a loop.
Case (i): let r be an unsatisfied rule in Π∪QA

Î . This means that the constraints in QA
Î is causing H(r) to be

false while B(r) is satisfied. So in T [Π, Î], according to its definition, abp(r) becomes true. The remainder
of B(r) after the omission also holds true, i.e., absAp(r) = true. Thus, the definition of badomit(_, type1) is
able to catch this case.

Case (ii): let a be an unsupported atom in Π∪QA
Î . First, a must be from A because QA

Î only restricts
the determined value of these remainder atoms. In T [Π, Î], according to its definition, abc(a) becomes
true. The value of a is determined from a changed rule r with H(r) = a, due to the remainder of B(r)
becoming satisfiable with Î, while originally it is not, i.e. bl(R) = false and absAp(R) = true. The definition
of badomit(_, type2) is able to catch this case and choose the omitted atom in the body to be bad.

Case (iii): if the abstracted version of rule r becomes applicable in omit(Π,A), while originally the
truth-value of H(r) requires to get support via a loop for a model I that matches Î, then abl(a) catches this
case. If the loop is the only support that H(r) can obtain, and if this loop is unfounded or odd, then this
should be reflected in the abstraction of r. Thus, by badomit(_, type3) this case is caught. 2

The badly omitted atoms Ao ⊆ A w.r.t a spurious Î ∈ AS(omit(Π,A)) are added back to refine mA. If
Î still occurs in the refined program omit(Π,A \Ao), i.e., some Î′∈AS(omit(Π,A \Ao)) with Î′|A=Î exists,
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then T [Π, Î′] finds another possible bad omission. In the worst case, all omitted atoms A are put back to
eliminate Î.

Corollary 17 After at most |A| iterations of the program, the spurious answer set will no longer occur.

Adding back a badly omitted atom may cause a previously omitted rule to appear as a changed rule in
the refined program. Due to this choice rule, the spurious answer set might not get eliminated. To give a
(better) upper bound for the number of required iterations in order to eliminate a spurious answer set, a trace
of the dependencies among the omitted rules is needed.

The rule dependency graph of Π, denoted Grule
Π

= (V,E), shows the positive/negative dependencies
similarly as in GΠ, but at a rule-level, where the vertices V are rules r ∈ Π and an edge from r to r′ exists
in E if the H(r′) ∈ B±(r) holds, which is negative if H(r′) ∈ B−(r) and positive otherwise. For a set A of
atoms, nA denotes the maximum length of a (non-cyclic) path in Grule

Π
from some rule r with B(r)∩A 6= /0

backwards through rules r′ with H(r′)∩A 6= /0. The number nA shows the maximum level of direct or indirect
dependency between omitted atoms and their respective rules.

Proposition 18 Given a program Π, a set A of atoms, and a spurious Î ∈ AS(omit(Π,A)), after at most nA

iterations of finding a bad omission with T [Π, Î] and refinement, no abstract answer set matching Î will
occur.

Proof. Let r0 be a rule with α ∈ B(r0)∩A that is changed to a choice rule due to mA. Let r0,r1, . . . ,rnA be a
dependency path in Grule

Π
where H(ri)∩A 6= /0 and B(ri)∩A 6= /0, 0≤ i<nA. Let Î∈AS(omit(Π, A)), assume

r0 has spurious behavior w.r.t. Î, and, w.l.o.g. assume Î |= B(ri)\A for all i≤nA.
Due to inconsistency via r0, badomit(α) ∈ AS(T [Π, Î]). For A′=A\{α}, mA′(r0) is unchanged, while

mA′(r1) becomes a choice rule (with nA−1 dependencies left). Thus, some I′ ∈ AS(omit(Π,A′)) with I|′A= Î
can still exist. Since r1 introduces spuriousness w.r.t. I′, there is badomit(α ′) ∈ AS(T [Π, I′]) for α ′ ∈
B(r1)∩A′.

By iterating this process nA times, all omitted rules on which r0 depends are traced and eventually no
abstract answer set matching Î occurs. 2

We remark that in case more than one dependency path r0, . . . ,rnA with several rules causing inconsis-
tencies exists, the returned set of badomits from T [Π, Î] allows one to refine the rules in parallel).

Recall that Proposition 8 ensures that adding back further omitted atoms will not reintroduce a spurious
answer set. Further heuristics on the determination of bad omission atoms can be applied in order to ensure
that a spurious answer set is eliminated in one step.

6 Application: Catching Unsatisfiability Reasons of Programs

In this section, we consider as an application case the use of abstraction in finding a cause of unsatisfiability
for an ASP program. To this end, we first introduce the notion of blocker sets for understanding which of
the atoms are causing the unsatisfiability.

After describing the implementation, we report about our experiments where the aim was to observe the
use of abstraction and refinement for achieving an over-approximation of a program that is still unsatisfiable
and to compute the ⊆-minimal blockers of the programs, which projects away the part that is unnecessary
for the unsatisfiability.
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6.1 Blocker Sets of Unsatisfiable Programs

If a program Π has no answer sets, we can obtain by omitting sufficiently many atoms from it an abstract
program that has some abstract answer set. By Proposition 3-(iv), any such answer set will be spurious. On
the other hand, as long as the abstracted program has no answer sets, by Proposition 3-(iii) also the original
program Π has no answer set. This motivates us to use omission abstraction in order to catch a “real” cause
of inconsistency in a program. To this end, we introduce the following notion.

Definition 15 A set C ⊆A of atoms is an (answer set) blocker set of Π, if AS(omit(Π,A \C)) = /0.

In other words, when we keep the set C of atoms and omit the rest from Π to obtain the abstract program Π′,
then the latter is still unsatisfiable. This means the atoms in C are blocking the occurrence of answer sets:
no answer set is possible as long as all these atoms are present in the program, regardless of how the omitted
atoms will be evaluated in building an answer set.

Example 12 (Example 3 continued) Modify Π by changing the last rule to b← not b., in order to have
a program Π′ which is unsatisfiable. Omitting the set A = {d} from Π′ creates the abstract program Π̂′{d}
which is still unsatisfiable. Thus, the set C = A \A = {a,b,c} is a blocker set of Π′. This is similar for
omitting the set A = {a,c}, which then causes to have C = {d,b} as a blocker set of Π′.

Π′ Π̂′{d} Π̂′{a,c}
c← not d. {c}.
d← not c. {d}
a← not b,c. a← not b,c.
b← not b. b← not b. b← not b.
unsatisfiable unsatisfiable unsatisfiable

Notice that C = A , i.e., no atom is omitted, is trivially a blocker set if Π is unsatisfiable, while C = /0,
i.e., all atoms are omitted, is never a blocker set since AS(omit(Π,A )) = { /0}.

We can view a blocker set as an explanation of unsatisfiability; by applying Occam’s razor, simpler
explanations are preferred, which in pure logical terms motivates the following notion.

Definition 16 A blocker set C ⊆A is ⊂-minimal, if for all C′ ⊂C, AS(omit(Π,A \C′)) 6= /0.

By Proposition 9, in order to test whether a blocker set C is minimal, we only need to check whether for
no C′ =C \{c}, for c ∈C, the abstraction omit(Π,A \C′) has an answer set. That is, for a minimal blocker
set C, we have that A \C is a maximal unsatisfiable abstraction, i.e., a maximal set of atoms that can be
omitted while keeping the unsatisfiability of Π.

Example 13 (Example 12 continued) The program Π′ has the single minimal blocker set C = {b}. Indeed,
the rule r5 : b← not b does not admit an answer set. Thus, every blocker set must contain b, and C is the
smallest such set.

We remark that the atoms occurring in the blocker sets are intuitively the ones responsible for the unsat-
isfiability of the program. In order to observe the reason of unsatisfiability, one has to look at the remaining
abstract program. For this, we consider the notion of blocker rule set associated with a blocker set C, which
are the rules that remain in omit(Π,A \C). For example, the programs Π′,Π̂′{d} and Π̂′{a,c} in Example 12
contain the blocker rule sets associated with {a,b,c,d},{a,b,c} and {b,d}, respectively. Here, the abstract
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Figure 3: Program for 2-colorability (adapted from the coloring encoding in the ASP Competition 2013)

color(red). color(green).

{chosenColor(N,C)}← node(N),color(C).

colored(N)← chosenColor(N,C).

← not colored(N),node(N).

← chosenColor(N,C1),chosenColor(N,C2),C1 6=C2.

← chosenColor(N1,C),chosenColor(N2,C),edge(N1,N2).

programs contain choice rules due to the omission in the body, and the unsatisfiability of the programs
shows that the evaluation of the respective rule does not make a difference for unsatisfiability. In other
words, whether these rules are projected to the original rules by removing the choice, e.g. {c}. in Π̂′{d}
gets changed to c., or whether they are converted into constraints, e.g. ← not c, the program will still be
unsatisfiable.

Example 12 illustrated a simple reason for unsatisfiability. However, the introduced notion is also able
to capture more complex reasons of unsatisfiability that involve multiple rules related with each other, which
is illustrated in the next example.

Example 14 (Graph coloring) Consider coloring the graph shown in Figure 1 with two colors green and
red. Due to the clique formed by the nodes 1,2,3, it is not 2-colorable. A respective encoding is shown in
Figure 6.1, which for the given graph reduces by grounding and elimination of facts to the following rules,
where n∈{1, . . . ,9}, and c,c1,c2∈{red,green}:

{chosenColor(n,c)}.
colored(n)← chosenColor(n,c).

← not colored(n).

← chosenColor(n,c1),chosenColor(n,c2),c1 6=c2.

← chosenColor(n1,c),chosenColor(n2,c). nodes n1,n2 are adjacent

Omitting a node n in the graph means to omit all ground atoms related to n; omitting all nodes except 1,2,3
gives us a blocker set with the corresponding blocker rule set shown in Figure 4. This abstract program is
unsatisfiable and omitting further atoms in the abstraction yields spurious satisfiability. The set of atoms that
remain in the program is actually the minimal blocker set for this program. We can also observe the property
of unsatisfiable programs being refinement-safe faithful (Proposition 9), as refining the shown abstraction
by adding back atoms relevant with the other nodes will still yield unsatisfiable programs.

For the introduced notions of blocker sets, the below result follows from Theorem 15.

Corollary 19 Computing (i) some⊆-minimal respectively (ii) some smallest size blocker C⊆A for a given
program Π is (i) in FPNP and FPNP

‖ -hard respectively (ii) FPΣP
2 [log,wit]-complete.

The membership follows for the case that Π has no answer sets, and the hardness by the reduction in the
proof of Theorem 15.
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Figure 4: Blocker rule set for 2-colorability of Figure 1(a)

{chosenColor(1,red)}. ← not colored(1).
{chosenColor(2,red)}. ← not colored(2).
{chosenColor(3,red)}. ← not colored(3).
{chosenColor(1,green)}. ← chosenColor(1,red),chosenColor(1,green).
{chosenColor(2,green)}. ← chosenColor(2,red),chosenColor(2,green).
{chosenColor(3,green)}. ← chosenColor(3,red),chosenColor(3,green).
colored(1)← chosenColor(1,red). ← chosenColor(2,red),chosenColor(1,red).
colored(2)← chosenColor(2,red). ← chosenColor(3,red),chosenColor(1,red).
colored(3)← chosenColor(3,red). ← chosenColor(3,red),chosenColor(2,red).
colored(1)← chosenColor(1,green). ← chosenColor(2,green),chosenColor(1,green).
colored(2)← chosenColor(2,green). ← chosenColor(3,green),chosenColor(1,green).
colored(3)← chosenColor(3,green). ← chosenColor(3,green),chosenColor(2,green).

6.2 Implementation

The experiments have been conducted with a tool2 that we have implemented according to the described
method. It uses Python, Clingo (Gebser et al., 2011) and the meta-program output of the Spock debugger
(Brain et al., 2007).

The procedure for the abstraction and refinement method is shown in Algorithm 1. Given a program Π

and a set Ainit of atoms to be omitted, first the abstract program Π′ = omit(Π,Ainit) is constructed (Line 2).
If the abstract program is unsatisfiable, the program and the set of omitted atoms are returned (Line 13).
Otherwise, an answer set I ∈ AS(omit(Π,Ainit)) is computed. In the implementation, the first answer set
is picked. In order to check whether I is concrete, the meta-program Πdebug = T [Π, Î] as described in
Section 5 is constructed (Line 5). Then a search over the answer sets of T [Π, Î] for a minimum number of
badomit atoms is carried out (Line 6). If an answer set with no badomit atoms exists, then this shows that I
is concrete, and the abstract program and the set of omitted atoms are returned (Line 8). Otherwise, the set
of omitted atoms is refined by removing the atoms that are determined as badly omitted, and a new abstract
program is constructed with the refined abstraction A′. This loop continues until either the abstract program
Π′ constructed at Line 11 is unsatisfiable or its first answer set is concrete.

Figure 6 shows the implemented system according to Algorithm 1 with the respective components. The
arcs model both control and data flow within the tool. The workflow of the tool is as follows. First, the input
program Π and the set A of atoms to be omitted is read. Then the controller calls the abstraction creator
component which uses Π and A to create the abstract program Π̂A 1 . The controller then calls the ASP Solver
to get an answer set of Π̂A 2 . If the solver finds no answer set, the controller outputs the abstract program
and the set of omitted atoms. Otherwise, it calls the refinement component with the abstract answer set Î
to decide whether or not to refine the abstraction 3 . The refinement component calls the checker creator 4
to create T [Π, Î], which uses Spock 5 , and then calls the ASP solver to check whether Î is concrete 6 . If
not, i.e., when Î is spurious, it refines the abstraction by updating A 7 . Otherwise, the controller returns the
outputs.

The computation of a⊆-minimal blocker set of an unsatisfiable program, given an initial set of omission
atoms A, is shown in Algorithm 2; it derives from computing some ⊆-minimal put-back set (Theorem 14),

2www.kr.tuwien.ac.at/research/systems/abstraction
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Algorithm 1: Abs&Ref
Input: Π, Ainit
Output: Π′ = omit(Π,A′), A′

1 A′ = Ainit ;
2 Π′ = constructAbsProg(Π,A′);
3 while AS(Π′) 6= /0 do
4 Get I ∈ AS(Π′);
5 Πdebug =

constructDebugProg(Π,A′, I);
6 S =

getASWithMinBadOmit(Πdebug);
7 if S|badomit = /0 then /* I

concrete */
8 return Π′,A′

9 else /* refine the
abstraction */

10 A′ = A′ \S|badomit;
11 Π′ =

constructAbsProg(Π,A′);
12 /* reached an

unsatisfiable Π′ */
13 return Π′,A′

Algorithm 2: ComputeMinBlocker
Input: Π, A , A s.t. AS(Π,A)= /0
Output: a ⊆-minimal blocker set

Cmin⊆A \A
1 forall the α ∈A \A do
2 Π′ = constructAbsProg(Π,{α});
3 if AS(Π′) = /0 then
4 A = A∪{α};
5 Π = Π′;
6 return Cmin = A \A

Figure 5: Algorithms for Abstraction and Refinement (left) an Minimal Blocker Computation (right)
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Figure 6: System architecture of the implementation

by taking into account that minimal blocker sets amount to minimal put-back set for unsatisfiability. The
procedure checks whether omitting an atom α ∈ A \A from Π preserves unsatisfiability. If yes, the atom
is added to A and the search continues from the newly constructed abstract program omit(Π,{α}). Once
all the atoms are examined, the atoms that are chosen not to be omitted A \A is a ⊆-minimal blocker set,
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provided that AS(Π,A) is unsatisfiable.

6.3 Experiments

In our experiments, we wanted to observe the use of abstraction in catching the part of the program which
causes unsatisfiability. We aimed at studying how the abstraction and refinement method behaves in different
benchmarks in terms of the computed final abstractions and the needed refinement steps, when starting with
an initial omission of a random set of atoms. For the refinement step, we expected the search for the answer
set with minimum number of badomit atoms to be difficult, and thus wanted to investigate whether different
minimizations over the badomit atom number makes a difference in the reached final abstractions.

Additionally, we were interested in computing the⊆-minimal blocker sets of the programs and observing
the difference in size of the ⊆-minimal blocker sets depending on the problems. For finding ⊆-minimal
blocker sets, we additionally compared a top-down method to a bottom-up method, to see their effects
on the quality of the resulting ⊆-minimal blocker sets. The top-down method proceeds by calling the
function ComputeMinBlocker with the original program Π, A and A = {}, so that the search for a ⊆-
minimal blocker set starts from the top. The bottom-up method initially chooses a certain percentage of
the atoms to omit, Ainit , and calls the function Abs&Ref with Π and Ainit to refine the abstraction and find
an unsatisfiable abstract program, omit(Π,A f inal). Then, a search for ⊆-minimal blocker sets is done, with
the remaining atoms, by calling the function ComputeMinBlocker with omit(Π,A f inal), A and A f inal . We
wanted to observe whether there are cases where the bottom-up method helps in reaching better quality
⊆-minimal blocker sets that have smaller size than those obtained with the top-down method.

6.3.1 Benchmarks

We considered five benchmark problems with a focus on the unsatisfiable instances. Two of the problems
are based on graphs, two are scheduling and planning problems, respectively, and the fifth one is a subset
selection problem.

Graph Coloring (GC). We obtained the generator for the graph coloring problem3 that was submitted
to the ASP Competition 2013 (Alviano et al., 2013), and we generated 35 graph instances with node size
varying from 20 to 50 with edge probability 0.2 to 0.6, which are not 2 or 3-colorable. The respective
colorability tests are added as superscripts to GC, i.e, GC2, GC3.

Abstract Argumentation (AA). Abstract argumentation frameworks are based on graphs to represent
and reason about arguments. The abstract argumentation research community has a broad collection of
benchmarks with different types of graph classes, which are also being used in competitions (Gaggl et al.,
2016). We obtained the Watts-Strogatz (WS) instances (Watts and Strogatz, 1998) that were generated by
(Cerutti et al., 2016) and are unsatisfiable for existence of so called stable extensions.4 We focused on the
unsatisfiable (in total 45) instances with 100 arguments (i.e., nodes) where each argument is connected (i.e.,
has an edge) to its n ∈ {6,12,18} nearest neighbors and it is connected to the remaining arguments with a
probability β ∈ {0.10,0.30,0.50,0.70,0.90}.

Disjunctive Scheduling (DS). As a non-graph problem, we considered the task scheduling problem from
the ASP Competition 20115 and generated 40 unsatisfiable instances with t ∈ {10,20} tasks within s ∈
{20,30} time steps, where d ∈ {10,20} tasks are randomly chosen to not to have overlapping schedules.

3www.mat.unical.it/aspcomp2013/GraphColouring
4www.dbai.tuwien.ac.at/research/project/argumentation/systempage/Data/stable.dl
5www.mat.unical.it/aspcomp2011
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Strategic Companies (SC). We considered the strategic companies problem with the encoding and simple
instances provided in (Eiter et al., 1998). In order to achieve unsatisfiability, we added a constraint to the
encoding that forbids having all of the companies that produce one particular product to be strategic. SC is a
canonic example of a disjunctive program that has presumably higher computational cost than normal logic
programs, and no polynomial time encoding into program such program is feasible. We have thus split rules
with disjunctive heads, e.g., a∨b← c, into choice rules {a}← c;{b}← c at the cost of introducing spurious
guesses and answer sets. The resulting split program can be seen as an over-approximation of the original
program, and thus causes for unsatisfiability of the split program as approximative causes for unsatisfiability
of the original program.

15-puzzle (PZ). Inspired from the Unsolvability International Planning Competition6, we obtained the
ASP encoding for the Sliding Tiles problem from the ASP Competition 2009 7, which is named as 15-puzzle.
We altered the encoding in order to avoid having cardinality constraints in the rules, and to make it possible
to also solve non-square instances. We used the 20 unsolvable instances from the planning competition,
which consist of 10 instances of 3x3 and 10 instances of 4x3 tiles.

The collection of all encodings and benchmark instance can be found at http://www.kr.tuwien.
ac.at/research/systems/abstraction/

6.3.2 Results

The tests were run on an Intel Core i5-3450 CPU @ 3.10GHz machine using Clingo 5.3, under a 600 secs
time and 7 GB memory limit. The initial omission, Ainit , is done by choosing randomly 50%,75% or 100%
of the nodes in the graph problems GC, AA, of the tasks in DS, of the companies in SC, and of the tiles in
PZ, as well as by omitting all the atoms related with the chosen objects. We show the overall average of 10
runs for each instance in Figure 7.

The first three rows under each category show the bottom-up approach for 50%,75%, and 100% initial
omission, respectively. The columns |Ainit|/|A | and |Afinal|/|A | show the ratio of the initial omission set
Ainit and the final omission set Afinal that achieves unsatisfiability after refining Ainit (with shown number of
refinement steps and time). The second part of the columns is on the computation of a ⊆-minimal blocker
set Cmin. For the bottom-up approach, the search starts from Afinal while for the top-down approach, it starts
from A . In each refinement step, the number of determined badomit atoms are minimized to be at most
|A|/2; Figure 8 shows results for different upper limits and its full minimization.

Figure 7 shows that, as expected, there is a minimal part of the program which contains the reason for
unsatisfiability of the program by projecting away the atoms that are not needed (sometimes more than 90%
of all atoms). Observe that when 100% of the objects in the problems are omitted, refining the abstraction
until an unsatisfiable abstract program takes the most time. This shows that a naive way of starting with
an initial abstraction by omitting every relevant detail is not efficient in reaching an unsatisfiable abstract
program. We can observe that larger A f inal results in having less time spent in computing⊆-minimal blocker
sets, as a smaller number of atoms must be checked. Additionally, with a bottom-up method it is possible to
reach a ⊆-minimal blocker set which is smaller in size than the ones obtained with the top-down method.

The graph coloring benchmarks (GC2,3) show that more atoms are kept in the abstraction to catch the
non-3-colorability than the non-2-colorability, which matches our intuition. For example, in GC2 omitting
50% of the nodes (49% of the atoms in Ainit) already reaches an unsatisfiable program, since no atoms were

6https://unsolve-ipc.eng.unimelb.edu.au/
7https://dtai.cs.kuleuven.be/events/ASP-competition
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Figure 7: Experimental results for the base case (i.e., with upper limit on badomit # per step). The three
entries in a cell, e.g., 0.49 / 0.74 / 1.00 in cell (GC2, |Ainit|

|A | ), are for 50% / 75% / 100% initial omission.

Π
|Ainit|
|A |

|Afinal|
|A | Ref # t (sec)

|Cmin|
|A | t (sec)

GC2

0.49 0.49 0.02 0.81 0.10 0.80
0.74 0.63 0.51 1.13 0.10 0.51
1.00 0.18 3.03 3.60 0.10 1.63

top-down 0.10 2.30

GC3

0.49 0.40 0.82 1.83 0.17 1.68
0.72 0.31 2.46 5.87 0.16 2.04
1.00 0.11 4.18 6.54 0.17 3.47

top-down 0.16 4.32

AA

0.50 0.19 3.70 7.20 0.38 8.90
0.75 0.20 4.19 8.41 0.37 8.67
1.00 0.01 2.00 4.07 0.38 11.74

top-down 0.38 11.75

DS

0.50 0.39 1.62 3.36 0.10 1.89
0.72 0.40 3.49 6.77 0.09 2.09

1 0.45 4.9 9.57 0.07 1.99

top-down 0.09 4.15

SC

0.49 0.48 0.03 0.59 0.10 0.34
0.74 0.42 0.65 1.14 0.10 0.41
1.00 0.43 1.00 2.65 0.11 0.40

top-down 0.12 0.82

PZ

0.36 0.32 3.76 65.1 0.29 150.1
0.54 0.45 8.47 154.1 0.27 103.7
0.76 0.54 22.85 448.6 0.26 80.0

top-down 0.30 281.4

added back in A f inal . However, for GC3 an average of only 9% of the omitted atoms were added back until
unsatisfiability is caught.

For the GC2,3, SC and PZ benchmarks, we can observe that omitting 50% of the objects ends up easily
in reaching some unsatisfiable abstract program, with refinements of the abstractions being relatively small.
For example, for GC2 the size of A f inal is the same as for Ainit , and for PZ an average of only 4% of the
atoms is added back in A f inal . However, this behavior is not observed when initially omitting 75% of the
objects. We can also observe that some problems (AA and PZ) have larger ⊆-minimal blocker sets than
others. This shows that these problems have a more complex structure than others, in the sense that more
atoms are syntactically related with each other through the rules and have to be considered for obtaining the
unsatisfiability.
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Figure 8: Experimental results with different upper limits on badomit #. The three entries in a cell, e.g., 0.21
/ 0.24 / 0.23 in cell (AA, |Afinal|

|A | ) of badomit #≤ |A |/5, are for 50% / 75% / 100% initial omission.

badomit #≤ |A |/5 badomit #≤ |A |/10

Π
|Afinal|
|A | Ref # t (sec)

|Cmin|
|A | t (sec)

|Afinal|
|A | Ref # t (sec)

|Cmin|
|A | t (sec)

AA
0.21 4.84 9.49 0.37 8.93 0.23 6.90 13.59 0.36 8.69
0.24 5.93 11.92 0.36 8.38 0.29 8.61 17.84 0.35 7.86
0.23 5.87 11.93 0.36 8.88 0.33 10.27 22.30 0.34 7.36

min_badomit #

Π
|Afinal|
|A | Ref # t (sec)

|Cmin|
|A | t (sec)

AA
0.24 7.89 15.20 0.36 8.06
0.30 10.65 34.10 (2) 0.34 7.06
0.44 17.48 62.46 (1) 0.34 5.86

Badomit minimization In a refinement step, minimizing the number of badomit atoms gives the smallest
set of atoms to put back. However, the minimization makes the search more difficult, hence may hit a
timeout; e.g., no optimal solution for 45 nodes in GC was found in 10 mins. Figure 8 shows the results
of giving different upper bounds on the number of badomit atoms and also applying the full minimization
in the refinement for the AA instances. The numbers in the parentheses show the number of instances that
reached a timeout. As more minimization is imposed, we can observe an increase in the size of the final
omissions A f inal and also a decrease in the size of the ⊆-minimal blocker set. For example, for 75% initial
omission, we can see that the size of the computed final omission increases from 0.20 (Figure 7) to 0.24,
0.29 and finally to 0.30. Also the size of the ⊆-minimal blocker set decrease from 0.37 (Figure 7) to 0.36,
0.35 and finally to 0.34. As expected, adding the smallest set of badomit atoms back makes it possible to
reach a larger omission A f inal that keeps unsatisfiability (e.g., min_badomit# third row (100% Ainit): A f inal
is 44% instead of 0.01% as in Figure 7). On the other hand, such minimization over the number of badomit
atoms causes to have more refinement steps (Ref #) to reach some unsatisfiable abstract program, which also
adds to the overall time.

The ⊆-minimal blocker search algorithm relies on the order of the picked atoms. We considered the
heuristics of ordering the atoms according to the number of rules in which each atom shows up in the body,
and starting the minimality search by omitting the least occurring atoms. However, this did not provide
better results than just picking an atom arbitrarily.

Sliding Tiles (15-puzzle) Studying the resulting abstract programs with ⊆-minimal blockers showed that
finding out whether the problem instance is unsolvable within the given time frame does not require to
consider every detail of the problem. Omitting the details about some of the tiles still reaches a program
which is unsolvable, and shows the reason for unsolvability through the remaining tiles. Figure 9 shows
an instance from the benchmark, which is unsolvable in 10 steps. Applying omission abstraction achieves
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Figure 9: Unsolvable sliding tiles problem instance
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an abstract program that only contains atoms relevant with the tiles 0,3,4,5 and is still unsatisfiable; this
matches the intuition behind the notion of pattern databases introduced in (Culberson and Schaeffer, 1998).

Summary The results show that the notion of abstraction is useful in computing the part of the problem
which causes unsatisfiability, as all of the benchmarks contain a blocker set that is smaller than the original
vocabulary. We observed that different program structures cause the ⊆-minimal blocker sets to be different
in size with respect to the respective original vocabulary size. Computation of these ⊆-minimal blocker sets
can sometimes result in smaller sizes with the bottom up approach. However, starting with an 100% initial
omission to use the bottom-up approach appears to be unreasonable due to the time difference compared to
the top-down approach, even though sometimes it computes ⊆-minimal blocker atoms sets of smaller size.
The abstraction & refinement approach can also be useful if there is a desire to find some (non-minimal)
blocker, as most of the time, starting with an initial omission of 50% or 75% results in computing some
unsatisfiable abstraction in few refinement steps.

We recall that our focus in this initial work is on the usefulness of the abstraction approach on ASP,
and not on the scalability. However, we believe that further implementation improvements and optimization
techniques should also make it possible to argue about efficiency.

7 Discussion

In this section, we first discuss possible extensions of the approach to more expressive programs, in particular
to non-ground programs and to disjunctive logic programs, and we then address further aspects that may
influence the solving behavior.

7.1 Non-Ground Case

In case of omitting atoms from non-ground programs, a simple extension of the method described above
is to remove all non-ground atoms from the program that involve a predicate p that should be omitted.
This, however, may require to introduce domain variables in order to avoid the derivation of spurious atoms.
Specifically, if in a rule r : α ← B(r) a non-ground atom p(V1, . . . ,Vn) that is omitted from the body shares
some arguments, Vi, with the head α , then α is conditioned for Vi with a domain atom dom(Vi) in the
constructed rule, so that all values of Vi are considered.

Example 15 Consider the following program Π with domain predicate int for an integer domain {1, ...,5}:

a(X1,X2)← c(X1),b(X2). (22)

d(X1,X2)← a(X1,X2),X1≤X2. (23)
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In omitting c(X), while rule (23) remains the same, rule (22) changes to

{a(X1,X2) : int(X1)}← b(X2).

From Π and the facts c(1),b(2), we get the answer set {c(1),b(2), a(1,2),d(1,2)}, and with c(2),b(2) we
get {c(2),b(2), a(2,2),d(2,2)}. After omitting c(X), the abstract program with fact b(2) has 32 answer
sets. Among them are {b(2),a(1,2),d(1,2)} and {b(2), a(2,2),d(2,2)}, which cover the original answer
sets, i.e., each original answer set can be mapped to some abstract one.

For a more fine-grained omission, let the set A consist of the atoms α = p(c1, . . . ,ck) and let Ap ⊆ A denote
the set of ground atoms with predicate p that we want to omit. Consider a k-ary predicate θp such that
for any c1, . . . ,ck, we have θp(c1, . . . ,ck) = true iff p(c1, . . . ,ck) ∈ Ap; for a (possibly non-ground) atom
α = p(t1, . . . , tk), we write θ(α) for θp(t1, . . . , tk). We can then build from a non-ground program Π an
abstract non-ground program omit(Π,A) according to the abstraction mA, by mapping every rule r : α←B
in Π to a set omit(r,A) of rules such that

omit(r,A) includes


r if Apred(β ) = /0 for all β ∈ {α}∪B±,

α←B,not θ(β ) if Apred(β ) 6= /0 ∧ β ∈ {α}∪B±,
{α}← B\{β},θ(β ) if β ∈ B ∧ α 6=⊥ ∧ θ(β ) is satisfiable,

/0 otherwise,

and no other rules. The steps above assume that in a rule a most one predicate to omit occurs in a single atom
β . However, the steps can be readily lifted to consider omitting a set {β1, . . . ,βn} of atoms with multiple
predicates from the rules. For this, α←B,not θ(β ) will be converted into α←B,not θ(β1), . . . ,not θ(βn)
and {α} ← B \ {β},θ(β ) gets converted into a set of rules {α} ← B \ {β1, . . . ,βn},θ(β1); . . . ;{α} ← B \
{β1, . . . ,βn},θ(βn).

Example 16 (Example 15 continued) Say we want to omit c(X) for X<3, i.e., A = {c(1),c(2)}= Ac. We
have θ(c(1)) = θ(c(2)) = true and θ(c(X)) = false, for X ∈ {3, ...,5}. The abstract non-ground program
omit(Π,A) is

a(X1,X2)← c(X1),b(X2),not θ(c(X1)).

{a(X1,X2)}← b(X2),θ(c(X1)).

d(X1,X2)← a(X1,X2),X1≤X2.

The abstract answer sets with facts b(2),θ(c(1)),θ(c(2)) are {{b(2)},{b(2),a(2,2),d(2,2)}, {b(2),a(1,2),
d(1,2)}, and {b(2),a(1,2),a(2,2),d(1,2),d(2,2)}}. The program omit(Π,A) is over-approximating Π

while not introducing that many abstract answer sets as in the coarser abstraction in Example 15.

For determining bad omissions in non-ground programs, if lifting the current debugging rules is not
scalable, other meta-programming ideas (Gebser et al., 2008; Oetsch et al., 2010) can be used. The issue
that arises with the non-ground case is having lots of guesses to catch the inconsistency. Determining a
reasonable set of bad omission atoms requires optimizations which makes solving the debugging problem
more difficult.
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7.2 Disjunctive Programs

For disjunctive programs, splitting the disjunctive rules yields an over-approximation.

Proposition 20 For a program Π′ constructed from a given Π by splitting rules of form α01 ∨ ·· · ∨α0k ←
B(r) into {α01}← B(r); . . . ;{α0k}← B(r), we have AS(Π)⊆ AS(Π′).

The current abstraction method can then be applied over Π′. However, it is possible that for an un-
satisfiable Π the constructed Π′ becomes satisfiable; the reason for unsatisfiability of Π can then not be
grasped.

The approach from above can be extended to disjunctive programs Π, by injecting auxiliary atoms to
disjunctive heads in order to cover the case where the body does not fire in the original program. To obtain
with a given set A of atoms an abstract disjunctive program omit(Π,A), we define abstraction of disjunctive
rules r : α1∨·· ·∨αn←B in Π, where n≥ 2 and all αi 6=⊥ are pairwise distinct, as follows.

omit(r,A) =


r if A∩B± = /0 ∧ A∩{α1, . . . ,αn}= /0,

α1∨·· ·∨αk∨ x← mA(B) if A∩{α1, . . . ,αn}= {αk+1, . . . ,αn} ∧ k ≥ 1,
α1∨·· ·∨αn∨ x← mA(B) if A∩B± 6= /0 ∧ A∩{α1, . . . ,αn}= /0,

/0 otherwise.

where x is a fresh auxiliary atom. Further development of the approach for disjunctive programs in a syntax
preserving manner remains as future work.

7.3 Further Solution Aspects

The abstraction approach that we presented is focused on the syntactic level of programs, and it aims to
preserve the structure of the given program. Thus, depending on the particular encoding that is used to
solve a particular problem, the abstraction process may provide results that, from the semantic view of the
problem, can be of quite different quality.

For illustration, consider a variant of the graph coloring encoding with a rule

colorUsed(Y )← colored(X ,Y ),node(X),color(Y )

which records that a certain color is used in the coloring solution, and where colorUsed(Y ) is then used in
other rules for further reasoning. Omitting nodes of the graph means omitting the ground atoms that involve
with them; this will cause to have a choice rule {colorUsed(Y )} for each color Y in the constructed abstract
program. However, these guesses could immediately cause the occurrence of spurious answer sets due to
the random guesses of colorUsed. Thus, one may need to add back many of the atoms in order to get rid of
the spurious guesses.

Other aspects that apparently will have an influence on the quality of abstraction results is the way in
which refinements are made and the choice of the initial abstraction. We considered possible strategies for
this in order to help with the search, and we tested their effects in some of the benchmarks. The first strategy,
described in Section 7.3.1, is on refining the reasoning step for determining bad omissions, while the the
second, described in Section 7.3.2, is on making a more intuitive decision than a random choice for the
initial set of omitted atoms.
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7.3.1 Bad omission determination

It may happen that in a refinement step no put-back set is found that eliminates the spurious answer set.
Therefore, we consider further reasoning for bad omission determination to see whether it can be useful in
order to mitigate this behavior.

Example 17 Consider the following program Π, with the single answer set I = {c,d,a,b}, and its abstrac-
tion Π̂a,d , with AS(Π̂a,d) = {{c},{c,b}}

Π Π̂{a,d} Π̂{a}
r1 : b← d. {b}. b← d.
r2 : d← c,a. {d}← c.
r3 : a← c.
r4 : c. c. c.

The abstract answer set Î = {c} is spurious, as a corresponding answer set of Π must contain a by r3, d by

r2 and b by r1, which is impossible. Adding to Π the query Q{a,d}
Î

= {⊥← not c.;⊥← b.} does not satisfy
rule r1, which results in determining d as badomit since r1 should not remain as a choice rule. However,
adding it back does not eliminate the answer set Î, since then r2 becomes a choice rule in Π̂{a} causing
again the occurrence of Î.

An additional reasoning over the omitted rules in determining bad omissions as below helps in deciding
{a,d} as badly omitted in one refinement step, and adding them back gets rid of the spurious answer set
{c}.

Reasoning over omitted rules. We considered an additional badomit type to help with catching the cases
when putting back one omitted atom does not eliminate the spurious answer set.

• If a rule was omitted due to a badly omitted atom, it has an omitted atom in the body, and the abstract
rule was applicable, then an additional bad omission is inferred.

badomit(A2, type4)←omitted(R),head(R,A1),absAp(R),

badomit(A1),omittedAtomFrom(A2,R).

The idea is as follows: if some atom a, which was decided to be badly omitted, occurs in the head of a rule r,
then once a is put back r will also be put back. However if B(r) has some other omitted atom, then r will be
put back as a choice rule. If this rule was also applicable in the abstract program for the given interpretation
I, then once it has been put back as a choice rule, it will still be applicable for some I′ = I∪{a} or I′′ = I.
Thus, the choice over H(r) may again have the same spurious answer set determined.

Experiments. Figure 10 shows the conducted experiments with the additional bad omission detection.
Observe that compared with the results in Figure 7, for the DS benchmarks the number of refinement steps
and the time spent decreased since more omitted atoms were decided to be badly omitted in one step. Also
we can see that the final set A f inal of omitted atoms remains larger with the heuristics. On the other hand,
this heuristic does not have a positive effect on the quality of the obtained minimal blockers. However,
the results for the AA benchmarks are different. Although a larger final set of omitted atoms A f inal were
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Figure 10: Heuristic over badomit detection. The three entries in a cell, e.g., 0.41 / 0.51 / 0.63 in cell (DS,
|Afinal|
|A | ), are for 50% / 75% / 100% initial omission.

Π
|Afinal|
|A | Ref # t (sec)

|Cmin|
|A | t (sec)

DS
0.41 1.57 2.96 0.11 1.51
0.51 3.03 5.06 0.10 1.00
0.63 4.45 7.12 0.09 0.55

AA
0.11 5.02 8.91 0.37 9.66
0.13 6.91 12.38 0.36 9.14
0.15 8.11 14.27 0.35 8.86

computed for Ainit with 100% (15% instead of 0.01% in Figure 7), the overall time spent and the refinement
steps for obtaining some A f inal increased. On the other hand, smaller minimal blockers were computed.

The results show that the considered strategy does not obtain the expected results on every program, as
the structure of the programs matters.

7.3.2 Initial omission set selection

A possible strategy for setting up the initial omission set is to look at the occurrences of atoms in rule bodies
and to select atoms that occur least often, as intuitively, atoms that occur less in the rules should be less
relevant with the unsatisfiability.

Experiments In Figure 11 we see the results of choosing as initial omission 50% and 75% of the objects
in increasing order by number of their occurrences. In the benchmarks GC3, when omitting 75% of the
least occurring nodes, two of the instances hit timeout during the Clingo call when searching for an optimal
number of badomit atoms, and one instance hit timeout when computing some A f inal , again spending most
of the time in Clingo calls. The time increase for finding some optimized number of badomit atoms is due
to many possible badomit atoms among the omitted atoms in the particular instances.

An interesting observation is that omitting 75% of the least occurring nodes results in larger A f inal sets:
while random omission removes on average 31% of the atoms (Figure 7), with the strategy added it increases
to 67%. This result matches the intuition behind the strategy: the nodes that are not involved in the reasoning
should not really be the cause of non-colorability. We also observe a positive effect on the quality of the
computed⊆-minimal blocker sets, which are smaller in size, only 15% of the atoms for 50% and 75% initial
omission, while before they were 16% and 17% (Figure 7), respectively.

For the AA benchmarks, compared to Figure 7 the strategy made it possible to obtain larger A f inal
sets. However, overall it does not show a considerable effect on the number of refinement steps or on the
quality of the computed ⊆-minimal blocker sets as in GC3. We additionally performed experiments with
full minimization of badomit# in the refinement step (Figure 12). Compared to the results in Figure 8, we
can observe that larger A f inal sets were obtained, and there were no timeouts when determining the badomit
atoms in the refinement steps. The search for optimizing the number of badomit atoms is easier due to doing
the search among the omitted atoms that have the least dependency.

For the DS benchmarks, although strategy reduced the average refinement steps and time, it had a neg-
ative effect on the quality of the ⊆-minimal blocker sets as they are much larger (13% and 14% for initial
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Figure 11: Heuristic over Ainit . The two entries in a cell, e.g., 0.48 / 0.67 in cell (GC3, |Afinal|
|A | ), are for 50% /

75% initial omission.

Π
|Afinal|
|A | Ref # t (sec)

|Cmin|
|A | t (sec)

GC3 0.48 0.26 1.42 0.15 1.33
0.67 1.06 2.46 (3) 0.15 0.62

AA
0.22 3.22 6.69 0.37 8.25
0.23 4.20 8.77 0.37 8.08

DS
0.35 0.38 1.66 0.13 2.46
0.42 1.88 4.50 0.14 2.24

Figure 12: Heuristic over Ainit with full minimization on badomit#. The two entries in a cell, e.g., 0.28 /
0.35 in cell (AA, |Afinal|

|A | ), are for 50% / 75% initial omission.

Π
|Afinal|
|A | Ref # t (sec)

|Cmin|
|A | t (sec)

AA
0.28 7.49 14.29 0.35 7.62
0.35 11.07 24.31 0.35 6.87

omission of 50% and 75% of tasks, instead of 10% and 9% as in Figure 7, respectively).

8 Related Work

Although abstraction is a well-known approach to reduce problem complexity in computer science and
artificial intelligence, it has not been considered so far in ASP. In the context of logic programming, ab-
straction has been studied many years back in (Cousot and Cousot, 1992). However, the focus was on the
use of abstract interpretations and termination analysis of programs, and moreover stable semantics was not
addressed. In planning, abstraction has been used for different purposes; two main applications are plan
refinement (Sacerdoti, 1974; Knoblock, 1994), which is concerned with using abstract plans computed in an
abstract space to find a concrete plan, while abstraction-based heuristics (Edelkamp, 2001; Helmert et al.,
2014) deals with using the costs of abstract solutions as a heuristic to guide the search for a plan. Pattern
databases (Edelkamp, 2001) is a notion of abstraction which aims at projecting the state space to a set of
variables, called a ’pattern’. In contrast, merge & shrink abstraction (Helmert et al., 2014) starts with a suite
of single projections, and then computes a final abstraction by merging them and shrinking. In the sequel,
we address related issues in the realm of ASP.

8.1 ASP Debugging

Investigating inconsistent ASP programs has been addressed in several works on debugging (Brain et al.,
2007; Oetsch et al., 2010; Dodaro et al., 2015; Gebser et al., 2008), where the basic assumption is that one
has an inconsistent program and an interpretation as expected answer set. In our case, we do not have a
candidate solution but are interested in finding the minimal projection of the program that is inconsistent.
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Through abstraction and refinement, we are obtaining candidate abstract answer sets to check in the original
program. Importantly, the aim is not to debug the program itself, but to debug (and refine) the abstraction
that has been constructed.

Different from other works, (Dodaro et al., 2015) computed the unsatisfiable cores (i.e., the set of atoms
that, if true, causes inconsistency) for a set of assumption atoms and finds a diagnosis with it. The user is
queried about the expected behavior, to narrow down the diagnosed set. In our work, such an interaction is
not required and the set of blocker atoms that was found points to an abstract program (a projection of the
original program) which shows all the rules (or projection of the rules) that are related with the inconsistency.

The work by (Syrjänen, 2006) is based on identifying the conflict sets that contain mutually incompat-
ible constraints. However for large programs, the smallest input program where the error happens must
be found manually. Another related work is (Pontelli et al., 2009), which gives justifications for the truth
values of atoms with respect to an answer set by graph-based explanations that encode the reasons for these
values. Notably, justifications can be computed offline or online when computing an answer set, where they
may be utilized for program debugging purposes. The authors demonstrated how their approach can be used
to guide the search for consistency restoring in CR-Prolog (Balduccini and Gelfond, 2003), by identifying
restoral rules that are needed to resolve conflicts between literals detected from their justifications. How-
ever, the latter hinge on (possibly partial) interpretations, and thus do not provide a strong explanation of
inconsistency as blockers, which are independent of particular interpretations.

8.2 Unsatisfiable Cores in ASP

A well-known notion for unsatisfiability are minimal unsatisfiable subsets (MUS), also known as unsatis-
fiable cores (Liffiton and Sakallah, 2008; Lynce and Silva, 2004). It is based on computing, given set of
constraints respectively formulas, a minimal subset of the constraints that explains why the overall set is
unsatisfiable. Unsatisfiable cores are helpful in speeding up automated reasoning, but have beyond many
applications and a key role e.g. in model-based diagnosis (Reiter, 1987) and in consistent query answering
(Arenas et al., 1999).

In ASP, unsatisfiable cores have been used in the context of computing optimal answer sets (Alviano and
Dodaro, 2016; Andres et al., 2012), where for a given (satisfiable) program, weak constraints are turned into
hard constraints; an unsatisfiable core of the modified program that consists of rewritten constraints allows
one to derive an underestimate for the cost of an optimal answer set, since at least one of the constraints in the
core can not be satisfied. However, if the original program is unsatisfiable, such cores are pointless. In the
recent work (Alviano et al., 2018), unsatisfiable core computation has been used for implementing cautious
reasoning. The idea is that modern ASP solvers allow one to search, given set of assumption literals, for
an answer set. In case of failure, a subset of these literals is returned that is sufficient to cause the failure,
which constitutes an unsatisfiable core. Cautious consequence of an atom amounts then to showing the the
negated atom is an unsatisfiable core.

Intuitively, unsatisfiable cores are similar in nature to spurious abstract answer sets, since the latter like-
wise to not permit to complete a partial answer set to the whole alphabet. More formally, their relationship
is as follows.

Technically, an unsatisfiable (u-) core for a program Π is an assignment I over a subset C ⊆ A of the
atoms such that Π has no answer set J that is compatible with I, i.e., such that J|C = I holds. We then have
the following property.

Proposition 21 Suppose that Î ∈AS(omit(Π,A)) for a program Π and a set A of atoms. If Î is spurious, then
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Î is a u-core of Π (w.r.t. A \A). Furthermore, if A is maximal, i.e., no A′ ⊃ A exists such that omit(Π,A′)
has some (spurious) answer set Î′ such that Î|A′ = Î′, then I is a minimal core.

That is, spurious answer sets are u-cores; however, the converse fails in that cores C are not necessarily
spurious answer sets of the corresponding omission A = A \A (C), where A (C) are the atoms that occur
in C. E.g., for the program with the single rule

r : a← b,not a.

the set C={b} is a core, while C is not an answer set of omit({r},{a})) = /0. Intuitively, the reason is that
C lacks foundedness for the abstraction, as it assigns b true while there is no way to derive b from the rules
of the program, and thus b must be false in every answer set. As C is a minimal u-core, the example shows
that also minimal u-cores may not be spurious answer sets.

Thus, spurious answer sets are a more fine-grained notion of relative inconsistency than (minimal) u-
cores, which accounts for a notion of weak satisfiability in terms of the abstracted program. In case of an
unsatisfiable program Π, each blocker set C for Π naturally gives rise to u-cores in terms of arbitrary assign-
ments I to the atoms in A \C; in this sense, blocker sets are conceptually a stronger notion of inconsistency
explanation than u-cores, in which minimal blocker sets and minimal u-cores remain unrelated in general.

8.3 Forgetting

Forgetting is an important operation in knowledge representation and reasoning, which has been studied for
many formalisms and is a helpful tool for a range of applications, cf. (Delgrande, 2017; Eiter and Kern-
Isberner, 2018). The aim of forgetting is to reduce the signature of a knowledge base, by removing symbols
from the formulas in it (while possibly adding new formulas) such that the information in the knowledge
base, given by its semantics that may be defined in terms of models or a consequence relation, is invariant
with respect to the remaining symbols; that is, the models resp. consequences for them should not change
after forgetting.

Due to nonmonotonicity and minimality of models, forgetting in ASP turned out to be a nontrivial issue.
It has been extensively studied in the form of introducing specific operators that follow different principles
and obey different properties; we refer to (Gonçalves et al., 2017; Leite, 2017) for a survey and discussion.
The main aim of forgetting in ASP as such is to remove/hide atoms from a given program, while preserving
its semantics for the remaining atoms. As atoms in answer sets must be derivable, this requires to maintain
dependency links between atoms. For example, forgetting the atom b from the program Π = {a← b.;
b← c.} is expected to result in a program Π′ in which the link between a and c is preserved; this intuitively
requires to have the rule a← c in Π′. The various properties that have been introduced as postulates or
desired properties for an ASP forgetting operator mainly serve to ensure this outcome; forgetting in ASP is
thus subject to more restricted conditions than abstraction.

Atom omission as we consider it is different from forgetting in ASP as it aims at a deliberate over-
approximation of the original program that may not be faithful; furthermore, our omission does not resort
to language extensions such as nested logic programs that might be necessary in order to exclude non-
faithful abstraction; notably, in the ASP literature under-approximation of the answer sets was advocated if
no language extensions should be made (Eiter and Wang, 2008).

Only more recently over-approximation has been considered as a possible property of forgetting in ASP
in (Delgrande and Wang, 2015), which was later named weakened Consequence (WC) in (Gonçalves et al.,
2016):
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(WC) Let Π be a disjunctive logic program, let A be a set of atoms, and let X be an answer set for Π. Then
X \A is an answer set for forget(Π,A).

That is, AS(Π)|A⊆AS(forget(Π,A)) should hold. This property amounts to the notion of over-approximation
that we achieve in Theorem 1. However, according to (Gonçalves et al., 2016), this property is in terms of
proper forgetting only meaningful if it is combined with further axioms. Our results may thus serve as a
base for obtaining such combinations; in turn, imposing further properties may allow us to prune spurious
answer sets from the abstraction.

9 Conclusion

Abstraction is a well-known approach to reduce problem complexity by stepping to simpler, less detailed
models or descriptions. In this article, we have considered this hitherto in Answer Set Programming ne-
glected approach, and we have presented a novel method for abstracting ASP programs by omitting atoms
from the rules of the programs. The resulting abstract program can be efficiently constructed and has rules
similar to the original program and is a semantic over-approximation of the latter, i.e., each original answer
set is covered by some abstract answer set. We have investigated semantic and computational properties of
the abstraction method, and we have presented a refinement method for eliminating spurious answer sets by
adding badly omitted atoms back. The latter are determined using an approach inspired from previous work
on debugging ASP programs.

An abstraction and refinement approach like the one that we presented may be used for different pur-
poses. We have demonstrated as a show case giving explanations of the unsatisfiability of ASP programs,
which can be achieved in terms of particular sets of omitted atoms, called blockers, for which no truth as-
signment will lead to an answer set. Thanks to the structure-preserving nature of the abstraction method,
this allows one to narrow down the focus of attention to the rules associated with the blockers. Experimental
results collected with a prototype implementations have shown that, in this way, strong explanations for the
cause of inconsistency can be found. They would not have been easily visible if we had applied a pure
semantic approach in which connections between atoms might get lost by abstractions. We have briefly
discussed how the approach may be extended to the non-ground case and to disjunctive programs, and we
have addressed some further aspects that can help with the search.

Outlook and future work. There are several avenues of research in order to advance and complement
this initial work on abstraction in ASP. Regarding over-approximation, the current abstraction method can
be made more sophisticated in order to avoid introducing too many spurious answer sets. This, however, will
require to conduct a more extensive program analysis, as well as to have non-modular program abstraction
procedures which do not operate on a rule by rule basis; to what extent the program structure can be obtained,
and understanding the trade-off between program similarity and answer set similarity are interesting research
questions.

Another direction is building a highly efficient implementation. The current experimental prototype has
been built on top of legacy code and tools such as Spock (Brain et al., 2007) from previous works; there
is a lot of room for significant performance improvement. However, even for the current, non-optimized
implementation it is already possible to see benefits in terms of qualitative improvements of the results. An
optimized implementation may lead to view abstraction under a performance aspect, which then becomes
part of a general ASP solving toolbox.
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Yet another direction is to broaden the classes of programs to which abstraction can be fruitfully applied.
We have briefly discussed non-ground and disjunctive programs, for which abstraction needs to be worked
out, but also other language extensions such as aggregates, nested implication or program modules (which
are naturally closes relatives to abstraction) are interesting topics. In particular, for non-ground programs
other, natural forms of abstraction are feasible; e.g., to abstract over individuals of the domain of discourse,
or predicate abstraction. The companion work (Saribatur and Eiter, 2018) studies the former issue.
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